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Coupled Vortex Equations on Complete
Kähler Manifolds

Yue Wang

Abstract. In this paper, we first investigate the Dirichlet problem for coupled vortex equations. Sec-

ondly, we give existence results for solutions of the coupled vortex equations on a class of complete

noncompact Kähler manifolds which include simply-connected strictly negative curved manifolds,

Hermitian symmetric spaces of noncompact type and strictly pseudo-convex domains equipped with

the Bergmann metric.

1 Introduction

The Hermitian–Einstein equation is of great importance in the study of holomorphic

vector bundles over Kähler manifolds. The main result due to Donaldson [2] and

Uhlenbeck–Yau [14] is the Hitchin–Kobayashi correspondence relating the stability

of the underlying bundle over closed Kähler manifold to the existence of Hermitian–

Einstein metric, i.e., a Hermitian metric H solving the Hermitian–Einstein equation

(1.1)
√
−1ΛFH = λ IdE,

where FH is the curvature of the Chern connection of the metric H, Λ is the contrac-

tion with the Kähler form of M, and λ is a real number determined by the topology

of the underlying bundle. The classical Hitchin–Kobayashi correspondence has many

important generalizations, for example: Higgs bundles by Hitchin [8] and Simp-

son [12], the vortex equation by Bradlow [1], and the coupled vortex equation by

Garcia-Prada [4].

Let M be a Kähler manifold, E1 and E2 holomorphic vector bundles over M, and

φ a holomorphic morphism from E2 to E1, τ = (τ1, τ2) ∈ R2. Then H = (H1,H2)

is a Hermitian metric on bundle E = E1 ⊕ E2, where Hi is a Hermitian metric on Ei .

We say H satisfies the coupled vortex equations if

(1.2)
√
−1ΛFH1

+ 1
2
φ ◦ φ∗H

= τ1 IdE1

√
−1ΛFH2

− 1
2
φ∗H ◦ φ = τ2 IdE2

,

where i = 1, 2 and φ∗H is the adjoint of φ taken with respect to metric H. The

coupled vortex equations can be seen as a generalization of the Hermitian–Einstein

equation and the vortex equation. For example, if there is only one holomorphic

vector bundle and φ is trivial, then (1.2) is just the Hermitian–Einstein equation

(1.1). If E2 = OM , i.e., the canonical line bundle over M, then (1.2) is just the vortex

equation which was discussed by Bradlow [1].
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In this paper, we want to consider the solution of coupled vortex equations over

complete Kähler manifolds. We would like to point out that Ni [10], Ren [11], and

Zhang [15] discussed the existence of Hermitian–Einstein metrics and vortices met-

rics over complete Kähler manifolds, and we will adapt the techniques used by them.

The corresponding Dirichlet boundary value problem for the Hermitian–Einstein

equation was done by Donaldson [3]. Moreover, Zhang [15] solved the case for the

vortex equation. In this paper, we first consider the Dirichlet boundary value prob-

lem for the coupled vortex equations. We obtain the following theorem.

Theorem 1.1 Let E = E1⊕E2 be a holomorphic vector bundle over the compact Kähler

manifold M with non-empty smooth boundary ∂M, where E1, E2 are two holomorphic

bundles on M with holomorphic morphism φ : E2 → E1. For any Hermitian metric

ϕ = (ϕ1, ϕ2) on the restriction of E = E1 ⊕ E2 to ∂M, there is a unique Hermitian

metric H = (H1,H2) on E such that H satisfies the coupled vortex equations and the

Dirichlet boundary condition:

√
−1ΛFH1

+
1

2
φ ◦ φ∗H

= τ1 IdE1

√
−1ΛFH2

− 1

2
φ∗H ◦ φ = τ2 IdE2

Hi |∂M = ϕi

where i = 1, 2.

We will use the heat equation method to prove Theorem 1.1, and adapt the tech-

niques which already appear in the literature on the Hermitian Yang–Mills flow [3,

12,13]. Using the above solubility of Dirichlet problem, we can study the existence of

the solution of coupled vortex equations over a class of complete noncompact Kähler

manifolds, under some assumptions on the initial metric and the holomorphic mor-

phism φ. We obtain the following.

