Equations and Complexity for the Dubois-Efroymson Dimension Theorem

Riccardo Ghiloni

Abstract

Let R be a real closed field, let $X \subset R^{n}$ be an irreducible real algebraic set and let Z be an algebraic subset of X of codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset of X of codimension 1 containing Z. We improve this dimension theorem as follows. Indicate by μ the minimum integer such that the ideal of polynomials in $R\left[x_{1}, \ldots, x_{n}\right]$ vanishing on Z can be generated by polynomials of degree $\leq \mu$. We prove the following two results: (1) There exists a polynomial $P \in R\left[x_{1}, \ldots, x_{n}\right]$ of degree $\leq \mu+1$ such that $X \cap P^{-1}(0)$ is an irreducible algebraic subset of X of codimension 1 containing Z. (2) Let F be a polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$ of degree d vanishing on Z. Suppose there exists a nonsingular point x of X such that $F(x)=0$ and the differential at x of the restriction of F to X is nonzero. Then there exists a polynomial $G \in$ $R\left[x_{1}, \ldots, x_{n}\right]$ of degree $\leq \max \{d, \mu+1\}$ such that, for each $t \in(-1,1) \backslash\{0\}$, the set $\{x \in X \mid$ $F(x)+t G(x)=0\}$ is an irreducible algebraic subset of X of codimension 1 containing Z. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.

1 The Theorems

Let R be a fixed real closed field. Let X and Z be algebraic subsets of R^{n} such that X is irreducible, Z is contained in X and $\operatorname{dim}(X)-\operatorname{dim}(Z) \geq 2$. In [1], Dubois and Efroymson proved the existence of a polynomial P in $R\left[x_{1}, \ldots, x_{n}\right]$ such that the set $X \cap P^{-1}(0)$ is an irreducible algebraic subset of X of codimension 1 containing Z.

In this paper, we give an upper bound for the degree of P and we establish simple conditions for a polynomial $F \in R\left[x_{1}, \ldots, x_{n}\right]$ to be approximated by polynomials $G \in R\left[x_{1}, \ldots, x_{n}\right]$ such that $X \cap G^{-1}(0)$ is an irreducible algebraic subset of X of codimension 1 containing Z. Moreover, we extend these results to higher codimensions.

Let X be a real algebraic set, i.e., an algebraic subset of some R^{n}. We indicate by $\mathscr{I}_{R^{n}}(X)$ the ideal of polynomials in $R\left[x_{1}, \ldots, x_{n}\right]$ vanishing on X and by Nonsing (X) the set of nonsingular points of X of maximum dimension, i.e., of dimension $\operatorname{dim}(X)$. An algebraic subset Z of R^{n} contained in X is called an algebraic subset of X. The integer $\operatorname{dim}(X)-\operatorname{dim}(Z)$ is called the codimension of Z in X. The empty set is considered to be an algebraic subset of X of codimension $\operatorname{dim}(X)$. Let e be a positive integer and let $F=\left(F_{1}, \ldots, F_{e}\right): X \rightarrow R^{e}$ be a map. Recall that F is said to be polynomial if there exist polynomials P_{1}, \ldots, P_{e} in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $P_{i}=F_{i}$ on X for each $i \in\{1, \ldots, e\}$. Suppose F is polynomial. We define the degree $\operatorname{deg}(F)$ of F as the minimum integer d such that there exist polynomials P_{1}, \ldots, P_{e} in $R\left[x_{1}, \ldots, x_{n}\right]$ of degree $\leq d$, which coincide with F_{1}, \ldots, F_{e} on X respectively. If F vanishes on

[^0]whole X, then we consider $\operatorname{deg}(F)$ equal to zero. Let T be a subset of $\operatorname{Nonsing}(X)$. We say that F is good in T if $T \cap F^{-1}(0)$ is nonempty and, for each $x \in T \cap F^{-1}(0)$, the rank of the differential of F at x is equal to e. The map F is said to be admissible if, for some $x \in \operatorname{Nonsing}(X), F$ is good in $\{x\}$, i.e., $F(x)=0$ and the rank of the differential of F at x is equal to e.

Let us introduce the notion of μ-complexity of a real algebraic set.
Definition 1.1 Let Z be a proper algebraic subset of R^{n}. We define the μ-complexity $\mu\left(Z, R^{n}\right)$ of Z in R^{n} as the minimum integer μ such that there exist generators of $\mathscr{I}_{R^{n}}(Z)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ of degree $\leq \mu$.

The preceding notions, given over R, can be reformulated identically over any field.

We are now in a position to state the main result of this paper (see Remark 3.3 also).

Theorem 1.2 Let $X \subset R^{n}$ be an irreducible real algebraic set, let Z be an algebraic subset of X of codimension $c \geq 2$ and let $e \in\{1, \ldots, c-1\}$. Define $\mu:=\mu\left(Z, R^{n}\right)$ and $X^{*}:=\operatorname{Nonsing}(X) \backslash Z$.
(1) There exists a polynomial map $P: X \rightarrow R^{e}$ of degree $\leq \mu+1$ and good in X^{*} such that $P^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z.
(2) Given an admissible polynomial map $F: X \rightarrow R^{e}$ of degree d vanishing on Z, there exists a polynomial map $G: X \rightarrow R^{e}$ of degree $\leq \max \{d, \mu+1\}$ such that, for each $t \in(-1,1) \backslash\{0\}$, the polynomial map $F_{t}: X \rightarrow R^{e}$ defined by $F_{t}:=F+t G$ is good in X^{*} and $\left(F_{t}\right)^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z.

Observe that, if Z is empty, then $\mu=0$ and the preceding result follows easily from Bertini's theorems applied to X and to the graph of F (see [2, Théorème 6.6, p. 79]). Assume in addition that X is bounded in R^{n}. Then, if $F: X \rightarrow R^{e}$ is a nowhere zero polynomial map, it is easy to see that there does not exist any polynomial map $G: X \rightarrow R^{e}$ with the properties required in (2). This fact implies that, in the statement of Theorem 1.2, the adjective "admissible" cannot be omitted.

Kucharz [3] obtained the following interesting version of the Dubois-Efroymson dimension theorem: Given a nonsingular irreducible algebraic subset X of some \mathbb{R}^{n}, where \mathbb{R} is the field of real numbers, and an algebraic subset Z of X of codimension ≥ 2, there exists an irreducible algebraic subset Y of X of codimension 1 containing Z such that the ideal of regular functions on X vanishing on Y is principal.

