TWO NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXTENSION OF MÖBIUS GROUPS

XIANTAO WANG AND SHOUYAO XIONG

Let $SL(2,\Gamma_n)$ be the *n*-dimensional Clifford matrix group and $G \subset SL(2,\Gamma_n)$ be a non-elementary subgroup. We show that G is the extension of a subgroup of $SL(2,\mathbb{C})$ if and only if G is conjugate in $SL(2,\Gamma_n)$ to a group G' which satisfies the following properties:

- (1) there exist loxodromic elements $g_0, h \in G'$ such that $fix(g_0) = \{0, \infty\}$, $fix(g_0) \cap fix(h) = \emptyset$ and $fix(h) \cap \mathbb{C} \neq \emptyset$;
- (2) $\operatorname{tr}(g) \in \mathbb{C}$ for each loxodromic element $g \in G'$.

Further G is the extension of a subgroup of $SL(2, \mathbb{R})$ if and only if G is conjugate in $SL(2, \Gamma_n)$ to a group G' which satisfies the following properties:

- (1) there exists a loxodromic element $g_0 \in G'$ such that $fix(g_0) \cap \{0, \infty\} \neq \emptyset$;
- (2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G'$.

The discreteness of subgroups of $SL(2, \Gamma_n)$ is also discussed.

1. INTRODUCTION AND MAIN RESULTS

As in [1] or [8], let $SL(2, \Gamma_n)$ denote the *n*-dimensional Clifford matrix group and $M(\overline{R}^n)$ the full group of *n*-dimensional sense-preserving Möbius transformations.

In the study of higher dimensional Möbius groups, the following two problems are fundamental and interesting.

PROBLEM 1. When is a subgroup $G \subset SL(2, \Gamma_n)$ the extension of a group of $SL(2, \mathbb{R})$?

PROBLEM 2. When is a subgroup $G \subset SL(2, \Gamma_n)$ the extension of a group of $SL(2, \mathbb{C})$?

Here G is called the extension of a subgroup of $SL(2, \mathbb{C})$ (or $SL(2, \mathbb{R})$) if G is conjugate in $SL(2, \Gamma_n)$ to a subgroup of $SL(2, \mathbb{C})$ (or $SL(2, \mathbb{R})$, respectively).

Many authors have discussed these two problems. For *Problem* 1, when n = 2, Maskit ([6]) proved

Received 19th July, 2004

The research was partly supported by the N.S. Foundations of China (No. 10271043) and Zhejiang province.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

X. Wang and S. Xiong

[2]

THEOREM M. Let $G \subset SL(2, \mathbb{C})$ be a Kleinian group in which $tr^2(g) \ge 0$ for all $g \in G$. Then G is Fuchsian.

When $n \ge 2$, Apanasov ([2]) proved

THEOREM A. If $G \subset SL(2, \Gamma_n)$ is non-elementary and each nontrivial element of G is either hyperbolic or strictly parabolic or strictly elliptic, then G is the extension of a group of $SL(2, \mathbb{R})$.

Subsequently, we generalised Theorems M and A into the following form, (see [7]).

THEOREM WY. Let $G \subset SL(2, \Gamma_n)$ be non-elementary. If each loxodromic element of G is hyperbolic, then G is the extension of a group of $SL(2, \mathbb{R})$.

It is well-known that the trace of an element of SL(2, C) is conjugate invariant in SL(2, C). This property does not hold in $SL(2, \Gamma_n)$ when $n \ge 3$. In order to overcome this difficulty, Theorems A and WY require that each loxodromic element of G is hyperbolic, since the trace of a hyperbolic element is conjugate invariant in $SL(2, \Gamma_n)$. A natural problem is how to characterise subgroups of $SL(2, \Gamma_n)$ without requiring each loxodromic element be hyperbolic. As the first aim of this paper, we shall consider this problem. By using different method, we shall prove

THEOREM 1. Let $G \subset SL(2, \Gamma_n)$ be non-elementary. Then G is the extension of a group of $SL(2, \mathbb{R})$ if and only if G is conjugate in $SL(2, \Gamma_n)$ to G' which satisfies the following properties:

- (1) there exists a loxodromic element $g_0 \in G'$ such that $fix(g_0) \cap \{0, \infty\} \neq \emptyset$; and
- (2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G'$.