Theorem 1.2 Let M be an m-dimensional complete noncompact Kähler manifold

without boundary, let E = E1 ⊕ E2 be a holomorphic vector bundle over M with initial

Hermitian metric H0 = (H1
0 ,H

2
0), where H1

0 , H2
0 are Hermitian metrics on E1, E2

respectively, and let φ : E2 → E1 be a holomorphic morphism . Let

Θ
2

=
∣

∣

√
−1ΛFH1

0
+

1

2
φ ◦ φ∗H0 − τ1 IdE1

∣

∣

2

H1
0

+
∣

∣

√
−1ΛFH2

0
− 1

2
φ∗H0 ◦ φ− τ2 IdE2

∣

∣

2

H2
0

Assume that λ1(M) > 0, where λ1(M) denotes the lower bound of the spectrum of the

Laplacian operator, and that ‖Θ‖Lp(M) < ∞ for some p > 1 and real numbers τ1,

τ2. Then there exists a Hermitian metric H = (H1,H2) on E such that H satisfies the

coupled vortex equations:

(1.3)
√
−1ΛFH1

+
1

2
φ ◦ φ∗H

= τ1 IdE1
,

√
−1ΛFH2

− 1

2
φ∗H ◦ φ = τ2IdE2

.

The examples satisfying the assumption of Theorem 1.2 include simply-connected

strictly negative curved manifolds, Hermitian symmetric spaces of noncompact type,

and strictly pseudo-convex domains equipped with the Bergmann metric. According

to [6, Theorem 1.4.A], the universal cover of any Kähler hyperbolic manifold (in the

sense of Gromov) satisfies the assumption of Theorem 1.2, too. Therefore Theorem

1.2 is applicable to a relatively broad class of Kähler manifolds.
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2 Preliminary Results

Let M be a compact Kähler manifold and E = E1⊕E2 a rank r complex vector bundle

over M. Denote by ω the Kähler form, and define the operator Λ as the contraction

with ω, i.e., if α ∈ Ω1,1(M, E), then Λα = 〈α, ω〉. Let H = (H1,H2) be a Hermitian

metric on a holomorphic vector bundle E = E1 ⊕ E2, and denote the holomorphic

structure by ∂̄E. Then there exists a canonical metric connection which is denoted

by AH . Taking a local holomorphic basis eα(1 ≤ α ≤ r), the Hermitian metric H

is a positive Hermitian matrix (Hαβ̄)1≤α,β≤r , which can also be denoted by H for

simplicity; here Hαβ̄ = H(eα, eβ). In fact, the complex metric connection can be

written AH = H−1∂H and the curvature form as FH = ∂̄AH = ∂̄(H−1∂H). In the

literature, sometimes the connection is written as (∂H)H−1 because of the reversal

of the roles of the row and column indices.

It is known that any two Hermitian metrics H and K on bundle E are related by

H = Kh, where h = K−1H ∈ Ω0(M, End(E)) is positive and self-adjoint with respect

to K. It is easy to check that

AH − AK = h−1∂K h

FH − FK = ∂̄(h−1∂K h)(2.1)

Let H(0) = K be a Hermitian metric on E. Consider a family of Hermitian metric

H(t) = (H1(t),H2(t)) on E with initial metric H(0) = K. Denote by AH(t) and

FH(t)the corresponding connections and curvature forms and let h(t) = (h1(t), h2(t))

be a 2-tuple of endomorphisms hi = K−1
i Hi , where i = 1, 2. When there is no

confusion, we will omit the parameter t and simply write H, h for H(t), h(t). We

consider the following heat equations of (1.2)

(2.2)

H−1
1

∂H1

∂t
= −2(

√
−1ΛFH1

+
1

2
φ ◦ φ∗H − τ1 IdE1

),

H−1
2

∂H2

∂t
= −2(

√
−1ΛFH2

− 1

2
φ∗H ◦ φ− τ2 IdE2

),

It is completely equivalent to the following evolution equations:

(2.3)

∂h1

∂t
= −2

√
−1Λ∂̄E1

∂K1
h1 + 2

√
−1Λ(∂̄E1

h1h−1
1 ∂K1

h1)

− 2
√
−1h1ΛFK1

+ 2τ1h1 − h1φh−1
2 φ∗K h1,

∂h2

∂t
= −2

√
−1Λ∂̄E2

∂K2
h2 + 2

√
−1Λ(∂̄E2

h2h−1
2 ∂K2

h2)

− 2
√
−1h2ΛFK2

+ 2τ2h2 + φ∗Kh1φ,

where we have used the formula (2.2) and the identity

(2.4) φ∗H
= h−1

2 φ∗K h1.
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We know that the above equations are a nonlinear parabolic system; as in [2], hi(t)

are self-adjoint with respect to Hi for t > 0 since hi(0) = IdEi
. We denote

Θ
2

= |
√
−1ΛFH1

+
1

2
φ ◦ φ∗H − τ1 IdE1

|2H1
+ |

√
−1ΛFH2

− 1

2
φ∗H ◦ φ− τ2 IdE2

|2H2
.

