TWO NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXTENSION OF MÖBIUS GROUPS

Xiantao Wang and Shouyao Xiong

Let $\operatorname{SL}\left(2, \Gamma_{n}\right)$ be the n-dimensional Clifford matrix group and $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be a non-elementary subgroup. We show that G is the extension of a subgroup of $\operatorname{SL}(2, \mathbb{C})$ if and only if G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to a group G^{\prime} which satisfies the following properties:
(1) there exist loxodromic elements $g_{0}, h \in G^{\prime}$ such that fix $\left(g_{0}\right)=\{0, \infty\}$, fix $\left(g_{0}\right) \cap \operatorname{fix}(h)=\emptyset$ and $\operatorname{fix}(h) \cap \mathbb{C} \neq \emptyset ;$
(2) $\operatorname{tr}(g) \in \mathbb{C}$ for each loxodromic element $g \in G^{\prime}$.

Further G is the extension of a subgroup of $\operatorname{SL}(2, \mathbb{R})$ if and only if G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to a group G^{\prime} which satisfies the following properties:
(1) there exists a loxodromic element $g_{0} \in G^{\prime}$ such that fix $\left(g_{0}\right) \cap\{0, \infty\}$ $\neq 0$;
(2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G^{\prime}$.

The discreteness of subgroups of $\operatorname{SL}\left(2, \Gamma_{n}\right)$ is also discussed.

1. Introduction and main results

As in [1] or [8], let $\operatorname{SL}\left(2, \Gamma_{n}\right)$ denote the n-dimensional Clifford matrix group and $M\left(\bar{R}^{n}\right)$ the full group of n-dimensional sense-preserving Möbius transformations.

In the study of higher dimensional Möbius groups, the following two problems are fundamental and interesting.
Problem 1. When is a subgroup $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ the extension of a group of $\mathrm{SL}(2, \mathbb{R})$? Problem 2. When is a subgroup $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ the extension of a group of $\operatorname{SL}(2, \mathbb{C})$?

Here G is called the extension of a subgroup of $\mathrm{SL}(2, \mathbb{C})$ (or $\mathrm{SL}(2, \mathbb{R})$) if G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to a subgroup of $\operatorname{SL}(2, \mathbb{C})$ (or $\operatorname{SL}(2, \mathbb{R})$, respectively).

Many authors have discussed these two problems. For Problem 1, when $n=2$, Maskit ([6]) proved

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

Theorem M. Let $G \subset \operatorname{SL}(2, \mathbb{C})$ be a Kleinian group in which $\operatorname{tr}^{2}(g) \geqslant 0$ for all $g \in G$. Then G is Fuchsian.

When $n \geqslant 2$, Apanasov ([2]) proved
THEOREM A. If $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ is non-elementary and each nontrivial element of G is either hyperbolic or strictly parabolic or strictly elliptic, then G is the extension of a group of $\mathrm{SL}(2, \mathbb{R})$.

Subsequently, we generalised Theorems M and A into the following form, (see [7]).
ThEOREM WY. Let $G \subset \mathrm{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. If each loxodromic element of G is hyperbolic, then G is the extension of a group of $\operatorname{SL}(2, \mathbb{R})$.

It is well-known that the trace of an element of $\mathrm{SL}(2, C)$ is conjugate invariant in $\operatorname{SL}(2, C)$. This property does not hold in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ when $n \geqslant 3$. In order to overcome this difficulty, Theorems A and $W Y$ require that each loxodromic element of G is hyperbolic, since the trace of a hyperbolic element is conjugate invariant in $\operatorname{SL}\left(2, \Gamma_{n}\right)$. A natural problem is how to characterise subgroups of $\operatorname{SL}\left(2, \Gamma_{n}\right)$ without requiring each loxodromic element be hyperbolic. As the first aim of this paper, we shall consider this problem. By using different method, we shall prove

THEOREM 1. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. Then G is the extension of a group of $\operatorname{SL}(2, \mathbb{R})$ if and only if G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to G^{\prime} which satisfies the following properties:
(1) there exists a loxodromic element $g_{0} \in G^{\prime}$ such that $\operatorname{fix}\left(g_{0}\right) \cap\{0, \infty\} \neq \emptyset$; and
(2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G^{\prime}$.