COROLLARY 1. Let $G \subset SL(2, \Gamma_n)$ be non-elementary. If each loxodromic element of G is hyperbolic and each elliptic element of G (if any) is of finite order, then G is discrete.

REMARK 1. Obviously, Theorem 1 is a generalisation of Theorems M, A and WY. Example 1 shows the difference between Theorem 1 and Theorem WY.

Concerning Problem 2, recently Chen ([4]) proved

THEOREM C. Let $G \subset SL(2, \Gamma_n)$ be non-elementary. If G contains hyperbolic elements, then G is the extension of a group of $SL(2, \mathbb{C})$ if and only if G is conjugate in $SL(2, \Gamma_n)$ to G' which satisfies the following properties:

- (1) there exist hyperbolic elements g_0 , $h \in G'$ such that $fix(g_0) = \{0, \infty\}$, $fix(g_0) \cap fix(h) = \emptyset$ and $fix(h) \cap \mathbb{C} \neq \emptyset$; and
- (2) $\operatorname{tr}(g) \in \mathbb{C}$ for each $g \in G'$.

The following statement is obvious.

FACT. Each non-elementary subgroup of $SL(2, \mathbb{C})$ (that is, $SL(2, \Gamma_2)$) is the extension of a group of $SL(2, \mathbb{C})$.

But when n = 2, Theorem C does not coincide with the above stated fact. This means that the condition "G containing hyperbolic elements" in Theorem C is too strict. We can see from [4] that this condition plays a key role in the proof. As the second aim of this paper, we shall study Theorem C further and prove the following.

THEOREM 2. Let $G \subset SL(2,\Gamma_n)$ be non-elementary. Then G is the extension of a group of $SL(2,\mathbb{C})$ if and only if G is conjugate in $SL(2,\Gamma_n)$ to G' which satisfies the following properties:

- (i) there exist loxodromic elements g_0 , $h \in G'$ such that $fix(g_0) = \{0, \infty\}$, $fix(g_0) \cap fix(h) = \emptyset$ and $fix(h) \cap \mathbb{C} \neq \emptyset$; and
- (ii) $tr(g) \in \mathbb{C}$ for each loxodromic element $g \in G'$.

COROLLARY 2. Let $G \subset SL(2, \Gamma_n)$ be non-elementary. If G is conjugate in $SL(2, \Gamma_n)$ to G' which satisfying properties (i) and (ii) as in Theorem 2, then G is discrete if and only if each non-elementary subgroup of G generated by two loxodromic elements is discrete.

REMARK 2. Obviously, Theorem 2 is a generalisation of Theorem C. Also when n = 2, Theorem 2 completely coincides with the above stated fact, since the traces of elements of $SL(2, \mathbb{C})$ are invariant under the conjugation in $SL(2, \mathbb{C})$.

We shall prove Theorems 1, 2 and Corollaries 1, 2 in Section 3. In Section 2, we shall introduce some necessary material which is needed in Section 3.

2. Preliminaries

We need the following preliminaries, see [1, 8] for more detail.

Let Γ_n denote the *n*-dimensional Clifford group, $SL(2,\Gamma_n)$ the group of all *n*-dimensional Clifford matrices and

$$PSL(2,\Gamma_n) = SL(2,\Gamma_n)/\{\pm I\},\$$

where I is the unit matrix.

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \Gamma_n)$ correspond to the mapping in \overline{R}^n

$$x \mapsto Ax = (ax + b)(cx + d)^{-1}.$$

Then this is an isomorphism between $PSL(2, \Gamma_n)$ and $M(\overline{R}^n)$. We shall identify the element in $M(\overline{R}^n)$ with its corresponding element in $PSL(2, \Gamma_n)$.