This result can be proved using Theorem 1.2. Let us explain this assertion. By the algebraic Alexandrov compactification and Hironaka's desingularization theorem, we may suppose that X is compact (see Step 3 of the proof of [3, Theorem 1], p. 28). Under this additional condition, Theorem 1.2(1) (with $e=1$) and [3, Lemma 3] ensure the existence of an algebraic subset Y of X with the required properties.

Theorem 1.2 holds over any algebraically closed field in the following form.
Theorem 1.3 Let \mathbb{K} be an algebraically closed field. Let X be an irreducible algebraic subset of \mathbb{K}^{n}, let Z be an algebraic subset of X of codimension $c \geq 2$ and let
$e \in\{1, \ldots, c-1\}$. Indicate by μ the μ-complexity of Z in \mathbb{K}^{n} and by X^{*} the set of nonsingular points of X, which are not contained in Z. Then, given any polynomial map $F: X \rightarrow \mathbb{K}^{e}$ of degree d vanishing on Z, there exist a polynomial map $G: X \rightarrow \mathbb{K}^{e}$ of degree $\leq 1+\max \{d, \mu\}$ and a finite subset E of \mathbb{K} such that: for each $t \in \mathbb{K} \backslash E$, the polynomial map $F_{t}: X \rightarrow \mathbb{K}^{e}$ defined by $F_{t}:=F+t G$ is good in X^{*} and $\left(F_{t}\right)^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z. In particular, there exists a polynomial map $P: X \rightarrow \mathbb{K}^{e}$ of degree $\leq \mu+1$ and good in X^{*} such that $P^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z.

Let us give the idea of the proof of our results. First, we deal with Theorem 1.3. Let $\mathbb{K}, X \subset \mathbb{K}^{n}, Z, c, e, \mu, X^{*}, F: X \rightarrow \mathbb{K}^{e}$ and d be as in the statement of the mentioned theorem. Let P_{1}, \ldots, P_{e} be polynomials in $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ such that $F=\left(P_{1}, \ldots, P_{e}\right)$ on X and $\max _{i \in\{1, \ldots, e\}} \operatorname{deg}\left(P_{i}\right)=d$, and let q_{1}, \ldots, q_{ℓ} be generators of $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $\max _{i \in\{1, \ldots, \ell\}} \operatorname{deg}\left(q_{i}\right)=\mu$. Let us construct the blowing up $\theta: X^{\prime} \rightarrow X$ of X with center Z by using the generators $P_{1}, \ldots, P_{e}, q_{1}, \ldots, q_{\ell}$ of $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ and a suitable Segre embedding. Define the polynomial map $q: \mathbb{K}^{n} \rightarrow \mathbb{K}^{e+\ell}$ by

$$
q:=\left(P_{1}, \ldots, P_{e}, q_{1}, \ldots, q_{\ell}\right)
$$

$X^{\prime \prime}$ as the Zariski closure in $X \times \mathbb{P}^{e^{+\ell-1}}(\mathbb{K})$ of the set

$$
\left\{(x,[q(x)]) \in X \times \mathbb{P}^{e+\ell-1}(\mathbb{K}) \mid x \in X \backslash Z\right\}
$$

the regular map $\theta^{\prime}: X^{\prime \prime} \rightarrow X$ as the restriction to $X^{\prime \prime}$ of the natural projection of $X \times \mathbb{P}^{e+\ell-1}(\mathbb{K})$ onto X, the integer $m:=(n+1)(e+\ell)$ and $\xi: X \times \mathbb{P}^{p^{e+\ell-1}}(\mathbb{K}) \rightarrow$ $\mathbb{P}^{m-1}(\mathbb{K})$ as the regular map, which sends $\left(\left(x_{1}, \ldots, x_{n}\right),[y]\right) \in X \times \mathbb{P}^{p^{+\ell} \ell-1}(\mathbb{K})$ into $\left[y, x_{1} y, \ldots, x_{n} y\right] \in \mathbb{P}^{m-1}(\mathbb{K})$. Identifying each point $\left(x_{1}, \ldots, x_{n}\right)$ of X with the point $\left[1, x_{1}, \ldots, x_{n}\right]$ of $\mathbb{P}^{n}(\mathbb{K})$, we see that ξ coincides with the restriction to $X \times \mathbb{P}^{e^{+\ell \ell-1}}(\mathbb{K})$ of the Segre embedding of $\mathbb{P}^{n}(\mathbb{K}) \times \mathbb{P}^{\operatorname{pe}^{+\ell-1}}(\mathbb{K})$ into $\mathbb{P}^{m-1}(\mathbb{K})$. In particular, $X^{\prime}:=$ $\xi\left(X^{\prime \prime}\right)$ is a Zariski locally closed subset of $\mathbb{P}^{m-1}(\mathbb{K})$ and the restriction $\xi^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ of ξ from $X^{\prime \prime}$ to X^{\prime} is a biregular isomorphism. Define the blowing up $\theta: X^{\prime} \rightarrow X$ of X with center Z by setting $\theta:=\theta^{\prime} \circ\left(\xi^{\prime}\right)^{-1}$. Observe that, for each $x=\left(x_{1}, \ldots, x_{n}\right) \in$ $X \backslash Z$, the point $\theta^{-1}(x)$ of $\mathbb{P}^{m-1}(\mathbb{K})$ is equal to $\left[q(x), x_{1} q(x), \ldots, x_{n} q(x)\right]$. Indicate by $Q: X \rightarrow \mathbb{K}^{m}$ the polynomial map defined by $Q(x):=\left(q(x), x_{1} q(x), \ldots, x_{n} q(x)\right)$. Let Ω be the set of nonsingular points of Z of some dimension. By simple considerations concerning the blowing up operation in algebraic geometry over an algebraically closed field, we infer that, for each $x \in \Omega, \theta^{-1}(x)$ is a Zariski closed subset of $\mathbb{P}^{m-1}(\mathbb{K})$ of dimension $\geq c-1$. Let N be a linear subspace of $\mathbb{P}^{m-1}(\mathbb{K})$ of codimension e. By hypothesis, $e \leq c-1$ and hence, for each $x \in \Omega$, the intersection $\theta^{-1}(x) \cap N$ is nonempty. Since Ω is Zariski dense in Z, it follows that $\theta\left(X^{\prime} \cap N\right)$ is an algebraic subset of X containing Z. Thanks to Bertini's theorems (see [2, Corollaire 6.11, p. 89]), for a generic choice of N, we have that N intersects transversally $\theta^{-1}\left(X^{*}\right)$ in $\mathbb{P}^{m-1}(\mathbb{K}), \theta^{-1}\left(X^{*}\right) \cap N \neq \varnothing$ and $X^{\prime} \cap N$ is an irreducible Zariski closed subset of X^{\prime} of codimension e. In this way, denoting by ρ : $\mathbb{K}^{m} \backslash\{0\} \rightarrow \mathbb{P}^{m-1}(\mathbb{K})$ the natural projection, we can conclude that the restriction of Q to X^{*} is transverse to $N^{\prime}:=\rho^{-1}(N) \cup\{0\}$ in \mathbb{K}^{m} and $\theta\left(X^{\prime} \cap N\right)$ is an irreducible algebraic subset of X of
codimension e containing Z, which coincides with $Q^{-1}\left(N^{\prime}\right)$. Fix N with these properties. Let D be a $(e \times m)$-matrix with coefficients in \mathbb{K} such that the kernel of D is equal to N^{\prime} and let B be the $(e \times m)$-matrix $\left(b_{i j}\right)_{i, j}$ such that $b_{i j}=1$ if $j=i$ for some $i \in\{1, \ldots, e\}$ and $b_{i j}=0$ otherwise. Define $D \cdot Q: X \rightarrow \mathbb{K}^{e}$ as the polynomial map that sends $x \in X$ into the standard matrix-vector product $D \cdot Q(x) \in \mathbb{K}^{e}$. Observe that $D \cdot Q$ is of degree $\leq 1+\max \{d, \mu\}$, is good in X^{*} and $(D \cdot Q)^{-1}(0)=Q^{-1}\left(N^{\prime}\right)$ is an irreducible algebraic subset of X of codimension e containing Z. Moreover, $B \cdot Q$ is equal to F. It follows that, for a generic choice of t in \mathbb{K}, the polynomial map $(B+t(D-B)) \cdot Q: X \rightarrow \mathbb{K}^{e}$ has the required properties. Defining the polynomial map $G: X \rightarrow \mathbb{K}^{e}$ by $G:=(D-B) \cdot Q$, we complete the proof of the first part of Theorem 1.3. The second part is an easy consequence of the first one: it suffices to choose F constantly equal to zero.

