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Equations and Complexity for the
Dubois–Efroymson Dimension Theorem

Riccardo Ghiloni

Abstract. Let R be a real closed field, let X ⊂ Rn be an irreducible real algebraic set and let Z be

an algebraic subset of X of codimension ≥ 2. Dubois and Efroymson proved the existence of an

irreducible algebraic subset of X of codimension 1 containing Z. We improve this dimension theorem

as follows. Indicate by µ the minimum integer such that the ideal of polynomials in R[x1, . . . , xn]

vanishing on Z can be generated by polynomials of degree ≤ µ. We prove the following two results:

(1) There exists a polynomial P ∈ R[x1, . . . , xn] of degree≤ µ+1 such that X∩P−1(0) is an irreducible

algebraic subset of X of codimension 1 containing Z. (2) Let F be a polynomial in R[x1, . . . , xn]

of degree d vanishing on Z. Suppose there exists a nonsingular point x of X such that F(x) = 0

and the differential at x of the restriction of F to X is nonzero. Then there exists a polynomial G ∈
R[x1, . . . , xn] of degree ≤ max{d, µ + 1} such that, for each t ∈ (−1, 1) \ {0}, the set {x ∈ X |
F(x) + tG(x) = 0} is an irreducible algebraic subset of X of codimension 1 containing Z. Result (1)

and a slightly different version of result (2) are valid over any algebraically closed field also.

1 The Theorems

Let R be a fixed real closed field. Let X and Z be algebraic subsets of Rn such that X

is irreducible, Z is contained in X and dim(X) − dim(Z) ≥ 2. In [1], Dubois and

Efroymson proved the existence of a polynomial P in R[x1, . . . , xn] such that the set
X ∩ P−1(0) is an irreducible algebraic subset of X of codimension 1 containing Z.

In this paper, we give an upper bound for the degree of P and we establish simple
conditions for a polynomial F ∈ R[x1, . . . , xn] to be approximated by polynomials

G ∈ R[x1, . . . , xn] such that X ∩ G−1(0) is an irreducible algebraic subset of X of

codimension 1 containing Z. Moreover, we extend these results to higher codimen-
sions.

Let X be a real algebraic set, i.e., an algebraic subset of some Rn. We indicate by
IRn (X) the ideal of polynomials in R[x1, . . . , xn] vanishing on X and by Nonsing(X)

the set of nonsingular points of X of maximum dimension, i.e., of dimension dim(X).

An algebraic subset Z of Rn contained in X is called an algebraic subset of X. The
integer dim(X) − dim(Z) is called the codimension of Z in X. The empty set is con-

sidered to be an algebraic subset of X of codimension dim(X). Let e be a positive

integer and let F = (F1, . . . , Fe) : X → Re be a map. Recall that F is said to be poly-
nomial if there exist polynomials P1, . . . , Pe in R[x1, . . . , xn] such that Pi = Fi on X

for each i ∈ {1, . . . , e}. Suppose F is polynomial. We define the degree deg(F) of F as
the minimum integer d such that there exist polynomials P1, . . . , Pe in R[x1, . . . , xn]

of degree ≤ d, which coincide with F1, . . . , Fe on X respectively. If F vanishes on
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whole X, then we consider deg(F) equal to zero. Let T be a subset of Nonsing(X). We
say that F is good in T if T ∩ F−1(0) is nonempty and, for each x ∈ T ∩ F−1(0), the

rank of the differential of F at x is equal to e. The map F is said to be admissible if, for
some x ∈ Nonsing(X), F is good in {x}, i.e., F(x) = 0 and the rank of the differential

of F at x is equal to e.

Let us introduce the notion of µ-complexity of a real algebraic set.

Definition 1.1 Let Z be a proper algebraic subset of Rn. We define the µ-complexity

µ(Z,Rn) of Z in Rn as the minimum integer µ such that there exist generators of

IRn (Z) in R[x1, . . . , xn] of degree ≤ µ.

The preceding notions, given over R, can be reformulated identically over any
field.

We are now in a position to state the main result of this paper (see Remark 3.3

also).

Theorem 1.2 Let X ⊂ Rn be an irreducible real algebraic set, let Z be an algebraic

subset of X of codimension c ≥ 2 and let e ∈ {1, . . . , c − 1}. Define µ := µ(Z,Rn) and

X∗ := Nonsing(X) \ Z.

(1) There exists a polynomial map P : X → Re of degree ≤ µ + 1 and good in X∗ such

that P−1(0) is an irreducible algebraic subset of X of codimension e containing Z.

(2) Given an admissible polynomial map F : X → Re of degree d vanishing on Z, there

exists a polynomial map G : X → Re of degree ≤ max{d, µ + 1} such that, for each

t ∈ (−1, 1) \ {0}, the polynomial map Ft : X → Re defined by Ft := F + tG is

good in X∗ and (Ft )
−1(0) is an irreducible algebraic subset of X of codimension e

containing Z.

Observe that, if Z is empty, then µ = 0 and the preceding result follows easily

from Bertini’s theorems applied to X and to the graph of F (see [2, Théorème 6.6,
p. 79]). Assume in addition that X is bounded in Rn. Then, if F : X → Re is a

nowhere zero polynomial map, it is easy to see that there does not exist any polyno-

mial map G : X → Re with the properties required in (2). This fact implies that, in
the statement of Theorem 1.2, the adjective “admissible” cannot be omitted.

Kucharz [3] obtained the following interesting version of the Dubois–Efroymson

dimension theorem: Given a nonsingular irreducible algebraic subset X of some R
n,

where R is the field of real numbers, and an algebraic subset Z of X of codimension ≥ 2,

there exists an irreducible algebraic subset Y of X of codimension 1 containing Z such

that the ideal of regular functions on X vanishing on Y is principal.

This result can be proved using Theorem 1.2. Let us explain this assertion. By the

algebraic Alexandrov compactification and Hironaka’s desingularization theorem, we
may suppose that X is compact (see Step 3 of the proof of [3, Theorem 1], p. 28).