In the following, we shall consider a more general case; that is, we shall consider subgroups in $SL(2, \Gamma_n)$ instead of those in $PSL(2, \Gamma_n)$.

X. Wang and S. Xiong

[4]

32

A nontrivial element $f = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \Gamma_n)$ is called is *loxodromic* if f is conjugate in $SL(2, \Gamma_n)$ to $\begin{pmatrix} r\lambda & 0 \\ 0 & r^{-1}\lambda' \end{pmatrix}$, where $r > 0, r \neq 1, \lambda \in \Gamma_n$ and $|\lambda| = 1$; in particular, we say that f is hyperbolic if $\lambda = \pm 1$.

Let

$$\operatorname{tr}(f) = a + d^*$$
 and $\operatorname{fix}(f) = \{x \in \overline{\mathbb{R}}^n : f(x) = x\}.$

We say that f is vectorial if $b, c \in \overline{\mathbb{R}}^n$. Then we have (see [1])

LEMMA 1. A nontrivial element f is hyperbolic if and only if f is vectorial and $tr^2(f) > 4$.

COROLLARY 3. Let $f = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \Gamma_n)$ be loxodromic. Then f is hyperbolic if and only if $b^* = b$, $c^* = c$ and $tr(f) \in \mathbb{R}$.

For any loxodromic element $g \in SL(2,\mathbb{C})$, g is hyperbolic if and only if $tr(g) \in \mathbb{R}$. But the following example shows that when n > 2, this statement is not true.

EXAMPLE 1. Let

$$g=\left(\begin{array}{cc}2e_1e_2&3e_1e_2\\e_1e_2&2e_1e_2\end{array}\right).$$

Then g is loxodromic and $tr(g) \in \mathbb{R}$, but g is not hyperbolic.

Let $\mathbb{H}^{n+1} = \{x : x = x_0 + x_1 e_1 + \dots + x_n e_n \in \mathbb{R}^{n+1}, x_n > 0\}$ and $\mathbb{H}^{n+1} = \mathbb{H}^{n+1} \cup \mathbb{R}^n$.

As in [3] we call, a subgroup $G \subset SL(2, \Gamma_n)$, elementary if there exists some $x \in \overline{\mathbb{H}}^{n+1}$ such that the *G*-orbit $G(x) = \{g(x) : g \in G\}$ at x is finite. Otherwise G is called *non-elementary*. It follows from [3, 7] that if G is non-elementary, then G contains infinitely many loxodromic elements, no two of which have a common fixed points.

3. PROOFS OF THE MAIN RESULTS

Firstly, we introduce a lemma.

LEMMA 2. Let $G \subset SL(2, \Gamma_n)$ be non-elementary and $g_0 \in G$ be loxodromic with $fix(g_0) = \{0, \infty\}$. If $tr(g) \in \mathbb{C}$ for any loxodromic element $g \in G$, then for any $f = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, $a, d \in \mathbb{C}$.

PROOF: If f interchanges the two fixed points of g_0 or $fix(f) \cap fix(g_0) \neq \emptyset$, then the result is obvious. Now we assume that g does not interchange 0 and ∞ , and $fix(g) \cap \{0, \infty\} = \emptyset$. Then $\max\{|a|, |d|\} > 0$ and $bc \neq 0$. To replace f by f^{-1} if needed, we may assume that $a \neq 0$. Then by [7, Lemma 3.3], we see that $g_0^m f$ are loxodromic for all large enough m. This completes the proof. _____

PROOF OF THEOREM 1: The proof follows from [7, Theorem 4.1] and the following lemma.

LEMMA 3. Let $G' \subset SL(2, \Gamma_n)$ be non-elementary. If G' satisfies the following properties:

- (1) there exists a loxodromic element $g_0 \in G'$ such that $fix(g_0) \cap \{0, \infty\} \neq \emptyset$;
- (2) $\operatorname{tr}(g) \in \mathbb{R}$ for each loxodromic element $g \in G'$,

then each loxodromic element in G' is hyperbolic.