Suppose now the ground field is R. Indicate by C the algebraic closure of R. A natural strategy to prove Theorem 1.2 is to apply the preceding argument to the complexifications of X and of Z and to use the fact that the grassmannian of linear subspaces of $\mathbb{P}^{m-1}(R)$ of codimension e is Zariski dense in the corresponding grassmannian over C. A "standard" problem arises: the real part of an irreducible Zariski closed subset of $\mathbb{P}^{n}(C)$ may be reducible. There is another problem. The upper bound for the degree of G obtained by means of this strategy is $U:=1+\max \{d, \mu\}$, while the corresponding upper bound stated in Theorem 1.2 is $u:=\max \{d, \mu+1\}$. If $d \leq \mu$, then $u=U=\mu+1$. However, if $d \geq \mu+1$, then $u=d<U=d+1$ and hence the upper bound u is strictly better than U. In order to overcome these difficulties, we need three technical lemmas that we will present in Section 2. Section 3 contains a complete proof of our theorems.

2 Preliminary Results

Recall that C indicates the algebraic closure of R, which is equal to $R[t] /\left(t^{2}+1\right)$. As is usual, we denote by $\mathbb{P}^{n}(C)$ the projectivization $\mathbb{P}\left(C^{n+1}\right)$ of C^{n+1}. Equip each projective space $\mathbb{P}^{n}(C)$ with its natural structure of algebraic variety over C and each Zariski locally closed subset of $\mathbb{P}^{n}(C)$ with the structure of algebraic subvariety of $\mathbb{P}^{n}(C)$ (see [5]). Identify C^{n} with a Zariski open subset of $\mathbb{P}^{n}(C)$ by the affine chart which sends $\left(x_{1}, \ldots, x_{n}\right) \in C^{n}$ into $\left[1, x_{1}, \ldots, x_{n}\right] \in \mathbb{P}^{n}(C)$. In this way, an algebraic subset of C^{n} can be regarded as a Zariski locally closed subset of $\mathbb{P}^{n}(C)$. Let X_{C} be such a subset of $\mathbb{P}^{n}(C)$. We denote by $\operatorname{dim}_{C}\left(X_{C}\right)$ the complex dimension of X_{C} and by $\operatorname{Nonsing}_{C}\left(X_{C}\right)$ the set of nonsingular points of X_{C} of maximum complex dimension, i.e., of complex dimension $\operatorname{dim}_{C}\left(X_{C}\right)$.

Lemma 2.1 Let X_{C} be an irreducible algebraic subset of C^{n}, let Z_{C} be an algebraic subset of X_{C} of complex codimension $c \geq 1$ and let $\theta_{C}: X_{C}^{\prime} \rightarrow X_{C}$ be the blowing up of X_{C} with center Z_{C}. Then, for each irreducible component Z_{C}^{*} of Z_{C} of complex dimension d, there exists an irreducible component Z_{C}^{\prime} of $\theta_{C}^{-1}\left(Z_{C}\right)$ of complex dimension v such that $\theta_{C}\left(Z_{C}^{\prime}\right)=Z_{C}^{*}$ and $v-d \geq c-1$.