Proposition 2.1 Let H(t) = (H1(t),H2(t)) be a solution of heat flow (2.2), then

(

△− ∂

∂t

)

Θ
2 ≥ 0,(2.5)

(

△− ∂

∂t

)

Tr(θ1 + θ2) = 0,(2.6)

where we denote

(2.7) θ1 =
√
−1ΛFH1

+
1

2
φ ◦φ∗H − τ1 IdE1

, θ2 =
√
−1ΛFH2

− 1

2
φ∗H ◦φ− τ2 IdE2

.

Proof By calculating directly, we have

∂

∂t
θ1 =

√
−1Λ∂̄E1

(

∂H1

(

h−1
1

dh1

dt

)

)

− 1

2
φh−1

2

dh2

dt
φ∗H +

1

2
φφ∗Hh−1

1

dh1

dt
,

∂

∂t
θ2 =

√
−1Λ∂̄E2

(

∂H2

(

h−1
2

dh2

dt

)

)

+
1

2
h−1

2

dh2

dt
φ∗Hφ− 1

2
φ∗Hh−1

1

dh1

dt
φ,

(2.8)

and

△|θi|2Hi
= 2Re〈−2

√
−1Λ∂̄Ei

∂Hi
θi, θi〉Hi

+ Re〈[2
√
−1ΛF

1,1
Hi
, θi], θi〉Hi

+ 2|∂Hi
θi|2Hi

+ 2|∂̄Ei
θi|2Hi

.

Using the above formulas, we have

(

△− ∂

∂t

)

Θ
2
= 2

2
∑

i=1

|∇θi |2Hi
+

(

|φ∗Hθ1|2 − 2〈θ2φ
∗H , φ∗Hθ1〉 + |θ2φ

∗H |2
)

+
(

|φθ2|2 − 2〈θ1φ, φθ2〉 + |θ1φ|2
)

≥ 0.

The formula (2.6) can be deduced from (2.8) directly. �

Proposition 2.2 Let H(t) = (H1(t),H2(t)) be a solution of heat flow (2.2). Then

there exists a positive constant C1 such that

(

△− ∂

∂t

)

|φ|2H ≥ 2|∂Hφ|2 + C1|φ|4H − |τ2 − τ1||φ|2H .
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Proof By calculating directly, we have

(

△− ∂

∂t

)

|φ|2H = 2|∂Hφ|2H + 2|φφ∗H |2 + 2(τ2 − τ1)|φ|2,

where we have used ∂̄E∗2 ⊗E1
φ = 0, and equations (2.3). On the other hand, one can

easily check that

|φφ∗H |2H1
≥ 1

r2

|φ|4H2
.

From the above equalities we have

(

△− ∂

∂t

)

|φ|2H ≥ 2|∂Hφ|2 + C1|φ|4H − |τ2 − τ1||φ|2H . �

Next, we will introduce Donaldson’s distance on the space of Hermitian metrics

as follows.

Definition 2.3 For any two Hermitian metrics H, K on a vector bundle E set

σ(H,K) = Tr H−1K + Tr K−1H − 2 rank E.

It is obvious that σ(H,K) ≥ 0 with equality if and only if H = K. The function

σ is not quite a metric but it serves almost equally well in our problem. In particu-

lar, a sequence of metrics Ht converges to H in the usual C0 topology if and only if

supM σ(Ht ,H) → 0.

Let H = (H1,H2) and K = (K1,K2) be 2-tuples of Hermitian metrics. We define

Donaldson’s distance of 2-tuples as:

σ(H,K) =

2
∑

i=1

σ(Hi,Ki).

Denoting h = (h1, h2), where hi = K−1
i Hi , applying −

√
−1Λ to (2.1), and taking

the trace in the bundle Ei , we have

Tr(
√
−1hi(ΛF

1,1
Hi

− ΛF
1,1
Ki

)) = −1

2
△Tr hi + Tr(−

√
−1Λ∂̄Ei

hih
−1
i ∂Ki

hi).