PROOF: Without loss of generality, we may assume that

$$g_0 = \left(egin{array}{cc} r & t \ 0 & r^{-1} \end{array}
ight),$$

where $r \in \mathbb{R}$, |r| > 1 and $t \in \overline{\mathbb{R}}^n$.

By the similar reasoning as in the proof of [7, Theorem 4.1], we may assume further that $t \in \mathbb{R}$.

Let

$$g = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

be any loxodromic element in G'.

If c = 0, then $g_0^m g$ are loxodromic for all large enough m. Condition (2) in Lemma 3 implies that $a, d \in \mathbb{R}$ and $b, c \in \overline{\mathbb{R}}^n$. By Corollary 3, we know that g is hyperbolic.

Now we assume that $c \neq 0$. To replace g by g^{-1} if needed, we may assume that $g(\infty) \notin \operatorname{fix}(g_0)$. Then $g_0^m g$ and gg_0^m are loxodromic for all sufficiently large m. Condition (2) in Lemma 3 implies that

$$\left\{a+\frac{t}{r-r^{-1}}c, \ a+\frac{t}{r-r^{-1}}c^*\right\} \subset \mathbb{R}.$$

Hence $c^* = c$. It follows from $\Delta(g) = ad^* - bc^* = 1$ that $b^* = b$. Then Corollary 3 tells us that g is hyperbolic.

The proof of our lemma is completed.

PROOF OF THEOREM 2: The necessity is obvious. In the following we prove the sufficiency.

By conditions (i) and (ii), we may assume that g_0 has the form:

$$g_0=\left(egin{array}{cc} r & 0 \ 0 & r^{-1} \end{array}
ight),$$

where $r \in \mathbb{C}$ and |r| > 1.

In the following, we shall prove that $h \in SL(2, C)$.

Π

Let

$$h = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

Then $bc \neq 0$, max $\{|a|, |d|\} > 0$ and $a + d^* \in \mathbb{C}$. Without loss of generality, we may assume that $a \neq 0$. Otherwise we replace h by h^{-1} . Then Lemma 2 implies that $a, d \in \mathbb{C}$.

It follows from ab^* and $a^*c \in \overline{\mathbb{R}}^n$ that h has the form:

$$h = \left(\begin{array}{cc} a & as \\ a'q & d \end{array}\right),$$

where $s = s_0 + \sum_{i=2}^{n-1} s_i e_i$ $(s_0 \in \mathbb{C}, s_i \in \mathbb{R}), q = q_0 + \sum_{i=2}^{n-1} q_i e_i$ $(q_0 \in \mathbb{C}, q_i \in \mathbb{R}).$

Now $\Delta(h) = ad^* - (as)(a'q)^* = 1$ implies that $sq \in \mathbb{C}$. Hence $s \in \mathbb{C}$ if and only if $q \in \mathbb{C}$, since $sq \neq 0$.

It follows from $das \in \overline{\mathbb{R}}^n$ that $ad \in \mathbb{R}$ or $s \in \mathbb{C}$. We claim that $s \in \mathbb{C}$. Suppose $s \notin \mathbb{C}$. Then $ad \in \mathbb{R}$. We may assume that

$$d = ka',$$

where $k \in \mathbb{R}$. Then we have

$$h = \left(\begin{array}{cc} a & as \\ a'q & ka' \end{array}\right).$$

This implies that $sq \in \mathbb{R}$. Hence there exists $k_1 \in \mathbb{R}$ such that $q = k_1s'$. Under the conjugation of a suitable element in $SL(2, \mathbb{R})$, we may assume that

$$g = \left(egin{array}{cc} r & 0 \\ 0 & r^{-1} \end{array}
ight) ext{ and } h = \left(egin{array}{cc} a & as \\ arepsilon a's' & ka' \end{array}
ight),$$

where $r \in \mathbb{C}$, |r| > 1, $\varepsilon = \pm 1$, $s = s_0 + \sum_{i=2}^{n-1} s_i e_i$, $s_0 \in \mathbb{C}$ and s_i , $k \in \mathbb{R}$.