Corollary 1. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. If each loxodromic element of G is hyperbolic and each elliptic element of G (if any) is of finite order, then G is discrete.

Remark 1. Obviously, Theorem 1 is a generalisation of Theorems M, A and WY. Example 1 shows the difference between Theorem 1 and Theorem WY.

Concerning Problem 2, recently Chen ([4]) proved
Theorem C. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. If G contains hyperbolic elements, then G is the extension of a group of $\mathrm{SL}(2, \mathbb{C})$ if and only if G is conjugate in $\mathrm{SL}\left(2, \Gamma_{n}\right)$ to G^{\prime} which satisfies the following properties:
(1) there exist hyperbolic elements $g_{0}, h \in G^{\prime}$ such that fix $\left(g_{0}\right)=\{0, \infty\}$, fix $\left(g_{0}\right) \cap \mathrm{fix}(h)=\emptyset$ and $\mathrm{fx}(h) \cap \mathbb{C} \neq \emptyset$; and
(2) $\operatorname{tr}(g) \in \mathbb{C}$ for each $g \in G^{\prime}$.

The following statement is obvious.
FACt. Each non-elementary subgroup of $\operatorname{SL}(2, \mathbb{C})$ (that is, $\mathrm{SL}\left(2, \Gamma_{2}\right)$) is the extension of a group of $\operatorname{SL}(2, \mathbb{C})$.

But when $n=2$, Theorem C does not coincide with the above stated fact. This means that the condition " G containing hyperbolic elements" in Theorem C is too strict. We can see from [4] that this condition plays a key role in the proof. As the second aim of this paper, we shall study Theorem C further and prove the following.

Theorem 2. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. Then G is the extension of a group of $\mathrm{SL}(2, \mathbb{C})$ if and only if G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to G^{\prime} which satisfies the following properties:
(i) there exist loxodromic elements $g_{0}, h \in G^{\prime}$ such that fix $\left(g_{0}\right)=\{0, \infty\}$, $\mathrm{fix}\left(g_{0}\right) \cap \mathrm{fix}(h)=\emptyset$ and $\mathrm{fix}(h) \cap \mathbb{C} \neq \emptyset$; and
(ii) $\operatorname{tr}(g) \in \mathbb{C}$ for each loxodromic element $g \in G^{\prime}$.

Corollary 2. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. If G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to G^{\prime} which satisfying properties (i) and (ii) as in Theorem 2, then G is discrete if and only if each non-elementary subgroup of G generated by two loxodromic elements is discrete.

Remark 2. Obviously, Theorem 2 is a generalisation of Theorem C. Also when $n=2$, Theorem 2 completely coincides with the above stated fact, since the traces of elements of $\operatorname{SL}(2, \mathbb{C})$ are invariant under the conjugation in $\operatorname{SL}(2, \mathbb{C})$.

We shall prove Theorems 1, 2 and Corollaries 1, 2 in Section 3. In Section 2, we shall introduce some necessary material which is needed in Section 3.

2. Preliminaries

We need the following preliminaries, see $[1,8]$ for more detail.
Let Γ_{n} denote the n-dimensional Clifford group, $\operatorname{SL}\left(2, \Gamma_{n}\right)$ the group of all n dimensional Clifford matrices and

$$
\operatorname{PSL}\left(2, \Gamma_{n}\right)=\operatorname{SL}\left(2, \Gamma_{n}\right) /\{ \pm I\}
$$

where I is the unit matrix.
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}\left(2, \Gamma_{n}\right)$ correspond to the mapping in \bar{R}^{n}

$$
x \mapsto A x=(a x+b)(c x+d)^{-1}
$$

Then this is an isomorphism between $\operatorname{PSL}\left(2, \Gamma_{n}\right)$ and $M\left(\bar{R}^{n}\right)$. We shall identify the element in $M\left(\bar{R}^{n}\right)$ with its corresponding element in $\operatorname{PSL}\left(2, \Gamma_{n}\right)$.