Let H(t), K(t) be two solutions of heat flow (2.2). Using the above formula, we have

(

△− ∂

∂t

)

(Tr h1(t) + Tr h2(t)) = 2

2
∑

i=1

Tr(−
√
−1Λ∂̄Ei

hih
−1
i ∂Ki

hi)

+ Tr(h1φh−1
2 φ∗Kh1 − h1φφ

∗K)

+ Tr(h2φ
∗Kφ− φ∗K h1φ)

= 2

2
∑

i=1

Tr(−
√
−1Λ∂̄Ei

hih
−1
i ∂Ki

hi)

+ Tr(h1φh−1
2 φ∗Kh1 − 2h1φφ

∗K + h2φ
∗Kφ).
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In the similar way, we have

(

△− ∂

∂t

)

(Tr h−1
1 (t) + Tr h−1

2 (t)) = 2

2
∑

i=1

Tr(−
√
−1Λ∂̄Ei

h−1
i hi∂Hi

h−1
i )

+ Tr(h−1
1 φφ∗K − 2h−1

2 φ∗Kφ + h−1
2 h−1

2 φ∗Kh1φ).

On the other hand, it is not hard to check that

Tr(h1φh−1
2 φ∗Kh1 − 2h1φφ

∗K + h2φ
∗Kφ) ≥ 0,

Tr(h−1
1 φφ∗K − 2h−1

2 φ∗Kφ + h−1
2 h−1

2 φ∗K h1φ) ≥ 0.

Using the above formula and the facts [2, 13]

Tr(−
√
−1Λ∂̄Ei

hih
−1
i ∂Ki

h) ≥ 0, Tr(−
√
−1Λ∂̄Ei

h−1
i hi∂Hi

h−1) ≥ 0,

we have proved the following proposition.

Proposition 2.4 Let H(t), K(t) be two solutions of the heat flow (2.2). Then

(

△− ∂

∂t

)

σ(H(t),K(t)) ≥ 0.

Corollary 2.5 Let H and K be 2-tuples of Hermitian metrics satisfying the coupled

vortex equation (1.2). Then △σ(H,K) ≥ 0.

3 The Dirichlet Boundary Problem for Coupled Vortex Equations

In this section we will consider the case when M is the interior of the compact Kähler

manifold M with non-empty smooth boundary ∂M, and the Kähler metric is smooth

and non-degenerate on the boundary. The holomorphic vector bundle E = E1 ⊕ E2

is defined over M. We will discuss the Dirichlet boundary problem for the coupled

vortex equations by using the heat equation method to deform an arbitrary initial

metric to the desired solution.

For given data ϕ on ∂M, we consider the evolution equation:

(3.1)

H−1
1

∂H1

∂t
= −2(

√
−1ΛFH1

+
1

2
φ ◦ φ∗H − τ1 IdE1

),

H−1
2

∂H2

∂t
= −2(

√
−1ΛFH2

− 1

2
φ∗H ◦ φ− τ2 IdE2

),

Hi(t)|t=0 = Ki , Hi |∂M = ϕi.

Here K = (K1,K2) is an arbitrary smooth initial Hermitian metric satisfying the

boundary condition. Denote hi(t) = K−1
i Hi(t). Then the evolution equation (3.1) is
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completely equivalent to the following equation:

∂h1

∂t
= −2

√
−1Λ∂̄E1

∂K1
h1 + 2

√
−1Λ(∂̄E1

h1h−1
1 ∂K1

h1)

− 2
√
−1h1ΛFK1

+ 2τ1h1 − h1φh−1
2 φ∗K h1

∂h2

∂t
= −2

√
−1Λ∂̄E2

∂K2
h2 + 2

√
−1Λ(∂̄E2

h2h−1
2 ∂K2

h2)

− 2
√
−1h2ΛFK2

+ 2τ2h2 + φ∗K h1φ

(3.2)

h(0) = Id h|∂M = Id .

We know that the above equation is a parabolic equation, so standard theory gives

short-time existence.

Proposition 3.1 For sufficiently small ǫ > 0, equation (3.2) and so also equation

(3.1) have a smooth solution, H(t) = (H1(t),H2(t)), defined for 0 ≤ t < ǫ .