Proof Let $\Theta_{C}: B_{C}^{\prime} \rightarrow C^{n}$ be the blowing up of C^{n} with center Z_{C}. We may suppose that X_{C}^{\prime} is an irreducible Zariski closed subset of B_{C}^{\prime} and θ_{C} is the restriction
of Θ_{C} from X_{C}^{\prime} to X_{C}. Let Z_{C}^{*} be an irreducible component of Z_{C} of complex dimension d, and let \bar{Z}_{C} be the union of irreducible components of Z_{C} different from Z_{C}^{*}. Indicate by $Z_{C, 1}^{\prime}, \ldots, Z_{C, s}^{\prime}$ the irreducible components of $\theta_{C}^{-1}\left(Z_{C}\right)$, by v_{1}, \ldots, v_{s} the complex dimensions of $Z_{C, 1}^{\prime}, \ldots, Z_{C, s}^{\prime}$ respectively and by I the set of all indices $i \in\{1, \ldots, s\}$ such that $Z_{C, i}^{\prime} \cap \theta_{C}^{-1}\left(Z_{C}^{*} \backslash \bar{Z}_{C}\right) \neq \varnothing$. Since θ_{C} is surjective and $Z_{C}^{*} \backslash \bar{Z}_{C}=Z_{C} \backslash \bar{Z}_{C}$ is a Zariski open subset of Z_{C}, it follows that I is nonempty and $Z_{C}^{*} \backslash \bar{Z}_{C} \subset \bigcup_{i \in I} \theta_{C}\left(Z_{C, i}^{\prime}\right) \subset Z_{C}^{*}$. Observe that the set $Z_{C}^{*} \backslash \bar{Z}_{C}$ is Zariski dense in Z_{C}^{*} and the map θ_{C} is Zariski closed, i.e., it sends Zariski closed subsets of X_{C}^{\prime} into Zariski closed subsets of X_{C}. These facts imply that $\bigcup_{i \in I} \theta_{C}\left(Z_{C, i}^{\prime}\right)=Z_{C}^{*}$. Let $J:=\left\{i \in I \mid \theta_{C}\left(Z_{C, i}^{\prime}\right)=Z_{C}^{*}\right\}$. Since $\theta_{C}\left(Z_{C, i}^{\prime}\right)$ is an irreducible algebraic subset of Z_{C}^{*} for each $i \in I$, it follows that J is nonempty and $V_{C}:=\bigcup_{i \in I \backslash J} \theta_{C}\left(Z_{C, i}^{\prime}\right)$ is a proper algebraic subset of Z_{C}^{*}. For each $i \in J$, denote by $\theta_{C, i}: Z_{C, i}^{\prime} \rightarrow Z_{C}^{*}$ the restriction of θ_{C} from $Z_{C, i}^{\prime}$ to Z_{C}^{*}. By applying Theorem 7 of $[6, \mathrm{p} .76]$ to each $\theta_{C, i}$, we infer the existence of a point $z \in \operatorname{Nonsing}_{C}\left(Z_{C}^{*}\right) \backslash\left(\bar{Z}_{C} \cup V_{C}\right)$ such that $\operatorname{dim}_{C} \theta_{C, i}^{-1}(z)=v_{i}-d$ for each $i \in J$. Since $\theta_{C}^{-1}(z)=\bigcup_{i \in J} \theta_{C, i}^{-1}(z)$, we have that $\operatorname{dim}_{C} \theta_{C}^{-1}(z)=\max _{i \in J}\left\{v_{i}-d\right\}$. We will show that $\operatorname{dim}_{C} \theta_{C}^{-1}(z) \geq c-1$, completing the proof. Let $r:=\operatorname{dim}_{C}\left(X_{C}\right)$. The point z is a nonsingular point of Z_{C} of complex dimension $d \leq \operatorname{dim}_{C}\left(Z_{C}\right)=r-c$, so there exists a Zariski open neighborhood U_{C} of z in C^{n} such that $Z_{C} \cap U_{C}$ is a nonsingular Zariski closed subset of U_{C} of complex dimension d. Observe that $\operatorname{dim}_{C}\left(B_{C}^{\prime}\right)=n, \Theta_{C}^{-1}\left(U_{C}\right)$ is a Zariski open subset of Nonsing $C_{C}\left(B_{C}^{\prime}\right), \operatorname{dim}_{C}\left(X_{C}^{\prime}\right)=r$, $\Theta_{C}^{-1}(z)$ is a (nonsingular) irreducible Zariski closed subset of B_{C}^{\prime} of complex dimension $n-d-1$ and $\theta_{C}^{-1}(z)$ is equal to $X_{C}^{\prime} \cap \Theta_{C}^{-1}(z)$. Thanks to [4, Proposition 3.28], we have that

$$
\operatorname{dim}_{C}\left(\theta_{C}^{-1}(z)\right) \geq r+(n-d-1)-n \geq c-1
$$

For each non-negative integer n, we indicate by $\alpha_{n}: \mathbb{P}^{n}(C) \rightarrow \mathbb{P}^{n}(C)$ the complex conjugation map and identify $\mathbb{P}^{n}(R)=\mathbb{P}\left(R^{n+1}\right)$ with the fixed point set of α_{n}. Let S be a subset of $\mathbb{P}^{n}(C)$. Define the real part $S(R)$ of S as the intersection $S \cap \mathbb{P}^{n}(R)$. The set S is said to be defined over R if it is σ_{n}-invariant. Suppose S is defined over R and let T be a subset of $\mathbb{P}^{m}(C)$ defined over R. A map $f: S \rightarrow T$ is said to be defined over R if $f \circ \sigma_{n}=\sigma_{m} \circ f$ on S. Observe that, if f has this property, then it sends $S(R)$ into $T(R)$. Identify R^{n} with the real part of C^{n}. Equip each Zariski locally closed subset of $\mathbb{P}^{n}(R)$ with its natural structure of algebraic variety over R. Unless otherwise indicated, all the topological notions related to these real algebraic varieties are refered to the euclidean topology.

Let V_{C} be a Zariski locally closed subset of $\mathbb{P}^{n}(C)$. A map $\varphi_{C}: V_{C} \rightarrow \mathbb{P}^{m}(C)$ is said to be a complex biregular embedding if $\varphi_{C}\left(V_{C}\right)$ is a Zariski locally closed subset of $\mathbb{P}^{m}(C)$ and the restriction of φ_{C} from V_{C} to $\varphi_{C}\left(V_{C}\right)$ is a complex biregular isomorphism. In the real setting, the notion of biregular embedding can be defined in the same way.