Under this additional condition, Theorem 1.2(1) (with e = 1) and [3, Lemma 3]
ensure the existence of an algebraic subset Y of X with the required properties.

Theorem 1.2 holds over any algebraically closed field in the following form.

Theorem 1.3 Let K be an algebraically closed field. Let X be an irreducible alge-

braic subset of K
n, let Z be an algebraic subset of X of codimension c ≥ 2 and let
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e ∈ {1, . . . , c − 1}. Indicate by µ the µ-complexity of Z in K
n and by X∗ the set of

nonsingular points of X, which are not contained in Z. Then, given any polynomial map

F : X → K
e of degree d vanishing on Z, there exist a polynomial map G : X → K

e of

degree ≤ 1 + max{d, µ} and a finite subset E of K such that: for each t ∈ K \ E, the

polynomial map Ft : X → K
e defined by Ft := F + tG is good in X∗ and (Ft)

−1(0) is

an irreducible algebraic subset of X of codimension e containing Z. In particular, there

exists a polynomial map P : X → K
e of degree ≤ µ+ 1 and good in X∗ such that P−1(0)

is an irreducible algebraic subset of X of codimension e containing Z.

Let us give the idea of the proof of our results. First, we deal with Theorem 1.3.

Let K, X ⊂ K
n, Z, c, e, µ, X∗, F : X → K

e and d be as in the statement of the men-
tioned theorem. Let P1, . . . , Pe be polynomials in IKn (Z) such that F = (P1, . . . , Pe)

on X and max i∈{1,...,e} deg(Pi) = d, and let q1, . . . , qℓ be generators of IKn (Z) in

K[x1, . . . , xn] such that max i∈{1,...,ℓ} deg(qi) = µ. Let us construct the blowing
up θ : X ′ → X of X with center Z by using the generators P1, . . . , Pe, q1, . . . , qℓ of

IKn (Z) and a suitable Segre embedding. Define the polynomial map q : K
n → K

e+ℓ

by

q := (P1, . . . , Pe, q1, . . . , qℓ),

X ′ ′ as the Zariski closure in X × P
e+ℓ−1(K) of the set

{(x, [q(x)]) ∈ X × P
e+ℓ−1(K) | x ∈ X \ Z},

the regular map θ ′ : X ′ ′ → X as the restriction to X ′ ′ of the natural projection of

X × P
e+ℓ−1(K) onto X, the integer m := (n + 1)(e + ℓ) and ξ : X × P

e+ℓ−1(K) →
P

m−1(K) as the regular map, which sends ((x1, . . . , xn), [y]) ∈ X × P
e+ℓ−1(K) into

[y, x1y, . . . , xn y] ∈ P
m−1(K). Identifying each point (x1, . . . , xn) of X with the point

[1, x1, . . . , xn] of P
n(K), we see that ξ coincides with the restriction to X ×P

e+ℓ−1(K)

of the Segre embedding of P
n(K) × P

e+ℓ−1(K) into P
m−1(K). In particular, X ′ :=

ξ(X ′′) is a Zariski locally closed subset of P
m−1(K) and the restriction ξ ′ : X ′ ′ → X ′

of ξ from X ′ ′ to X ′ is a biregular isomorphism. Define the blowing up θ : X ′ → X of

X with center Z by setting θ := θ ′ ◦ (ξ ′)−1. Observe that, for each x = (x1, . . . , xn) ∈
X \ Z, the point θ−1(x) of P

m−1(K) is equal to [q(x), x1q(x), . . . , xnq(x)]. Indicate
by Q : X → K

m the polynomial map defined by Q(x) := (q(x), x1q(x), . . . , xnq(x)).

Let Ω be the set of nonsingular points of Z of some dimension. By simple consid-
erations concerning the blowing up operation in algebraic geometry over an alge-

braically closed field, we infer that, for each x ∈ Ω, θ−1(x) is a Zariski closed subset

of P
m−1(K) of dimension ≥ c − 1. Let N be a linear subspace of P

m−1(K) of codi-
mension e. By hypothesis, e ≤ c − 1 and hence, for each x ∈ Ω, the intersection

θ−1(x) ∩ N is nonempty. Since Ω is Zariski dense in Z, it follows that θ(X ′ ∩ N) is

an algebraic subset of X containing Z. Thanks to Bertini’s theorems (see [2, Corol-
laire 6.11, p. 89]), for a generic choice of N, we have that N intersects transversally

θ−1(X∗) in P
m−1(K), θ−1(X∗) ∩ N 6= ∅ and X ′ ∩ N is an irreducible Zariski closed

subset of X ′ of codimension e. In this way, denoting by ρ : K
m \ {0} → P

m−1(K) the

natural projection, we can conclude that the restriction of Q to X∗ is transverse to

N ′ := ρ−1(N) ∪ {0} in K
m and θ(X ′ ∩ N) is an irreducible algebraic subset of X of
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codimension e containing Z, which coincides with Q−1(N ′). Fix N with these prop-
erties. Let D be a (e × m)-matrix with coefficients in K such that the kernel of D is

equal to N ′ and let B be the (e×m)-matrix (bi j)i, j such that bi j = 1 if j = i for some
i ∈ {1, . . . , e} and bi j = 0 otherwise. Define D · Q : X → K

e as the polynomial map

that sends x ∈ X into the standard matrix–vector product D · Q(x) ∈ K
e. Observe

that D · Q is of degree ≤ 1 + max{d, µ}, is good in X∗ and (D · Q)−1(0) = Q−1(N ′)
is an irreducible algebraic subset of X of codimension e containing Z. Moreover,

B · Q is equal to F. It follows that, for a generic choice of t in K, the polynomial map

(B + t(D − B)) · Q : X → K
e has the required properties. Defining the polynomial

map G : X → K
e by G := (D − B) · Q, we complete the proof of the first part of

Theorem 1.3. The second part is an easy consequence of the first one: it suffices to
choose F constantly equal to zero.