The main point of the proof is to show that the solution of equation (3.1) persists

for all time and converges to a limit. First we want to prove the long-time existence

of the evolution equation. Let H(t) be a solution of the evolution equation (3.1), and

hi = K−1
i Hi , i = 1, 2. Then

(3.3)
∣

∣

∣

∂

∂t
(lg Tr hi)

∣

∣

∣
=

∣

∣

∣

Tr( ∂hi

∂t
)

Tr hi

∣

∣

∣
= 2

∣

∣

∣

Tr hiθi

Tr hi

∣

∣

∣
≤ 2|θi |Hi

,

and similarly

(3.4)
∣

∣

∣

∂

∂t
(lg Tr h−1

i )
∣

∣

∣
≤ 2|θi|Hi

,

where θi is given in (2.7).

Theorem 3.2 Suppose that a smooth solution H(t) = (H1(t),H2(t)) to the evolution

equation (2.2) is defined for 0 ≤ t < T. Then H(t) converges in C0 to some continuous

non-degenerate metric H(T) as t → T.

Proof Given ǫ > 0, by continuity at t = 0 we can find a δ such that

sup
M

σ(H(t),H(t ′)) < ǫ,

for 0 < t, t ′ < δ. Then Proposition 2.4 and the maximum principle imply that

sup
M

σ(H(t),H(t ′)) < ǫ,

for all t, t ′ > T − δ. This implies that Hi(t) is a uniformly Cauchy sequence and

converges to a continuous limiting metric Hi(T), i = 1, 2. On the other hand, by

Proposition 2.1, we know that |θi |Hi
are bounded uniformly. Using formulas (3.3)

and (3.4), one can conclude that σ(Hi(t),Ki(t)) are bounded uniformly, therefore

Hi(T) is a non-degenerate metric. �
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We prove the following proposition in the same way as [2, Lemma 19] and

[9, Lemma 6.4].

Proposition 3.3 Let H(t), for 0 ≤ t < T (or ∞), be any one-parameter family of

Hermitian metrics on a complex vector bundle E and that satisfy the Dirichlet boundary

condition. If H(t) converges in Co to some continuous metric H(T) as t → T (or ∞),

and if supM |ΛF
1,1
H | is bounded uniformly in t, then H(t) is bounded in C1,α and also

bounded in L
p
2 (for any 1 < p <∞) uniformly in t.

Theorem 3.4 The evolution equation (3.1) has a unique solution H(t) which exists

for 0 ≤ t <∞.

Proof Proposition 3.1 guarantees that a solution exists for a short time. Suppose

that the solution H(t) exists for 0 ≤ t < T. By Theorem 3.2, H(t) converges in Co

to a non-degenerate continuous limit metric H(T) as t → T. From Proposition 2.1

and the maximum principle, we conclude that |θi |Hi
are bounded independently of t .

Moreover, from Proposition 2.2, we have

(

△− ∂

∂t

)

|φ|2H ≥ 2|∂Hφ|2 + C1|φ|4H − |τ2 − τ1||φ|2H .

Assume that |φ|2H attains its maximum on M × [0,T) at the point (x0, t0) with 0 <

t0 < T, x0 ∈ M. If |φ|2(x0, t0) >
|τ2−τ1|

C1
, then (△− ∂

∂t
)|φ|2 ≥ 0, This is contradicted

by the maximum principle of the heat operator. Then we have

|φ|2 ≤ max
{

|φ|2K ,
|τ2 − τ1|

C1

}

.

So, supM |ΛF
1,1
Hi
|2Ki

are bounded independently of t , here i = 1, 2. Hence by Propo-

sition 3.3, Hi(t) are bounded in C1 and also bounded in L
p
2 (for any (1 < p < ∞))

uniformly in t . Since the evolution equations (3.1) and (3.2) are quadratic in the first

derivative of hi we can apply Hamilton’s method [7] to deduce that Hi(t) → Hi(T) in

C∞, i = 1, 2, and the solution can be continued past T. Then the evolution equations

(3.1) have a solution H(t) defined for all time.

By Proposition 2.4 and the maximum principle, it is easy to conclude the unique-

ness of the solution. �

Proof of Theorem 1.1 For given data ϕ on ∂M we consider the evolution equation

(3.1). By Theorem 3.4, we know that there exists a unique solution H(t) of equation

(3.1). Next, we want to prove that H(t) will converge to the metric which satisfies the

coupled vortex equation.