Lemma 2.2 Let $X \subset R^{n}$ be a real algebraic set, and let Z be a proper algebraic subset of X. Let q_{1}, \ldots, q_{ℓ} be generators of $\mathscr{I}_{R^{n}}(Z)$ in $R\left[x_{1}, \ldots, x_{n}\right]$, let $q: X \rightarrow R^{\ell}$ be the polynomial map defined by $q(x):=\left(q_{1}(x), \ldots, q_{\ell}(x)\right)$ and let $F: X \rightarrow R^{k}$ be a polynomial map vanishing on Z. Define the integer $m:=\ell(n+1)+k$, the linear subspace H_{C}
of $\mathbb{P}^{m-k-1}(C) b y$

$$
H_{C}:=\left\{\left[y_{1}, y_{2}, \ldots, y_{\ell n+\ell}\right] \in \mathbb{P}^{m-k-1}(C) \mid y_{1}=y_{2}=\ldots=y_{\ell}=0\right\}
$$

and the linear subspace H of $\mathbb{P}^{m-k-1}(R)$ as the real part of H_{C}. Define the regular maps $\lambda: X \backslash Z \rightarrow \mathbb{P}\left(\left(R^{\ell}\right)^{n+1}\right) \backslash H=\mathbb{P}^{m-k-1}(R) \backslash H$ and $\sigma: X \backslash Z \rightarrow \mathbb{P}\left(\left(R^{\ell}\right)^{n+1} \times R^{k}\right)=$ $\mathbb{P}^{m-1}(R)$ by setting

$$
\begin{aligned}
\lambda(x) & :=\left[q(x), x_{1} q(x), \ldots, x_{n} q(x)\right] \\
\sigma(x) & :=\left[q(x), x_{1} q(x), \ldots, x_{n} q(x), F(x)\right]
\end{aligned}
$$

for each $x=\left(x_{1}, \ldots, x_{n}\right) \in X \backslash Z$. Let G_{C} be a finite subset of $\mathbb{P}^{m-k-1}(C) \backslash H_{C}$. Then there exist a Zariski open subset E_{C} of $\mathbb{P}^{m-k-1}(C)$ defined over R and a complex biregular embedding $\eta_{C}: E_{C} \rightarrow \mathbb{P}^{m-1}(C)$ defined over R with the following properties:
(1) $E_{C}(R)=\mathbb{P}^{m-k-1}(R) \backslash H$ and $G_{C} \subset E_{C}$.
(2) Indicating by $\eta: \mathbb{P}^{m-k-1}(R) \backslash H \rightarrow \mathbb{P}^{m-1}(R)$ the biregular embedding defines as the restriction of η_{C} from $E_{C}(R)=\mathbb{P}^{m-k-1}(R) \backslash H$ to $\mathbb{P}^{m-1}(R)$, we have that $\sigma=\eta \circ \lambda$.

Proof Let p_{1}, \ldots, p_{h} be the points of $\mathbb{P}^{m-k-1}(C)$ such that $G_{C}=\left\{p_{1}, \ldots, p_{h}\right\}$. By hypothesis, the intersection $G_{C} \cap H_{C}$ is empty. In this way, for each $i \in\{1, \ldots, h\}$, we can write $p_{i}=\left[p_{i 1}, p_{i 2}, \ldots, p_{i, \ell_{n+\ell}}\right]$, where $\left(p_{i 1}, p_{i 2}, \ldots, p_{i \ell}\right) \in C^{\ell} \backslash\{0\}$. Choose positive elements r_{1}, \ldots, r_{ℓ} of R such that $\sum_{j=1}^{\ell} r_{j} p_{i j}^{2} \neq 0$ for each $i \in\{1, \ldots, h\}$. Let P_{1}, \ldots, P_{k} be polynomials in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $F=\left(P_{1}, \ldots, P_{k}\right)$ on X. For each $s \in\{1, \ldots, k\}, P_{s}$ vanishes on Z, so there exist polynomials $a_{s 1}, \ldots, a_{s \ell}$ in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $P_{s}=\sum_{j=1}^{\ell} a_{s j} q_{j}$. For each $s \in\{1, \ldots, k\}$ and for each $j \in$ $\{1, \ldots, \ell\}$, indicate by $a_{s j, C}$ the polynomial $a_{s j}$, viewed as an element of $C\left[x_{1}, \ldots, x_{n}\right]$. Let E_{C} be the Zariski open subset of $\mathbb{P}^{m-k-1}(C)$ defined by

$$
E_{C}:=\left\{\left[y_{1}, y_{2}, \ldots, y_{\ell n+\ell}\right] \in \mathbb{P}^{m-k-1}(C) \mid \sum_{j=1}^{\ell} r_{j} y_{j}^{2} \neq 0\right\}
$$

and let $\varphi_{C}=\left(\varphi_{C, 1}, \ldots, \varphi_{C, n}\right): E_{C} \rightarrow C^{n}$ be the complex regular map whose i-th component $\varphi_{C, i}: E_{C} \rightarrow C$ is defined as follows:

$$
\varphi_{C, i}\left(\left[y_{1}, \ldots, y_{\ell n+\ell}\right]\right):=\frac{\sum_{j=1}^{\ell} r_{j} y_{j} y_{\ell i+j}}{\sum_{j=1}^{\ell} r_{j} y_{j}^{2}}
$$

Denote points of $\mathbb{P}^{m-k-1}(C)=\mathbb{P}\left(C^{\ell n+\ell}\right)$ and of $\mathbb{P}^{m-1}(C)=\mathbb{P}^{\left(C^{\ell n+\ell} \times C^{k}\right) \text { by }[\hat{y}]=. ~=~ . ~}$ $\left[y_{1}, \ldots, y_{\ell}, y_{\ell+1}, \ldots, y_{\ell n+\ell}\right]$ and $\left[\hat{y}, y_{\ell n+\ell+1}, \ldots, y_{m}\right]$ respectively. Define the Zariski open subset T_{C} of $\mathbb{P}^{m-1}(C)$ by

$$
T_{C}:=\left\{\left[y_{1}, y_{2}, \ldots, y_{m}\right] \in \mathbb{P}^{m-1}(C) \mid \sum_{j=1}^{\ell} r_{j} y_{j}^{2} \neq 0\right\}
$$

the nonsingular Zariski closed subset D_{C} of T_{C} as the following intersection

$$
\bigcap_{s=1}^{k}\left\{\left[\hat{y}, y_{\ell n+\ell+1}, \ldots, y_{m}\right] \in T_{C} \mid y_{\ell n+\ell+s}=\sum_{j=1}^{\ell} a_{s j, C}\left(\varphi_{C}([\hat{y}])\right) \cdot y_{j}\right\}
$$

the complex regular map $\eta_{C}^{\prime}: E_{C} \rightarrow D_{C}$ by

$$
\eta_{C}^{\prime}([\hat{y}]):=\left[\hat{y}, \sum_{j=1}^{\ell} a_{1 j, C}\left(\varphi_{C}([\hat{y}])\right) \cdot y_{j}, \ldots, \sum_{j=1}^{\ell} a_{k j, C}\left(\varphi_{C}([\hat{y}])\right) \cdot y_{j}\right]
$$