Suppose now the ground field is R. Indicate by C the algebraic closure of R. A

natural strategy to prove Theorem 1.2 is to apply the preceding argument to the

complexifications of X and of Z and to use the fact that the grassmannian of linear
subspaces of P

m−1(R) of codimension e is Zariski dense in the corresponding grass-

mannian over C. A “standard” problem arises: the real part of an irreducible Zariski

closed subset of P
n(C) may be reducible. There is another problem. The upper bound

for the degree of G obtained by means of this strategy is U := 1 + max{d, µ}, while

the corresponding upper bound stated in Theorem 1.2 is u := max{d, µ + 1}. If
d ≤ µ, then u = U = µ + 1. However, if d ≥ µ + 1, then u = d < U = d + 1 and

hence the upper bound u is strictly better than U . In order to overcome these diffi-

culties, we need three technical lemmas that we will present in Section 2. Section 3
contains a complete proof of our theorems.

2 Preliminary Results

Recall that C indicates the algebraic closure of R, which is equal to R[t]/(t2 + 1).
As is usual, we denote by P

n(C) the projectivization P(Cn+1) of Cn+1. Equip each

projective space P
n(C) with its natural structure of algebraic variety over C and each

Zariski locally closed subset of P
n(C) with the structure of algebraic subvariety of

P
n(C) (see [5]). Identify Cn with a Zariski open subset of P

n(C) by the affine chart

which sends (x1, . . . , xn) ∈ Cn into [1, x1, . . . , xn] ∈ P
n(C). In this way, an algebraic

subset of Cn can be regarded as a Zariski locally closed subset of P
n(C). Let XC be

such a subset of P
n(C). We denote by dimC (XC ) the complex dimension of XC and by

NonsingC (XC ) the set of nonsingular points of XC of maximum complex dimension,
i.e., of complex dimension dimC (XC ).

Lemma 2.1 Let XC be an irreducible algebraic subset of Cn, let ZC be an algebraic

subset of XC of complex codimension c ≥ 1 and let θC : X ′
C → XC be the blowing

up of XC with center ZC . Then, for each irreducible component Z∗
C of ZC of complex

dimension d, there exists an irreducible component Z ′
C of θ−1

C (ZC ) of complex dimension

v such that θC (Z ′
C ) = Z∗

C and v − d ≥ c − 1.

Proof Let ΘC : B ′
C → Cn be the blowing up of Cn with center ZC . We may sup-

pose that X ′
C is an irreducible Zariski closed subset of B ′

C and θC is the restriction
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of ΘC from X ′
C to XC . Let Z∗

C be an irreducible component of ZC of complex di-
mension d, and let Z̄C be the union of irreducible components of ZC different from

Z∗
C . Indicate by Z ′

C,1, . . . ,Z
′
C,s the irreducible components of θ−1

C (ZC ), by v1, . . . , vs

the complex dimensions of Z ′
C,1, . . . ,Z

′
C,s respectively and by I the set of all indices

i ∈ {1, . . . , s} such that Z ′
C,i ∩ θ−1

C (Z∗
C \ Z̄C ) 6= ∅. Since θC is surjective and

Z∗
C \ Z̄C = ZC \ Z̄C is a Zariski open subset of ZC , it follows that I is nonempty

and Z∗
C \ Z̄C ⊂

⋃
i∈I θC (Z ′

C,i) ⊂ Z∗
C . Observe that the set Z∗

C \ Z̄C is Zariski dense

in Z∗
C and the map θC is Zariski closed, i.e., it sends Zariski closed subsets of X ′

C

into Zariski closed subsets of XC . These facts imply that
⋃

i∈I θC (Z ′
C,i) = Z∗

C . Let

J := {i ∈ I | θC (Z ′
C,i) = Z∗

C}. Since θC (Z ′
C,i) is an irreducible algebraic subset of Z∗

C

for each i ∈ I, it follows that J is nonempty and VC :=
⋃

i∈I\ J θC (Z ′
C,i) is a proper

algebraic subset of Z∗
C . For each i ∈ J, denote by θC,i : Z ′

C,i → Z∗
C the restriction of θC

from Z ′
C,i to Z∗

C . By applying Theorem 7 of [6, p. 76] to each θC,i , we infer the exis-

tence of a point z ∈ NonsingC (Z∗
C )\(Z̄C∪VC ) such that dimC θ

−1
C,i (z) = vi−d for each

i ∈ J. Since θ−1
C (z) =

⋃
i∈ J θ

−1
C,i (z), we have that dimC θ

−1
C (z) = maxi∈ J{vi − d}.We

will show that dimC θ
−1
C (z) ≥ c − 1, completing the proof. Let r := dimC (XC ). The

point z is a nonsingular point of ZC of complex dimension d ≤ dimC (ZC ) = r − c,
so there exists a Zariski open neighborhood UC of z in Cn such that ZC ∩ UC is

a nonsingular Zariski closed subset of UC of complex dimension d. Observe that

dimC (B ′
C ) = n, Θ

−1
C (UC ) is a Zariski open subset of NonsingC (B ′

C ), dimC (X ′
C ) = r,

Θ
−1
C (z) is a (nonsingular) irreducible Zariski closed subset of B ′

C of complex dimen-

sion n − d − 1 and θ−1
C (z) is equal to X ′

C ∩ Θ
−1
C (z). Thanks to [4, Proposition 3.28],

we have that

dimC (θ−1
C (z)) ≥ r + (n − d − 1) − n ≥ c − 1.

For each non–negative integer n, we indicate by αn : P
n(C) → P

n(C) the complex
conjugation map and identify P

n(R) = P(Rn+1) with the fixed point set of αn. Let S

be a subset of P
n(C). Define the real part S(R) of S as the intersection S∩ P

n(R). The
set S is said to be defined over R if it is σn-invariant. Suppose S is defined over R

and let T be a subset of P
m(C) defined over R. A map f : S → T is said to be

defined over R if f ◦ σn = σm ◦ f on S. Observe that, if f has this property, then it
sends S(R) into T(R). Identify Rn with the real part of Cn. Equip each Zariski locally

closed subset of P
n(R) with its natural structure of algebraic variety over R. Unless

otherwise indicated, all the topological notions related to these real algebraic varieties
are refered to the euclidean topology.