We see from fix $(h) \cap \mathbb{C} \neq \emptyset$ and h being loxodromic that $s_0 \neq 0$ and $a' = -\varepsilon a$. Hence

$$h=\left(egin{array}{cc} a & as\ -as' & -arepsilon ka\end{array}
ight)$$

Since h^2 is loxodromic, by Lemma 2, we know that $a^2 - asas' \in \mathbb{C}$, which implies that $sas' \in \mathbb{C}$. Then $\overline{a} = a$, that is, $a \in \mathbb{R} \setminus \{0\}$. By Corollary 3, h is hyperbolic. Then, by [1],

$$\operatorname{fix}(h) = \{t_1s, t_2s\},\$$

where $t_{1,2} = -\left[(1+\varepsilon k)a \pm \sqrt{(1-k\varepsilon)^2 a^2 - 4}\right]/2a^{-1}|s|^{-2} \in \mathbb{R}$. Condition (i) implies that $s \in \mathbb{C}$. This contradiction shows that $s \in \mathbb{C}$. Our claim implies that h has the following form:

$$h=\left(egin{a}b\\c&d\end{array}
ight),$$

where a, b, c, $d \in \mathbb{C}$ with $bc \neq 0$.

For any nontrivial element

$$p = \left(egin{array}{cc} u & v \ lpha & eta \end{array}
ight) \in G',$$

by Lemma 2, we know that $u, \beta \in \mathbb{C}$. By considering pg, Lemma 2 implies that $v, \alpha \in \mathbb{C}$. Π This shows that $p \in SL(2, \mathbb{C})$ which completes the proof.

PROOF OF COROLLARY 1: If each loxodromic element of G is hyperbolic, then Theorem 1 yields that G is conjugate in $SL(2, \Gamma_n)$ to a group G' of $SL(2, \mathbb{R})$. Then [5, Theorem 2] or [3, Theorem 8.4.1] implies that G' is discrete. Hence G is discrete. 0 Π

PROOF OF COROLLARY 2: The proof follows from [9, Theorem 2].

References

- [1] L.V. Ahlfors, 'On the fixed points of Möbius transformations in \overline{R}^n ', Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27.
- [2] B.N. Apanasov, The geometry of discrete groups and manifolds (Nauka, Moscow, 1991).
- A.F. Beardon, The geometry of discrete groups, Graduate text in Mathematics 91 [3] (Springer-Verlag, Berlin, Heidelberg, New York, 1983).
- M. Chen, 'The extension of Möbius groups', Complex Var. Theory Appl. 47 (2002), [4] 225-228.
- T. Jørgensen, 'A note on subgroups of SL(2, C)', Quart. J. Math. Oxford Ser. 228 (1977), [5] 209-212.
- [6] B. Maski, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).
- X. Wang and W. Yang, 'Generating systems of subgroups in $PSL(2, \Gamma_n)$ ', Proc. Edinburgh [7] Math. Soc. 45 (2002), 49-58.
- X. Wang and W. Yang, 'Discreteness Criteria of Mobius groups of high dimensions and [8] convergence theorems of Kleinian groups', Adv. Math. 159 (2001), 68-82.
- **[9**] X. Wang and W. Yang, 'Discrete criteria for subgroups in SL(2,C)', Math. Proc. Cambridge. Philos. Soc. 124 (1998), 51-55.

Department of Mathematics Hunan Normal University Changsha, Hunan 410081 People's Republic of China e-mail: xtwang@hunnu.edu.cn Department of Mathematics Changsha University of Science and Technology Changsha, Hunan 410000 People's Republic of China