and the complex regular map $\eta_{C}: E_{C} \rightarrow \mathbb{P}^{m-1}(C)$ as the composition of η_{C}^{\prime} with the inclusion map $D_{C} \hookrightarrow \mathbb{P}^{m-1}(C)$. The map η_{C}^{\prime} is a complex biregular isomorphism. In fact, the complex regular map from D_{C} to E_{C} which sends $\left[\hat{y}, y_{\ell n+\ell+1}, \ldots, y_{m}\right] \in D_{C}$ into $[\hat{y}] \in E_{C}$, is the inverse of η_{C}^{\prime}. It follows that η_{C} is a complex biregular embedding defined over R. (1) follows immediately from the definition of E_{C}. Let us prove (2). Let $x \in X \backslash Z$ and let η : $\mathbb{P}^{m-k-1}(R) \backslash H \rightarrow \mathbb{P}^{m-1}(R)$ be the restriction of η_{C} from $E_{C}(R)=\mathbb{P}^{m-k-1}(R) \backslash H$ to $\mathbb{P}^{m-1}(R)$. Since $\varphi_{C}(\lambda(x))=x$, we obtain that

$$
\eta(\lambda(x))=\left[q(x), x_{1} q(x), \ldots, x_{n} q(x), P_{1}(x), \ldots, P_{k}(x)\right]=\sigma(x)
$$

This completes the proof.
Let e and m be positive integers with $e \leq m$, and let $\mathcal{M}_{e, m}(R)$ be the vector space of $(e \times m)$-matrices with coefficients in R. Equip $\mathcal{M}_{e, m}(R)$ with its natural structure of affine irreducible algebraic variety over R and indicate by $\mathcal{M}_{e, m}^{*}(R)$ the nonempty Zariski open subset of $\mathcal{M}_{e, m}(R)$ formed by all matrices of rank e. For each $A \in \mathcal{M}_{e, m}(R)$, we denote by $\pi_{A}: R^{m} \rightarrow R^{e}$ the linear map associated with A (which sends $v \in R^{m}$ into the standard product $\left.A \cdot v \in R^{e}\right)$ and by L_{A} the kernel of π_{A}.

Let us fix a notation.
Notation Let X be a real algebraic set, let m be a positive integer, let $Q: X \rightarrow R^{m}$ be a polynomial map and let $e \in\{1, \ldots, m\}$. We denote by $\mathcal{A}_{e}(Q)$ the set of all matrices $A \in \mathcal{M}_{e, m}^{*}(R)$ such that $\pi_{A} \circ Q: X \rightarrow R^{e}$ is admissible.

Observe that, using the preceding terminology, a matrix $A \in \mathcal{M}_{e, m}^{*}(R)$ belongs to $\mathcal{A}_{e}(Q)$ if and only if, for some $x \in \operatorname{Nonsing}(X), Q(x) \in L_{A}$ and Q is transverse to L_{A} in R^{m} at x.

Lemma 2.3 Let $X \subset R^{n}$ be a real algebraic set, let Z be an algebraic subset of X of codimension $c \geq 2$ and let $X^{*}:=\operatorname{Nonsing}(X) \backslash Z$. Let m be a positive integer and let $Q: X \rightarrow R^{m}$ be a polynomial map such that $Q\left(X^{*}\right) \subset R^{m} \backslash\{0\}$. Indicate by $\rho: R^{m} \backslash\{0\} \rightarrow \mathbb{P}^{m-1}(R)$ the natural projection and by $Q^{*}: X^{*} \rightarrow R^{m} \backslash\{0\}$ the restriction of Q from X^{*} to $R^{m} \backslash\{0\}$. Suppose there exists a point $q \in X^{*}$ such that the differential at q of the composition map $\rho \circ Q^{*}: X^{*} \rightarrow \mathbb{P}^{m-1}(R)$ is injective. Then, for each $e \in\{1, \ldots, c-1\}, \mathcal{A}_{e}(Q)$ is a nonempty open semialgebraic subset of $\mathcal{M}_{e, m}^{*}(R)$ and there exists a proper Zariski closed subset \mathcal{V}_{e} of $\mathcal{M}_{e, m}^{*}(R)$ such that, for each $A \in$ $\mathcal{M}_{e, m}^{*}(R) \backslash \mathcal{V}_{e}, Q^{*}$ is transverse to L_{A} in R^{m}.

Proof Let $e \in\{1, \ldots, c-1\}$. Define the polynomial map $\psi_{e}: X^{*} \times \mathcal{N}_{e, m}^{*}(R) \rightarrow R^{e}$ by $\psi_{e}(x, A):=\left(\pi_{A} \circ Q\right)(x)$. It is easy to verify that the origin 0 of R^{e} is a regular value of ψ_{e}, so $V_{e}:=\left(\psi_{e}\right)^{-1}(0)$ is a nonempty nonsingular Zariski closed subset of $X^{*} \times \mathcal{M}_{e, m}^{*}(R)$ of codimension e. Indicate by $\nu_{e}: V_{e} \rightarrow \mathcal{M}_{e, m}^{*}(R)$ the restriction to V_{e} of the natural projection of $X^{*} \times \mathcal{M}_{e, m}^{*}(R)$ onto $\mathcal{M}_{e, m}^{*}(R)$. Let Σ_{e} be the set of regular points of ν_{e}. Combining standard considerations of Linear Algebra with the Implicit Function Theorem (for Nash maps), it follows immediately that a point (x, A) of V_{e} belongs to Σ_{e} if and only if the rank of the differential of $\pi_{A} \circ Q$ at x is equal to e. Since $e<c, \mathcal{A}_{e}(Q)$ is equal to $\nu_{e}\left(\Sigma_{e}\right)$ and hence $\mathcal{A}_{e}(Q)$ is an open semialgebraic subset of $\mathcal{M}_{e, m}^{*}(R)$. Moreover, by applying Sard's theorem to ν_{e}, we find a proper Zariski closed subset \mathcal{V}_{e} of $\mathcal{N}_{e, m}^{*}(R)$ with the required property: Q^{*} is transverse to L_{A} in R^{m} for each $A \in \mathcal{M}_{e, m}^{*}(R) \backslash \mathcal{V}_{e}$. It remains to prove that $\mathcal{A}_{e}(Q)$ is nonempty. Let $\sigma^{*}: X^{*} \rightarrow \mathbb{P}^{m-1}(R)$ be the composition $\rho \circ Q^{*}$. Indicate by $\mathrm{d}_{q} Q^{*}: T_{q}\left(X^{*}\right) \rightarrow R^{m}$ the differential of Q^{*} at q and by N the vector subspace $\mathrm{d}_{q} Q^{*}\left(T_{q}\left(X^{*}\right)\right)$ of R^{m}. Observe that the kernel of the differential $\mathrm{d}_{Q(q)} \rho$ of ρ at $Q(q)$ is equal to the vector line of R^{m} generated by $Q(q)$. Since $\mathrm{d}_{q} \sigma^{*}=\mathrm{d}_{Q(q)} \rho \circ \mathrm{d}_{q} Q^{*}$ is injective, it follows that $\mathrm{d}_{q} Q^{*}$ is injective and $Q(q) \notin N$. In particular, we have that $\operatorname{dim}(N)=\operatorname{dim}(X)$. Since $e \leq \operatorname{dim}(X)$, there exists a vector subspace L of R^{m} of codimension e which contains $Q(q)$ and is transverse to N in R^{m}. Let D be a matrix in $\mathcal{M}_{e, m}^{*}(R)$ such that $L=L_{D}$. Evidently, D is an element of $\mathcal{A}_{e}(Q)$.