Let VC be a Zariski locally closed subset of P
n(C). A map ϕC : VC → P

m(C)

is said to be a complex biregular embedding if ϕC (VC ) is a Zariski locally closed
subset of P

m(C) and the restriction of ϕC from VC to ϕC (VC ) is a complex biregular

isomorphism. In the real setting, the notion of biregular embedding can be defined

in the same way.

Lemma 2.2 Let X ⊂ Rn be a real algebraic set, and let Z be a proper algebraic subset

of X. Let q1, . . . , qℓ be generators of IRn (Z) in R[x1, . . . , xn], let q : X → Rℓ be the

polynomial map defined by q(x) := (q1(x), . . . , qℓ(x)) and let F : X → Rk be a polyno-

mial map vanishing on Z. Define the integer m := ℓ(n + 1) + k, the linear subspace HC
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of P
m−k−1(C) by

HC := {[y1, y2, . . . , yℓn+ℓ] ∈ P
m−k−1(C) | y1 = y2 = . . . = yℓ = 0},

and the linear subspace H of P
m−k−1(R) as the real part of HC . Define the regular maps

λ : X \ Z → P((Rℓ)n+1) \ H = P
m−k−1(R) \ H and σ : X \ Z → P((Rℓ)n+1 × Rk) =

P
m−1(R) by setting

λ(x) := [q(x), x1q(x), . . . , xnq(x)],

σ(x) := [q(x), x1q(x), . . . , xnq(x), F(x)]

for each x = (x1, . . . , xn) ∈ X \ Z. Let GC be a finite subset of P
m−k−1(C) \ HC .

Then there exist a Zariski open subset EC of P
m−k−1(C) defined over R and a complex

biregular embedding ηC : EC → P
m−1(C) defined over R with the following properties:

(1) EC (R) = P
m−k−1(R) \ H and GC ⊂ EC .

(2) Indicating by η : P
m−k−1(R)\H → P

m−1(R) the biregular embedding defines as the

restriction of ηC from EC (R) = P
m−k−1(R)\H to P

m−1(R), we have that σ = η◦λ.

Proof Let p1, . . . , ph be the points of P
m−k−1(C) such that GC = {p1, . . . , ph}. By

hypothesis, the intersection GC ∩ HC is empty. In this way, for each i ∈ {1, . . . , h},

we can write pi = [pi1, pi2, . . . , pi,ℓn+ℓ], where (pi1, pi2, . . . , piℓ) ∈ Cℓ \{0}. Choose

positive elements r1, . . . , rℓ of R such that
∑ℓ

j=1 r j p2
i j 6= 0 for each i ∈ {1, . . . , h}.

Let P1, . . . , Pk be polynomials in R[x1, . . . , xn] such that F = (P1, . . . , Pk) on X.

For each s ∈ {1, . . . , k}, Ps vanishes on Z, so there exist polynomials as1, . . . , asℓ in

R[x1, . . . , xn] such that Ps =
∑ℓ

j=1 as jq j . For each s ∈ {1, . . . , k} and for each j ∈

{1, . . . , ℓ}, indicate by as j,C the polynomial as j , viewed as an element of C[x1, . . . , xn].

Let EC be the Zariski open subset of P
m−k−1(C) defined by

EC := {[y1, y2, . . . , yℓn+ℓ] ∈ P
m−k−1(C) |

ℓ∑
j=1

r j y
2
j 6= 0}

and let ϕC = (ϕC,1, . . . , ϕC,n) : EC → Cn be the complex regular map whose i-th
component ϕC,i : EC → C is defined as follows:

ϕC,i([y1, . . . , yℓn+ℓ]) :=

∑ℓ
j=1 r j y j yℓi+ j
∑ℓ

j=1 r j y
2
j

.

Denote points of P
m−k−1(C) = P(Cℓn+ℓ) and of P

m−1(C) = P(Cℓn+ℓ ×Ck) by [ŷ] =

[y1, . . . , yℓ, yℓ+1, . . . , yℓn+ℓ] and [ŷ, yℓn+ℓ+1, . . . , ym] respectively. Define the Zariski
open subset TC of P

m−1(C) by

TC := {[y1, y2, . . . , ym] ∈ P
m−1(C) |

ℓ∑
j=1

r j y
2
j 6= 0},
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the nonsingular Zariski closed subset DC of TC as the following intersection

k⋂
s=1

{[ŷ, yℓn+ℓ+1, . . . , ym] ∈ TC | yℓn+ℓ+s =

ℓ∑
j=1

as j,C (ϕC ([ŷ])) · y j},

the complex regular map η ′
C : EC → DC by

η ′
C ([ŷ]) := [ŷ,

ℓ∑
j=1

a1 j,C (ϕC ([ŷ])) · y j , . . . ,
ℓ∑

j=1

ak j,C (ϕC ([ŷ])) · y j]

and the complex regular map ηC : EC → P
m−1(C) as the composition of η ′

C with the

inclusion map DC →֒ P
m−1(C). The map η ′

C is a complex biregular isomorphism. In

fact, the complex regular map from DC to EC which sends [ŷ, yℓn+ℓ+1, . . . , ym] ∈ DC

into [ŷ] ∈ EC , is the inverse of η ′
C . It follows that ηC is a complex biregular embedding

defined over R. (1) follows immediately from the definition of EC . Let us prove (2).

Let x ∈ X \ Z and let η : P
m−k−1(R) \ H → P

m−1(R) be the restriction of ηC from
EC (R) = P

m−k−1(R) \ H to P
m−1(R). Since ϕC (λ(x)) = x, we obtain that

η(λ(x)) = [q(x), x1q(x), . . . , xnq(x), P1(x), . . . , Pk(x)] = σ(x).

This completes the proof.