In the following, we shall consider a more general case; that is, we shall consider subgroups in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ instead of those in $\operatorname{PSL}\left(2, \Gamma_{n}\right)$.

A nontrivial element $f=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}\left(2, \Gamma_{n}\right)$ is called is loxodromic if f is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to $\left(\begin{array}{cc}r \lambda & 0 \\ 0 & r^{-1} \lambda^{\prime}\end{array}\right)$, where $r>0, r \neq 1, \lambda \in \Gamma_{n}$ and $|\lambda|=1$; in particular, we say that f is hyperbolic if $\lambda= \pm 1$.

Let

$$
\operatorname{tr}(f)=a+d^{*} \text { and } \operatorname{fix}(f)=\left\{x \in \overline{\mathbb{R}}^{n}: f(x)=x\right\}
$$

We say that f is vectorial if $b, c \in \overline{\mathbb{R}}^{n}$. Then we have (see [1])
Lemma 1. A nontrivial element f is hyperbolic if and only if f is vectorial and $\operatorname{tr}^{2}(f)>4$.

Corollary 3. Let $f=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}\left(2, \Gamma_{n}\right)$ be loxodromic. Then f is hyperbolic if and only if $b^{*}=b, c^{*}=c$ and $\operatorname{tr}(f) \in \mathbb{R}$.

For any loxodromic element $g \in \mathrm{SL}(2, \mathbb{C}), g$ is hyperbolic if and only if $\operatorname{tr}(g) \in \mathbb{R}$. But the following example shows that when $n>2$, this statement is not true.
Example 1. Let

$$
g=\left(\begin{array}{cc}
2 e_{1} e_{2} & 3 e_{1} e_{2} \\
e_{1} e_{2} & 2 e_{1} e_{2}
\end{array}\right)
$$

Then g is loxodromic and $\operatorname{tr}(g) \in \mathbb{R}$, but g is not hyperbolic.
Let $\mathbb{H}^{n+1}=\left\{x: x=x_{0}+x_{1} e_{1}+\cdots+x_{n} e_{n} \in \overline{\mathbb{R}}^{n+1}, x_{n}>0\right\}$ and $\overline{\mathbb{H}}^{n+1}=\mathbb{H}^{n+1} \cup \overline{\mathbb{R}}^{n}$.
As in [3] we call, a subgroup $G \subset \mathrm{SL}\left(2, \Gamma_{n}\right)$, elementary if there exists some $x \in \overline{\mathbb{H}}^{n+1}$ such that the G-orbit $G(x)=\{g(x): g \in G\}$ at x is finite. Otherwise G is called nonelementary. It follows from $[3,7]$ that if G is non-elementary, then G contains infinitely many loxodromic elements, no two of which have a common fixed points.

3. Proofs of the main results

Firstly, we introduce a lemma.
Lemma 2. Let $G \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary and $g_{0} \in G$ be loxodromic with fix $\left(g_{0}\right)=\{0, \infty\}$. If $\operatorname{tr}(g) \in \mathbb{C}$ for any loxodromic element $g \in G$, then for any $f=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G, a, d \in \mathbb{C}$.

Proof: If f interchanges the two fixed points of g_{0} or $\operatorname{fix}(f) \cap \operatorname{fix}\left(g_{0}\right) \neq \emptyset$, then the result is obvious. Now we assume that g does not interchange 0 and ∞, and $f i x(g) \cap\{0, \infty\}=\emptyset$. Then $\max \{|a|,|d|\}>0$ and $b c \neq 0$. To replace f by f^{-1} if needed, we may assume that $a \neq 0$. Then by [7, Lemma 3.3], we see that $g_{0}^{m} f$ are loxodromic for all large enough m. This completes the proof.

Proof of Theorem 1: The proof follows from [7, Theorem 4.1] and the following lemma.

Lemma 3. Let $G^{\prime} \subset \operatorname{SL}\left(2, \Gamma_{n}\right)$ be non-elementary. If G^{\prime} satisfies the following properties:
(1) there exists a loxodromic element $g_{0} \in G^{\prime}$ such that fix $\left(g_{0}\right) \cap\{0, \infty\} \neq \emptyset$;
(2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G^{\prime}$, then each loxodromic element in G^{\prime} is hyperbolic.