By direct calculation, one can check that |∇Hθi|2H ≥ |∇|θi |H |2 for any section θi

in End(Ei). Then, using formula (2.5),

(

△− ∂

∂t

)

Θ
2

= 2Θ

(

△− ∂

∂t

)

Θ + 2|∇Θ|2 ≥ 2

2
∑

i=1

|∇θi |2Hi
.

https://doi.org/10.4153/CMB-2008-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-047-0


Coupled Vortex Equations 475

So

2Θ

(

△− ∂

∂t

)

Θ ≥ 2
(

2
∑

i=1

|∇θi |2Hi
− |∇Θ|2

)

≥ 2

2
∑

i=1

(|∇θi |2Hi
− |∇|θi |Hi

|2) ≥ 0,

and we have

(3.5)
(

△− ∂

∂t

)

Θ ≥ 0.

We first solve the following Dirichlet problem on M:

(3.6) △v = −Θ(x, 0), v|∂M = 0.

Set ω(x, t) =
∫ t

0
Θ(x, s) ds − v(x). From (3.5), (3.6), and the boundary condition

satisfied by Hi it follows that, for t > 0,Θ(x, t) vanishes on the boundary of M. Then

it is easy to check that ω(x, t) satisfies

(

△− ∂

∂t

)

ω(x, t) ≥ 0, ω(x, 0) = −v(x), ω(x, t)|∂M = 0.

By the maximum principle, we have

(3.7)

∫ t

0

Θ(x, s) ds ≤ sup
y∈M

v(y),

for any x ∈ M,and 0 < t <∞.

Let t1 ≤ t ≤ t2, and h̄i(x, t) = H−1
i (x, t1)Hi(x, t). It is easy to check that

h̄−1
i

∂h̄i

∂t
= −2θi.

Then we have ∂
∂t

log Tr(h̄i) ≤ 2|θi|Hi
.

From the above formula, we have

Tr(H−1
i (x, t1)Hi(x, t)) ≤ r exp (2

∫ t

t1

|θi |Hi
ds).

We have a similar estimate for Tr
(

H−1
i (x, t)Hi(x, t1)

)

. Combining them we have

(3.8) σ(H(x, t),H(x, t1)) ≤ 2r(exp (2

∫ t

t1

|θi|Hi
ds) − 1).

From (3.7) and (3.8), we know that H(t) converge in C0 topological to some con-

tinuous metric H∞ as t → ∞. Using Proposition 3.3 again, we know that H(t) are

bounded in C1 and also bounded in L
p
2 (for any 1 < p < ∞ ) uniformly in t . On

the other hand, |θi |Hi
is bounded uniformly. Then the standard elliptic regularity
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implies that there exists a subsequence Ht → H∞ in the C∞ topology. From formula

(3.7), we know that H∞ is the desired Hermitian metric satisfying the boundary con-

dition. The uniqueness can be easily deduced from Corollary 2.5 and the maximum

principle. So we have proved Theorem 1.1. �

4 Existence of the Solution of Coupled Vortex Equations over
Complete Kähler Manifolds

In this section, we consider the existence of the solution of coupled vortex equations

on a class of complete Kähler manifolds. As above, here complete means complete,

noncompact, without boundary. In the following we will use the above solubility of

Dirichlet problem and the exhaustion method to obtain Theorem 1.2.

Let {Ωi}∞i=1 be an exhausting sequence of compact sub-domains of M, i.e., they

satisfy Ωi ⊂ Ωi+1 and
⋃∞

i=1 Ωi = M. By Theorem 1.1, we can find Hermitian metrics

Hi = (H1
i ,H

2
i ) on E|Ωi

for each i such that

√
−1ΛFH1

i
+

1

2
φ ◦ φ∗Hi − τ1 IdE1

= 0;

√
−1ΛFH2

i
− 1

2
φ∗Hi ◦ φ− τ2 IdE2

= 0;

Hi(x)|∂Ωi
= H0(x).

In order to prove that we can pass to limit and eventually obtain a solution on

the whole manifold, we need to establish some estimates. The keys are the C0 and

C1-estimates. Set h1
i = (H1

0 )−1H1
i , h2

i = (H2
0 )−1H2

i ,

σ̃i = ln

2
∑

v=1

(Tr hv
i + Tr(hv

i )−1) − ln 2 rank E,

f = 2
∣

∣

√
−1ΛFH1

0
+

1

2
φ ◦ φ∗H0 − τ1 IdE1

∣

∣ + 2
∣

∣

√
−1ΛFH2

0
− 1

2
φ∗H0 ◦ φ− τ2 IdE2

∣

∣ .