Let e and m be positive integers with e ≤ m, and let Me,m(R) be the vector

space of (e × m)-matrices with coefficients in R. Equip Me,m(R) with its natural

structure of affine irreducible algebraic variety over R and indicate by M∗
e,m(R) the

nonempty Zariski open subset of Me,m(R) formed by all matrices of rank e. For each

A ∈ Me,m(R), we denote by πA : Rm → Re the linear map associated with A (which

sends v ∈ Rm into the standard product A · v ∈ Re) and by LA the kernel of πA.
Let us fix a notation.

Notation Let X be a real algebraic set, let m be a positive integer, let Q : X → Rm be
a polynomial map and let e ∈ {1, . . . ,m}. We denote by Ae(Q) the set of all matrices

A ∈ M∗
e,m(R) such that πA ◦ Q : X → Re is admissible.

Observe that, using the preceding terminology, a matrix A ∈ M∗
e,m(R) belongs to

Ae(Q) if and only if, for some x ∈ Nonsing(X), Q(x) ∈ LA and Q is transverse to LA

in Rm at x.

Lemma 2.3 Let X ⊂ Rn be a real algebraic set, let Z be an algebraic subset of X

of codimension c ≥ 2 and let X∗ := Nonsing(X) \ Z. Let m be a positive integer

and let Q : X → Rm be a polynomial map such that Q(X∗) ⊂ Rm \ {0}. Indicate

by ρ : Rm \ {0} → P
m−1(R) the natural projection and by Q∗ : X∗ → Rm \ {0} the

restriction of Q from X∗ to Rm \ {0}. Suppose there exists a point q ∈ X∗ such that the

differential at q of the composition map ρ ◦ Q∗ : X∗ → P
m−1(R) is injective. Then, for

each e ∈ {1, . . . , c − 1}, Ae(Q) is a nonempty open semialgebraic subset of M∗
e,m(R)

and there exists a proper Zariski closed subset Ve of M∗
e,m(R) such that, for each A ∈

M∗
e,m(R) \ Ve, Q∗ is transverse to LA in Rm.
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Proof Let e ∈ {1, . . . , c − 1}. Define the polynomial map ψe : X∗ × M∗
e,m(R) → Re

by ψe(x,A) := (πA ◦ Q)(x). It is easy to verify that the origin 0 of Re is a regular

value of ψe, so Ve := (ψe)
−1(0) is a nonempty nonsingular Zariski closed subset of

X∗ × M∗
e,m(R) of codimension e. Indicate by νe : Ve → M∗

e,m(R) the restriction to Ve

of the natural projection of X∗ × M∗
e,m(R) onto M∗

e,m(R). Let Σe be the set of regular

points of νe. Combining standard considerations of Linear Algebra with the Implicit
Function Theorem (for Nash maps), it follows immediately that a point (x,A) of Ve

belongs to Σe if and only if the rank of the differential of πA ◦ Q at x is equal to

e. Since e < c, Ae(Q) is equal to νe(Σe) and hence Ae(Q) is an open semialgebraic
subset of M∗

e,m(R). Moreover, by applying Sard’s theorem to νe, we find a proper

Zariski closed subset Ve of M∗
e,m(R) with the required property: Q∗ is transverse to

LA in Rm for each A ∈ M∗
e,m(R)\Ve. It remains to prove that Ae(Q) is nonempty. Let

σ∗ : X∗ → P
m−1(R) be the composition ρ ◦Q∗. Indicate by dqQ∗ : Tq(X∗) → Rm the

differential of Q∗ at q and by N the vector subspace dqQ∗(Tq(X∗)) of Rm. Observe
that the kernel of the differential dQ(q)ρ of ρ at Q(q) is equal to the vector line of

Rm generated by Q(q). Since dqσ
∗ = dQ(q)ρ ◦ dqQ∗ is injective, it follows that dqQ∗

is injective and Q(q) 6∈ N. In particular, we have that dim(N) = dim(X). Since
e ≤ dim(X), there exists a vector subspace L of Rm of codimension e which contains

Q(q) and is transverse to N in Rm. Let D be a matrix in M∗
e,m(R) such that L = LD.

Evidently, D is an element of Ae(Q).

3 Proof of the Theorems

We begin proving a “more constructive” version of Theorem 1.2.

Theorem 3.1 Let X ⊂ Rn be an irreducible real algebraic set, let Z be an algebraic

subset of X of codimension c ≥ 2 and let X∗ := Nonsing(X)\Z. Let q1, . . . , qℓ be gene-

rators of IRn (Z) in R[x1, . . . , xn] and let F : X → Rk be a polynomial map vanishing

on Z. Define the polynomial map q : X → Rℓ by q(x) := (q1(x), . . . , qℓ(x)). Let

m := ℓ(n + 1) + k and define the polynomial map Q : X → (Rℓ)n+1 × Rk = Rm by

setting

Q(x) := (q(x), x1q(x), . . . , xnq(x), F(x))

for each x = (x1, . . . , xn) ∈ X. Then, for each e ∈ {1, . . . , c−1}, Ae(Q) is a nonempty

open semialgebraic subset of M∗
e,m(R) and there exists a proper Zariski closed subset

Be(Q) of M∗
e,m(R) with the following property: for each A ∈ Ae(Q) \ Be(Q), the poly-

nomial map πA◦Q : X → Re is good in X∗ and (πA◦Q)−1(0) is an irreducible algebraic

subset of X of codimension e containing Z.

Proof We subdivide the proof into five steps.