Proof: Without loss of generality, we may assume that

$$
g_{0}=\left(\begin{array}{cc}
r & t \\
0 & r^{-1}
\end{array}\right)
$$

where $r \in \mathbb{R},|r|>1$ and $t \in \overline{\mathbb{R}}^{n}$.
By the similar reasoning as in the proof of [7, Theorem 4.1], we may assume further that $t \in \mathbb{R}$.

Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be any loxodromic element in G^{\prime}.
If $c=0$, then $g_{0}^{m} g$ are loxodromic for all large enough m. Condition (2) in Lemma 3 implies that $a, d \in \mathbb{R}$ and $b, c \in \overline{\mathbb{R}}^{n}$. By Corollary 3 , we know that g is hyperbolic.

Now we assume that $c \neq 0$. To replace g by g^{-1} if needed, we may assume that $g(\infty) \notin$ fix $\left(g_{0}\right)$. Then $g_{0}^{m} g$ and $g g_{0}^{m}$ are loxodromic for all sufficiently large m. Condition (2) in Lemma 3 implies that

$$
\left\{a+\frac{t}{r-r^{-1}} c, a+\frac{t}{r-r^{-1}} c^{*}\right\} \subset \mathbb{R} .
$$

Hence $c^{*}=c$. It follows from $\Delta(g)=a d^{*}-b c^{*}=1$ that $b^{*}=b$. Then Corollary 3 tells us that g is hyperbolic.

The proof of our lemma is completed.
Proof of Theorem 2: The necessity is obvious. In the following we prove the sufficiency.

By conditions (i) and (ii), we may assume that g_{0} has the form:

$$
g_{0}=\left(\begin{array}{cc}
r & 0 \\
0 & r^{-1}
\end{array}\right)
$$

where $r \in \mathbb{C}$ and $|r|>1$.
In the following, we shall prove that $h \in \mathrm{SL}(2, C)$.

Let

$$
h=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then $b c \neq 0, \max \{|a|,|d|\}>0$ and $a+d^{*} \in \mathbb{C}$. Without loss of generality, we may assume that $a \neq 0$. Otherwise we replace h by h^{-1}. Then Lemma 2 implies that $a, d \in \mathbb{C}$.

It follows from $a b^{*}$ and $a^{*} c \in \overline{\mathbb{R}}^{n}$ that h has the form:

$$
h=\left(\begin{array}{cc}
a & a s \\
a^{\prime} q & d
\end{array}\right)
$$

where $s=s_{0}+\sum_{i=2}^{n-1} s_{i} e_{i}\left(s_{0} \in \mathbb{C}, s_{i} \in \mathbb{R}\right), q=q_{0}+\sum_{i=2}^{n-1} q_{i} e_{i}\left(q_{0} \in \mathbb{C}, q_{i} \in \mathbb{R}\right)$.
Now $\Delta(h)=a d^{*}-(a s)\left(a^{\prime} q\right)^{*}=1$ implies that $s q \in \mathbb{C}$. Hence $s \in \mathbb{C}$ if and only if $q \in \mathbb{C}$, since $s q \neq 0$.

It follows from das $\in \overline{\mathbb{R}}^{n}$ that $a d \in \mathbb{R}$ or $s \in \mathbb{C}$. We claim that $s \in \mathbb{C}$. Suppose $s \notin \mathbb{C}$. Then $a d \in \mathbb{R}$. We may assume that

$$
d=k a^{\prime}
$$

where $k \in \mathbb{R}$. Then we have

$$
h=\left(\begin{array}{cc}
a & a s \\
a^{\prime} q & k a^{\prime}
\end{array}\right)
$$