Denote A =
∑2

v=1(Tr hv
i + Tr(hv

i )−1)

△σ̃i = △ ln A = A−1△A − A−2|∇A|2

= (A)−1
[

2
∑

v=1

2 Tr
(

−
√
−1Λ∂̄Ev

hv
i (hv

i )−1∂Hv
0
hv

i

)

− 2 Tr(
√
−1hv

i (ΛFHv
i
− ΛFHv

0
))

+

2
∑

v=1

2 Tr
(

−
√
−1Λ∂̄Ev

(hv
i )−1hv

i ∂Hv
0
(hv

i )−1
)

− 2 Tr
(√

−1(hv
i )−1(ΛFHv

i
− ΛFHv

0
)
)

]

− A−2|∇A|2.
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Direct calculation shows that [13]

2(Tr hv
i )−1 Tr

(

−
√
−1Λ∂̄Ev

hv
i (hv

i )−1∂Hv
0
hv

i

)

− (Tr hv
i )−2|∇Tr hv

i |2 ≥ 0,

2(Tr(hv
i )−1)−1 Tr(−

√
−1Λ∂̄Ev

(hv
i )−1(hv

i )∂Hv
0
(hv

i )−1)

− (Tr(hv
i )−1)−2|∇Tr(hv

i )−1|2 ≥ 0.

From the above two inequalities, it is easy to check

A−1
[

2
∑

v=1

2 Tr(−
√
−1Λ∂̄Ev

hv
i (hv

i )−1∂Hv
0
hv

i )

+

2
∑

v=1

2 Tr(−
√
−1Λ∂̄Ev

(hv
i )−1hv

i ∂Hv
0
(hv

i )−1)
]

≥ A−2|∇A|2.

So,

△σ̃i ≥ A−1
[

−2 Tr(
√
−1hv

i (ΛFHv
i
− ΛFHv

0
)) − 2 Tr(

√
−1(hv

i )−1(ΛFHv
i
− ΛFHv

0
))

]

By direct calculation, we have

(4.1) △σ̃i ≥ − f , σ̃i |∂Ωi
= 0.

For further consideration, we need the following lemma [10, Lemma 2.1].

Lemma 4.1 Let M be a complete Riemannian manifold. Assume that λ1(M) > 0.

Then for a non-negative function ψ the Poisson equation △u = −ψ has a non-negative

solution u ∈ W 2,n
loc (M) ∩C1,α

loc (M) (0 < α < 1) if ψ ∈ Lp(M) for some p ≥ 1.

From Lemma 4.1 and the conditions in Theorem 1.2, we can solve the above Pois-

son equation when ψ = f , i.e., there exists a non-negative function u ∈ W
2,n
loc (M) ∩

C
1,α
loc (M) such that △u = − f . Using formula (4.1) and the maximum principle, we

can conclude that σ̃i ≤ u. So the Donaldson distance σi = σ(H0,Hi) between Hi

and H0 must satisfy

(4.2) σi ≤ 2 rank E · exp u − 2 rank E,

on Ωi , i.e., we have obtained a C0-estimate for Hi .

Next, we want to obtain a uniform C1-estimate for Hi . For any point x ∈ M,

choose a small ball Bx(r) such that the bundled E can be trivialized locally, and let

{eα} be the holomorphic frame of E. Choose a locally normal coordinate {Zα} on

Bx(r) and centered at x.
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It is easy to check that

△|(H1
i )−1∇H1

i |2H1
i

= 2 Tr(∂δ̄((H1
i )−1∂ᾱH1

i )(H1
i )−1∂δ̄((H1

i )−1∂ᾱH1
i )

t
H1

i )

+ 2 Tr(∂δ̄((H1
i )−1∂αH1

i )(H1
i )−1∂δ̄((H1

i )−1∂αH1
i )

t
H1

i )

+ 2g
αβ̄

,δδ̄
Tr((H1

i )−1∂αH1
i (H1

i )−1∂β̄H1
i )

+ 2g
αβ̄
,δ Tr(∂δ̄((H1

i )−1∂αH1
i )(H1

i )−1∂β̄H1
i )