3 Proof of the Theorems

We begin proving a "more constructive" version of Theorem 1.2.
Theorem 3.1 Let $X \subset R^{n}$ be an irreducible real algebraic set, let Z be an algebraic subset of X of codimension $c \geq 2$ and let $X^{*}:=\operatorname{Nonsing}(X) \backslash Z$. Let q_{1}, \ldots, q_{ℓ} be generators of $\mathscr{I}_{R^{n}}(Z)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ and let $F: X \rightarrow R^{k}$ be a polynomial map vanishing on Z. Define the polynomial map $q: X \rightarrow R^{\ell}$ by $q(x):=\left(q_{1}(x), \ldots, q_{\ell}(x)\right)$. Let $m:=\ell(n+1)+k$ and define the polynomial map $Q: X \rightarrow\left(R^{\ell}\right)^{n+1} \times R^{k}=R^{m}$ by setting

$$
Q(x):=\left(q(x), x_{1} q(x), \ldots, x_{n} q(x), F(x)\right)
$$

for each $x=\left(x_{1}, \ldots, x_{n}\right) \in X$. Then, for each $e \in\{1, \ldots, c-1\}, \mathcal{A}_{e}(Q)$ is a nonempty open semialgebraic subset of $\mathcal{M}_{e, m}^{*}(R)$ and there exists a proper Zariski closed subset $\mathcal{B}_{e}(Q)$ of $\mathcal{M}_{e, m}^{*}(R)$ with the following property: for each $A \in \mathcal{A}_{e}(Q) \backslash \mathcal{B}_{e}(Q)$, the polynomial map $\pi_{A} \circ Q: X \rightarrow R^{e}$ is good in X^{*} and $\left(\pi_{A} \circ Q\right)^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z.

Proof We subdivide the proof into five steps.
Step I. Indicate by $q_{1, C}, \ldots, q_{\ell, C}$ the polynomials q_{1}, \ldots, q_{ℓ}, viewed as elements of $C\left[x_{1}, \ldots, x_{n}\right]$. Define the polynomial map $q_{C}: C^{n} \rightarrow C^{\ell}$ by $q_{C}:=\left(q_{1, C}, \ldots, q_{\ell, C}\right)$; let X_{C} and Z_{C} be the Zariski closures of X and of Z in C^{n} respectively; define $X_{C}^{\prime \prime}$ to be the Zariski closure in $X_{C} \times \mathbb{P}^{\mathrm{P}}\left(C^{\ell}\right)=X_{C} \times \mathbb{P}^{\ell-1}(C)$ of the set

$$
\left\{\left(x,\left[q_{C}(x)\right]\right) \in X_{C} \times \mathbb{P}^{\ell-1}(C) \mid x \in X_{C} \backslash Z_{C}\right\} ;
$$

and define the complex regular map $\theta_{C}^{\prime}: X_{C}^{\prime \prime} \rightarrow X_{C}$ to be the restriction to $X_{C}^{\prime \prime}$ of the natural projection of $X_{C} \times \mathbb{P}^{\ell-1}(C)$ onto X_{C}. Let $\xi_{C}: X_{C} \times \mathbb{P}^{\ell-1}(C) \rightarrow \mathbb{P}^{(}\left(\left(C^{\ell}\right)^{n+1}\right)=$ $\mathbb{P}^{m-k-1}(C)$ be the complex regular map that sends $\left(\left(x_{1}, \ldots, x_{n}\right),[y]\right) \in X_{C} \times \mathbb{P}^{\ell-1}(C)$ into $\left[y, x_{1} y, \ldots, x_{n} y\right] \in \mathbb{P}\left(\left(C^{\ell}\right)^{n+1}\right)$. Observe that ξ_{C} coincides with the restriction to $X_{C} \times \mathbb{P}^{\ell-1}(C)$ of the Segre embedding of $\mathbb{P}^{n}(C) \times \mathbb{P}^{\ell-1}(C)$ into $\mathbb{P}^{m-k-1}(C)$. Define the irreducible Zariski locally closed subset X_{C}^{\prime} of $\mathbb{P}^{m-k-1}(C)$ by $X_{C}^{\prime}:=\xi_{C}\left(X_{C}^{\prime \prime}\right)$, the complex biregular isomorphism $\xi_{C}^{\prime}: X_{C}^{\prime \prime} \rightarrow X_{C}^{\prime}$ as the restriction of ξ_{C} from $X_{C}^{\prime \prime}$ to X_{C}^{\prime} and the complex regular map $\theta_{C}: X_{C}^{\prime} \rightarrow X_{C}$ by $\theta_{C}:=\theta_{C}^{\prime} \circ\left(\xi_{C}^{\prime}\right)^{-1}$. Since $q_{1, C}, \ldots, q_{\ell, C}$ generate $\mathscr{I}_{C^{n}}\left(Z_{C}\right)$ in $C\left[x_{1}, \ldots, x_{n}\right]$ (see [7]), θ_{C} is the blowing up of X_{C} with center Z_{C}. Let $Z_{C, 1}, \ldots, Z_{C, h}$ be the irreducible components of Z_{C} and let d_{1}, \ldots, d_{h} be the complex dimensions of $Z_{C, 1}, \ldots, Z_{C, h}$, respectively. Thanks to Lemma 2.1, we have that, for each $i \in\{1, \ldots, h\}$, there exists an irreducible component $Z_{C, i}^{\prime}$ of $\theta_{C}^{-1}\left(Z_{C}\right)$ of complex dimension v_{i} such that

$$
\begin{equation*}
\theta_{C}\left(Z_{C, i}^{\prime}\right)=Z_{C, i} \text { and } v_{i}-d_{i} \geq c-1 \tag{3.1}
\end{equation*}
$$