This implies that $s q \in \mathbb{R}$. Hence there exists $k_{1} \in \mathbb{R}$ such that $q=k_{1} s^{\prime}$. Under the conjugation of a suitable element in $\operatorname{SL}(2, \mathbb{R})$, we may assume that

$$
g=\left(\begin{array}{cc}
r & 0 \\
0 & r^{-1}
\end{array}\right) \text { and } h=\left(\begin{array}{cc}
a & a s \\
\varepsilon a^{\prime} s^{\prime} & k a^{\prime}
\end{array}\right)
$$

where $r \in \mathbb{C},|r|>1, \varepsilon= \pm 1, s=s_{0}+\sum_{i=2}^{n-1} s_{i} e_{i}, s_{0} \in \mathbb{C}$ and $s_{i}, k \in \mathbb{R}$.
We see from fix $(h) \cap \mathbb{C} \neq \emptyset$ and h being loxodromic that $s_{0} \neq 0$ and $a^{\prime}=-\varepsilon a$. Hence

$$
h=\left(\begin{array}{cc}
a & a s \\
-a s^{\prime} & -\varepsilon k a
\end{array}\right)
$$

Since h^{2} is loxodromic, by Lemma 2, we know that a^{2}-asas $\in \mathbb{C}$, which implies that sas $s^{\prime} \in \mathbb{C}$. Then $\bar{a}=a$, that is, $a \in \mathbb{R} \backslash\{0\}$. By Corollary $3, h$ is hyperbolic. Then, by [1],

$$
\operatorname{fix}(h)=\left\{t_{1} s, t_{2} s\right\}
$$

where $t_{1,2}=-\left[(1+\varepsilon k) a \pm \sqrt{(1-k \varepsilon)^{2} a^{2}-4}\right] / 2 a^{-1}|s|^{-2} \in \mathbb{R}$.
Condition (i) implies that $s \in \mathbb{C}$. This contradiction shows that $s \in \mathbb{C}$.

Our claim implies that h has the following form:

$$
h=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{C}$ with $b c \neq 0$.
For any nontrivial element

$$
p=\left(\begin{array}{cc}
u & v \\
\alpha & \beta
\end{array}\right) \in G^{\prime}
$$

by Lemma 2, we know that $u, \beta \in \mathbb{C}$. By considering $p g$, Lemma 2 implies that $v, \alpha \in \mathbb{C}$. This shows that $p \in \operatorname{SL}(2, \mathbb{C})$ which completes the proof.

Proof of Corollary 1: If each loxodromic element of G is hyperbolic, then Theorem 1 yields that G is conjugate in $\operatorname{SL}\left(2, \Gamma_{n}\right)$ to a group G^{\prime} of $\operatorname{SL}(2, \mathbb{R})$. Then [$\mathbf{5}$, Theorem 2] or [3, Theorem 8.4.1] implies that G^{\prime} is discrete. Hence G is discrete. \square

Proof of Corollary 2: The proof follows from [9, Theorem 2].

References

[1] L.V. Ahlfors, 'On the fixed points of Möbius transformations in \bar{R}^{n}, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27.
[2] B.N. Apanasov, The geometry of discrete groups and manifolds (Nauka, Moscow, 1991).
[3] A.F. Beardon, The geometry of discrete groups, Graduate text in Mathematics 91 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
[4] M. Chen, 'The extension of Möbius groups', Complex Var. Theory Appl. 47 (2002), 225-228.
[5] T. Jørgensen, 'A note on subgroups of SL(2, C)', Quart. J. Math. Oxford Ser. 228 (1977), 209-212.
[6] B. Maski, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).
[7] X. Wang and W. Yang,, 'Generating systems of subgroups in PSL $\left(2, \Gamma_{n}\right)$ ', Proc. Edinburgh Math. Soc. 45 (2002), 49-58.
[8] X. Wang and W. Yang, 'Discreteness Criteria of Mobius groups of high dimensions and convergence theorems of Kleinian groups', Adv. Math. 159 (2001), 68-82.
[9] X. Wang and W. Yang, 'Discrete criteria for subgroups in $S L(2, C)$ ', Math. Proc. Cambridge. Philos. Soc. 124 (1998), 51-55.

Department of Mathematics
Hunan Normal University Changsha, Hunan 410081 People's Republic of China e-mail: xtwang@hunnu.edu.cn

[^1]
[^0]: Received 19th July, 2004
 The research was partly supported by the N.S. Foundations of China (No. 10271043) and Zhejiang province.

[^1]: Department of Mathematics
 Changsha University of Science and Technology Changsha, Hunan 410000
 People's Republic of China