Step I. Indicate by q1,C , . . . , qℓ,C the polynomials q1, . . . , qℓ, viewed as elements of

C[x1, . . . , xn]. Define the polynomial map qC : Cn → Cℓ by qC := (q1,C , . . . , qℓ,C );

let XC and ZC be the Zariski closures of X and of Z in Cn respectively; define X ′ ′
C to

be the Zariski closure in XC × P(Cℓ) = XC × P
ℓ−1(C) of the set

{(x, [qC(x)]) ∈ XC × P
ℓ−1(C) | x ∈ XC \ ZC};
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and define the complex regular map θ ′C : X ′ ′
C → XC to be the restriction to X ′ ′

C of the
natural projection of XC ×P

ℓ−1(C) onto XC . Let ξC : XC ×P
ℓ−1(C) → P((Cℓ)n+1) =

P
m−k−1(C) be the complex regular map that sends ((x1, . . . , xn), [y]) ∈ XC×P

ℓ−1(C)
into [y, x1 y, . . . , xn y] ∈ P((Cℓ)n+1). Observe that ξC coincides with the restriction to

XC × P
ℓ−1(C) of the Segre embedding of P

n(C) × P
ℓ−1(C) into P

m−k−1(C). Define

the irreducible Zariski locally closed subset X ′
C of P

m−k−1(C) by X ′
C := ξC (X ′ ′

C ), the
complex biregular isomorphism ξ ′C : X ′ ′

C → X ′
C as the restriction of ξC from X ′ ′

C to X ′
C

and the complex regular map θC : X ′
C → XC by θC := θ ′C ◦(ξ ′C)−1. Since q1,C , . . . , qℓ,C

generate ICn (ZC) in C[x1, . . . , xn] (see [7]), θC is the blowing up of XC with center
ZC . Let ZC,1, . . . ,ZC,h be the irreducible components of ZC and let d1, . . . , dh be the

complex dimensions of ZC,1, . . . ,ZC,h, respectively. Thanks to Lemma 2.1, we have
that, for each i ∈ {1, . . . , h}, there exists an irreducible component Z ′

C,i of θ−1
C (ZC)

of complex dimension vi such that

(3.1) θC (Z ′
C,i) = ZC,i and vi − di ≥ c − 1.

Step II. For each i ∈ {1, . . . , h}, choose a point pi in Z ′
C,i . Indicate by GC the

finite subset {p1, . . . , ph} of X ′
C . As in the statement of Lemma 2.2, define the linear

subspace HC of P
m−k−1(C) by

HC := {[y1, y2, . . . , yℓn+ℓ] ∈ P
m−k−1(C) | y1 = y2 = . . . = yℓ = 0},

the linear subspace H of P
m−k−1(R) as the real part of HC and the regular map λ : X \

Z → P((Rℓ)n+1)\H = P
m−k−1(R)\H and the regular map σ : X \Z → P((Rℓ)n+1 ×

Rk) = P
m−1(R) as follows:

λ(x) := [q(x), x1q(x), . . . , xnq(x)],

σ(x) := [q(x), x1q(x), . . . , xnq(x), F(x)]

for each x = (x1, . . . , xn) ∈ X \ Z. Observe that X ′
C ⊂ ξC (XC × P

ℓ−1(C)) and

ξC (XC × P
ℓ−1(C)) ∩ HC = ∅. In this way, we have that X ′

C ∩ HC = ∅ and hence
GC ⊂ P

m−k−1(C)\HC . By applying Lemma 2.2, we obtain a Zariski open subset EC of

P
m−k−1(C) defined over R and a complex biregular embedding ηC : EC → P

m−1(C)

defined over R such that EC (R) = P
m−k−1(R) \ H, GC ⊂ X ′

C ∩ EC and, denoting by
η : P

m−k−1(R) \ H → P
m−1(R) the biregular embedding defined as the restriction of

ηC from EC (R) = P
m−k−1(R) \ H to P

m−1(R), it holds that

(3.2) σ = η ◦ λ.

Indicate by X ′ the real part of X ′
C and by θ : X ′ → X the restriction of θC from X ′

to X. The map θ is the blowing up of X with center Z and, for each x ∈ X \ Z, we

have:

(3.3) the point θ−1(x) of P
m−k−1(R) coincides with λ(x).

It follows that X ′ is an irreducible Zariski locally closed subset of P
m−k−1(R) and λ is

a biregular embedding. Combining the latter fact with (3.2), we obtain that

(3.4) σ is a biregular embedding.
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Define X∗ and Q : X → Rm as in the statement of the theorem we are proving. Let
Q∗ : X∗ → Rm\{0} be the restriction of Q from X∗ to Rm\{0} and let ρ : Rm\{0} →
P

m−1(R) be the natural projection. Since ρ ◦ Q∗ coincides with the restriction of σ
to X∗, (3.4) implies that ρ ◦ Q∗ is a biregular embedding. In this way, the hypotheses

of Lemma 2.3 are satisfied, so we have that, for each e ∈ {1, . . . , c − 1}, Ae(Q) is

a nonempty open semialgebraic subset of M∗
e,m(R) and there exists a proper Zariski

closed subset Ve of M∗
e,m(R) such that

(3.5) Q∗ is transverse to LA in Rm for each A ∈ M∗
e,m(R) \ Ve.

Step III. Define the irreducible Zariski locally closed subset X̃C of P
m−1(C) by

X̃C := ηC (X ′
C ∩ EC ); define the complex biregular isomorphism η ′

C : X ′
C ∩ EC → X̃C

as the restriction of ηC from X ′
C ∩EC to X̃C ; define i ′C : X ′

C ∩EC →֒ X ′
C as the inclusion

map of X ′
C ∩ EC into X ′

C ; define the complex regular map θ̃C : X̃C → XC by θ̃C :=

θC ◦ i ′C ◦ (η ′
C )−1; and, for each i ∈ {1, . . . , h}, define the Zariski closed subset Z̃C,i of

(θ̃C)−1(ZC ) by Z̃C,i := ηC (Z ′
C,i ∩ EC ). Observe that each set Z̃C,i contains the point

ηC (pi). This fact and (3.1) imply that, for each i ∈ {1, . . . , h}, Z̃C,i is a (nonempty)

irreducible component of (θ̃C )−1(ZC ) of complex dimension vi such that

(3.6) θ̃C (Z̃C,i) is a Zariski dense subset of ZC,i and vi − di ≥ c − 1.