+ 2g
αβ̄
,δ Tr((H1

i )−1∂αH1
i ∂δ̄((H1

i )−1∂β̄H1
i ))

+ 2g
αβ̄

,δ̄
Tr(∂δ((H1

i )−1∂αH1
i )(H1

i )−1∂β̄H1
i )

+ 2g
αβ̄

,δ̄
Tr((H1

i )−1∂αH1
i ∂δ((H1

i )−1∂β̄H1
i ))

− 2gδγ̄,α Tr(∂̄γ((H1
i )−1∂δH

1
i )(H1

i )−1∂ᾱH1
i )

− 2gδγ̄,ᾱ Tr((H1
i )−1∂αH1

i ∂̄γ((H1
i )−1∂δH

1
i ))

+ Tr(φ∂αφ
∗H(H1

i )−1∂ᾱH1
i ) + Tr((H1

i )−1∂αH1
i φ∂ᾱφ

∗H).

(4.3)

We can get a similar formula for △|(H2
i )−1∇H2

i |2H2
i
, since

|H−1
i ∇Hi |2Hi

= |(H1
i )−1∇H1

i |2H1
i

+ |(H2
i )−1∇H2

i |2H2
i
.

Using (4.3), (2.4) and the Cauchy inequality, one can easily check that

(4.4) △|H−1
i ∇Hi |2Hi

≥ −C2|H−1
i ∇Hi |2Hi

,

where C2 is a uniform constant independent of i.

Direct calculation as before shows that

△(Tr h1
i + Tr h2

i ) = 2 Tr(−
√
−1Λ∂̄E1

h1
i (h1

i )−1∂H1
0
h1

i )

+ 2 Tr(−
√
−1h1

i (ΛFH1
i
− ΛFH1

0
))

+ 2 Tr(−
√
−1Λ∂̄E2

h2
i (h2

i )−1∂H2
0
h2

i )

+ 2 Tr(−
√
−1h2

i (ΛFH2
i
− ΛFH2

0
))

≥ −2 f · (Tr h1
i + Tr h2

i ) + 2e(h1
i ) + 2e(h2

i ),

where

e(h1
i ) = −Tr(

√
−1Λ∂̄E1

h1
i (h1

i )−1∂H1
0
h1

i ) ≥ 0,

e(h2
i ) = −Tr(

√
−1Λ∂̄E2

h2
i (h2

i )−1∂H2
0
h2

i ) ≥ 0.
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Choosing i sufficiently large such that Bo(4R) ⊂ Ωi , let ψ be a cut-off function

which equals 1 in Bo(2R) and is supported in Bo(4R). Now multiply the above in-

equality by Tr(h1
i + h2

i )ψ2 and integrate it over M. Then

∫

M

Tr(h1
i + h2

i )ψ2△Tr(h1
i + h2

i )

≥ −2

∫

M

f Tr(h1
i + h2

i )ψ2 + 2

∫

M

Tr(h1
i + h2

i )ψ2(e(h1
i ) + e(h2

i )).

Integrating by parts, we have

∫

M

Tr(h1
i + h2

i )ψ2(e(h1
i ) + e(h2

i )) ≤
∫

M

f · Tr(h1
i + h2

i )ψ2 +

∫

M

|∇ψ|2(Tr(h1
i + h2

i ))2.

Using the above C0-estimate (4.2), we obtain the following estimate

(4.5)

∫

Bo(2R)

e(h1
i ) + e(h2

i ) ≤ C3,

where C3 is a constant independent of i. Because e(h1
i )+e(h2

i ) contains all the squares

of the first order derivatives of h1
i and h2

i , the above inequality implies that h1
i and h2

i ,

(i.e., Hi) are uniformly bounded in L2
1(B0(2R)). Using (4.4), (4.5), and the mean

value inequality, we conclude that there exists a uniform constant C4 independent of

i such that supBo(R) |H−1
i ∇Hi |2Hi

≤ C4.

So we have obtained that the C1-norm of Hi is bounded uniformly on any Bo(R).

From the above C0, C1-estimates of Hi , then the standard elliptic theory shows that

by passing to a subsequence, Hi converges uniformly over any compact sub-domain

of M to a smooth Hermitian metric H = (H1,H2) satisfying the coupled vortex

equations (1.3). So we have proved Theorem 1.2.
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