Fix i ∈ {1, . . . , h}. Let θ̃C,i : Z̃C,i → ZC,i be the restriction of θ̃C from Z̃C,i to ZC,i . By

(3.6) and Sard’s theorem, there exists a point zi ∈ Nonsing(ZC,i) such that, denoting

by WC,i the set Nonsing(Z̃C,i) ∩ (θ̃C,i)
−1(zi), WC,i is a nonempty nonsingular Zariski

locally closed subset of Z̃C,i of complex dimension vi − di ≥ c − 1 such that

(3.7) the rank of the differential of θ̃C,i at each point of WC,i is equal to di .

Indicate by X̃ the real part of X̃C and by θ̃ : X̃ → X the restriction of θ̃C from X̃ to X.

From (3.2) and (3.3), we infer that

(3.8) the restriction of θ̃ from (θ̃)−1(X \ Z) to X \ Z is a biregular isomorphism.

Moreover, for each x ∈ X \ Z, we have

(3.9) the point (θ̃)−1(x) of P
m−1(R) coincides with σ(x).

Step IV. For each e ∈ {1, . . . , c − 1}, indicate by Gm,m−e(C) the grassmannian

of linear subspaces of P
m−1(C) of complex codimension e, equipped with the usual

structure of irreducible algebraic variety over C. By point 1b) of Corollaire 6.11 of
[2], by the proof of point 2) of the same corollary and by the second part of (3.6), for

each e ∈ {1, . . . , c − 1}, there exists a proper Zariski closed subset G ′
C,e of Gm,m−e(C)

such that, for each NC ∈ Gm,m−e(C) \ G ′
C,e and for each i ∈ {1, . . . , h}, the following

holds:

(3.10) WC,i ∩ NC is nonempty and NC is transverse to WC,i in P
m−1(C).

https://doi.org/10.4153/CMB-2009-025-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-025-9


234 R. Ghiloni

We will show that, for each e ∈ {1, . . . , c − 1} and for each NC ∈ Gm,m−e(C) \ G ′
C,e,

the following holds:

(3.11) ZC is contained in the Zariski closure of θ̃C (X̃C ∩ NC ) in XC .

Let e and NC be as above. For each i ∈ {1, . . . , h}, choose a point qi in WC,i ∩ NC

(which exists by the first part of (3.10)) and indicate by θ∗C,i : Z̃C,i ∩ NC → ZC,i the

restriction of θ̃C,i to Z̃C,i ∩ NC . Fix i ∈ {1, . . . , h}. By the second part of (3.10), NC

is transverse to WC,i in P
m−1(C) at qi and, by (3.7), the rank of the differential dqi

θ̃C,i

of θ̃C,i at qi is equal to di = dimC (ZC,i). Since the kernel of dqi
θ̃C,i coincides with the

tangent space of WC,i at qi , it follows that qi is a nonsingular point of Z̃C,i ∩ NC of
complex dimension vi − e and the rank of the differential of θ∗C,i at qi is equal to di .

In particular, we have that, for each i ∈ {1, . . . , h}, θ∗C,i is dominating. This fact and

the inclusion
⋃h

i=1 θ
∗
C,i(Z̃C,i ∩ NC ) ⊂ θ̃C (X̃C ∩ NC ) imply (3.11).

Step V. Fix e ∈ {1, . . . , c − 1}. Since X̃C is irreducible, point 3) of Corollaire 6.11
of [2] ensures the existence of a proper Zariski closed subset H ′

C,e of Gm,m−e(C) such

that, for each NC ∈ Gm,m−e(C) \ H ′
C,e, it holds:

(3.12) X̃C ∩ NC is irreducible and of complex codimension e in X̃C .

Indicate by M∗
e,m(C) the vector space of (e × m)-matrices with coefficients in C and

rank e, equipped with its natural structure of algebraic variety over C. Observe that
the real part of M∗

e,m(C) coincides with M∗
e,m(R). Define the surjective complex regu-

lar map ΦC : M∗
e,m(C) → Gm,m−e(C) as follows: ΦC (AC) := ρC (ker(AC)\{0}), where

ρC : Cm \ {0} → P
m−1(C) is the natural projection and ker(AC) is the kernel of the

complex matrix AC . Let GC,e := (ΦC )−1(G ′
C,e) and HC,e := (ΦC )−1(H ′

C,e). Define

the proper Zariski closed subset Be(Q) of M∗
e,m(R) by

Be(Q) := GC,e(R) ∪ HC,e(R) ∪ Ve.

Let A ∈ Ae(Q) \ Be(Q). Since A ∈ Ae(Q), (πA ◦ Q)−1(0) ∩ X∗ is nonempty and

hence, thanks to (3.5), the polynomial map πA ◦ Q is good in X∗. In particular, we
have that (πA ◦ Q)−1(0) ∩ X∗ is a nonempty (nonsingular) Zariski closed subset of

X∗ of codimension e. Let AC be the matrix A, viewed as an element of M∗
e,m(C). Let

NC := ΦC (AC) and let N be the real part of NC . By (3.9), we have:

X̃ ∩ N ⊃ σ(X \ Z) ∩ N = σ(σ−1(N)) ⊃ σ((πA ◦ Q)−1(0) ∩ X∗).

In particular, the codimension of X̃ ∩ N in X̃ is ≤ e. On the other hand, X̃ ∩ N is
the real part of X̃C ∩ NC and hence, by (3.12), X̃ ∩ N is a (nonempty) irreducible

Zariski closed subset of X̃ of codimension e and is Zariski dense in X̃C ∩ NC . Let Y

be the Zariski closure of θ̃(X̃ ∩ N) in X. From (3.8) and (3.9), it follows that Y is an

irreducible algebraic subset of X of codimension e and θ̃(X̃ ∩ N) \ Z = σ−1(N). In

particular, we have:

(3.13) Y \ Z = σ−1(N) = (πA ◦ Q)−1(0) \ Z.
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Let YC be the Zariski closure of θ̃C (X̃C ∩ NC ) in XC . Since X̃ ∩ N is Zariski dense in
X̃C ∩NC , it is easy to verify that Y is a Zariski dense subset of YC , and hence YC (R) =

Y . Thanks to (3.11), ZC is contained in YC , so we have that Z = ZC (R) ⊂ YC (R) = Y .
On the other hand, by definition of Q, Z is contained in (πA ◦ Q)−1(0). In this way,

(3.13) implies that Y = (πA ◦ Q)−1(0) and the proof is complete.

A byproduct of the argument used in the preceding proof is as follows.

Theorem 3.2 Let K be an algebraically closed field. Let X be an irreducible algebraic

subset of K
n, let Z be an algebraic subset of X of codimension c ≥ 2, let q1, . . . , qℓ

be generators of IKn (Z) in K[x1, . . . , xn] and let X∗ be the set of nonsingular points

of X which are not contained in Z. Define: the polynomial map q : X → K
ℓ by

q(x) := (q1(x), . . . , qℓ(x)), the integer m := ℓ(n + 1) and the polynomial map Q : X →
(K

ℓ)n+1 = K
m by setting

Q(x) := (q(x), x1q(x), . . . , xnq(x))

for each x = (x1, . . . , xn) ∈ X. Indicate by Me,m(K) the vector space of (e×m)-matrices

with coefficients in K, equipped with its natural structure of algebraic variety over K.

Then, for each e ∈ {1, . . . , c − 1}, there exists a proper Zariski closed subset De(Q) of

Me,m(K) with the following property: for each A ∈ Me,m(K) \ De(Q), the polynomial

map πA ◦Q : X → K
e is good in X∗ and (πA ◦Q)−1(0) is an irreducible algebraic subset

of X of codimension e containing Z.

Proof of Theorem 1.2 Fix e ∈ {1, . . . , c−1}. Let q1, . . . , qℓ be generators of IRn (Z)

in R[x1, . . . , xn] such that max i∈{1,...,ℓ} deg(qi) = µ, let q : X → Rℓ be the poly-
nomial map defined by q(x) := (q1(x), . . . , qℓ(x)) and let F ′ : X → R0 = {0} be

the polynomial map constantly equal to 0. Define the integer m ′ := ℓ(n + 1) and

indicate by Q′ : X → Rm ′

the polynomial map which sends x = (x1, . . . , xn) ∈ X

into (q(x), x1q(x), . . . , xnq(x), F ′(x)) = (q(x), x1q(x), . . . , xnq(x)) ∈ Rm ′

. Define

the integer m := m ′ + e and indicate by Q : X → Rm the polynomial map which

sends x = (x1, . . . , xn) ∈ X into (q(x), x1q(x), . . . , xnq(x), F(x)) ∈ Rm. By apply-
ing Theorem 3.1 to Q′, we obtain a matrix B ′ ∈ M∗

e,m ′(R) such that the polyno-

mial map P : X → Re defined by P := πB ′ ◦ Q′ has the properties required in (1).
Let us prove (2). Indicate by B the matrix (bi j)i, j in M∗

e,m(R) such that bi j = 1 if

j = m ′ + i for some i ∈ {1, . . . , e} and bi j = 0 otherwise. Since πB ◦ Q = F and

F is admissible, we have that B ∈ Ae(Q). By Theorem 3.1 applied to Q, it follows
that Ae(Q) is an open (semialgebraic) subset of M∗

e,m(R) and there exists a proper

Zariski closed subset Be(Q) of M∗
e,m(R) such that, for each A ∈ Ae(Q) \ Be(Q),

πA ◦ Q is good in X∗ and (πA ◦ Q)−1(0) is irreducible, has codimension e in X and
contains Z. Choose a matrix D in Me,m(R) \ (Be(Q) ∪ {B}). The affine line of

Me,m(R) containing B and D intersects Be(Q) in a (possibly empty) finite set. In this
way, since Ae(Q) is open in Me,m(R), there exists a positive element ε of R such that

B + tε(D − B) ∈ Ae(Q) \ Be(Q) for each t ∈ (−1, 1) \ {0}. The polynomial map

G : X → Re defined by G := πε(D−B) ◦ Q has the desired properties.

Proof of Theorem 1.3 The second part of the theorem follows immediately from the

first one by choosing F constantly equal to 0. Let us prove the first part. Let q1, . . . , qℓ
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be generators of IKn (Z) in K[x1, . . . , xn] such that max i∈{1,...,ℓ} deg(qi) = µ, and
let P1, . . . , Pe be polynomials in K[x1, . . . , xn] such that F = (P1, . . . , Pe) on X and

max i∈{1,...,e} deg(Pi) = d. It is now sufficient to repeat the preceding proof of point
(2) of Theorem 1.2, using Theorem 3.2 instead of Theorem 3.1 with P1, . . . , Pe,

q1, . . . , qℓ as generators of IKn (Z) in K[x1, . . . , xn].

Remark 3.3. Let X ⊂ Rn be a real algebraic set, let F = (F1, . . . , Fe) : X → Re be a

polynomial map and let T be a nonempty Zariski open subset of Nonsing(X). For

each i ∈ {1, . . . , e}, we denote by F ′
i : T → R the restriction of Fi to T. We say that F

is very good in T if the origin 0 of R is a regular value of each F ′
i ,

e⋂
i=1

(F ′
i )−1(0) = T ∩ F−1(0)

is nonempty and the nonsingular algebraic hypersurfaces (F ′
1)−1(0), . . . , (F ′

e )−1(0)

of T are in general position. Evidently, if F is very good in T, then it is good in T

also. However, it is easy to construct examples of good polynomial maps that are not
very good. The notion of very good polynomial map can be defined similarly over

any field. In the statements of all our theorems, one can replace the adjective “good”

with “very good”. This can be done by slightly improving point (3.5) in the proof of
Theorem 3.1.

Acknowledgment We wish to thank Edoardo Ballico for several useful discussions.

References

[1] D. Dubois and G. Efroymson, A dimension theorem for real primes. Canad. J. Math. 26(1974),
108–114.
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