Step II. For each $i \in\{1, \ldots, h\}$, choose a point p_{i} in $Z_{C, i}^{\prime}$. Indicate by G_{C} the finite subset $\left\{p_{1}, \ldots, p_{h}\right\}$ of X_{C}^{\prime}. As in the statement of Lemma 2.2, define the linear subspace H_{C} of $\mathbb{P}^{m-k-1}(C)$ by

$$
H_{C}:=\left\{\left[y_{1}, y_{2}, \ldots, y_{\ell n+\ell}\right] \in \mathbb{P}^{m-k-1}(C) \mid y_{1}=y_{2}=\ldots=y_{\ell}=0\right\}
$$

the linear subspace H of $\mathbb{P}^{m-k-1}(R)$ as the real part of H_{C} and the regular map $\lambda: X \backslash$ $Z \rightarrow \mathbb{P}\left(\left(R^{\ell}\right)^{n+1}\right) \backslash H=\mathbb{P}^{m-k-1}(R) \backslash H$ and the regular map $\sigma: X \backslash Z \rightarrow \mathbb{P}\left(\left(R^{\ell}\right)^{n+1} \times\right.$ $\left.R^{k}\right)=\mathbb{P}^{m-1}(R)$ as follows:

$$
\begin{aligned}
\lambda(x) & :=\left[q(x), x_{1} q(x), \ldots, x_{n} q(x)\right] \\
\sigma(x) & :=\left[q(x), x_{1} q(x), \ldots, x_{n} q(x), F(x)\right]
\end{aligned}
$$

for each $x=\left(x_{1}, \ldots, x_{n}\right) \in X \backslash Z$. Observe that $X_{C}^{\prime} \subset \xi_{C}\left(X_{C} \times \mathbb{P}^{\ell-1}(C)\right)$ and $\xi_{C}\left(X_{C} \times \mathbb{P}^{\ell-1}(C)\right) \cap H_{C}=\varnothing$. In this way, we have that $X_{C}^{\prime} \cap H_{C}=\varnothing$ and hence $G_{C} \subset \mathbb{P}^{m-k-1}(C) \backslash H_{C}$. By applying Lemma 2.2, we obtain a Zariski open subset E_{C} of $\mathbb{P}^{m-k-1}(C)$ defined over R and a complex biregular embedding $\eta_{C}: E_{C} \rightarrow \mathbb{P}^{m-1}(C)$ defined over R such that $E_{C}(R)=\mathbb{P}^{m-k-1}(R) \backslash H, G_{C} \subset X_{C}^{\prime} \cap E_{C}$ and, denoting by $\eta: \mathbb{P}^{m-k-1}(R) \backslash H \rightarrow \mathbb{P}^{m-1}(R)$ the biregular embedding defined as the restriction of η_{C} from $E_{C}(R)=\mathbb{P}^{m-k-1}(R) \backslash H$ to $\mathbb{P}^{m-1}(R)$, it holds that

$$
\begin{equation*}
\sigma=\eta \circ \lambda \tag{3.2}
\end{equation*}
$$

Indicate by X^{\prime} the real part of X_{C}^{\prime} and by $\theta: X^{\prime} \rightarrow X$ the restriction of θ_{C} from X^{\prime} to X. The map θ is the blowing up of X with center Z and, for each $x \in X \backslash Z$, we have:
the point $\theta^{-1}(x)$ of $\mathbb{P}^{m-k-1}(R)$ coincides with $\lambda(x)$.
It follows that X^{\prime} is an irreducible Zariski locally closed subset of $\mathbb{P}^{m-k-1}(R)$ and λ is a biregular embedding. Combining the latter fact with (3.2), we obtain that
σ is a biregular embedding.

Define X^{*} and $Q: X \rightarrow R^{m}$ as in the statement of the theorem we are proving. Let $Q^{*}: X^{*} \rightarrow R^{m} \backslash\{0\}$ be the restriction of Q from X^{*} to $R^{m} \backslash\{0\}$ and let $\rho: R^{m} \backslash\{0\} \rightarrow$ $\mathbb{P}^{m-1}(R)$ be the natural projection. Since $\rho \circ Q^{*}$ coincides with the restriction of σ to X^{*}, (3.4) implies that $\rho \circ Q^{*}$ is a biregular embedding. In this way, the hypotheses of Lemma 2.3 are satisfied, so we have that, for each $e \in\{1, \ldots, c-1\}, \mathcal{A}_{e}(Q)$ is a nonempty open semialgebraic subset of $\mathcal{N}_{e, m}^{*}(R)$ and there exists a proper Zariski closed subset \mathcal{V}_{e} of $\mathcal{M}_{e, m}^{*}(R)$ such that

$$
\begin{equation*}
Q^{*} \text { is transverse to } L_{A} \text { in } R^{m} \text { for each } A \in \mathcal{M}_{e, m}^{*}(R) \backslash \mathcal{V}_{e} \tag{3.5}
\end{equation*}
$$

Step III. Define the irreducible Zariski locally closed subset \widetilde{X}_{C} of $\mathbb{P}^{m-1}(C)$ by $\widetilde{X}_{C}:=\eta_{C}\left(X_{C}^{\prime} \cap E_{C}\right)$; define the complex biregular isomorphism $\eta_{C}^{\prime}: X_{C}^{\prime} \cap E_{C} \rightarrow \widetilde{X}_{C}$ as the restriction of η_{C} from $X_{C}^{\prime} \cap E_{C}$ to \widetilde{X}_{C}; define $i_{C}^{\prime}: X_{C}^{\prime} \cap E_{C} \hookrightarrow X_{C}^{\prime}$ as the inclusion map of $X_{C}^{\prime} \cap E_{C}$ into X_{C}^{\prime}; define the complex regular map $\widetilde{\theta}_{C}: \widetilde{X}_{C} \rightarrow X_{C}$ by $\widetilde{\theta}_{C}:=$ $\theta_{C} \circ i_{C}^{\prime} \circ\left(\eta_{C}^{\prime}\right)^{-1}$; and, for each $i \in\{1, \ldots, h\}$, define the Zariski closed subset $\widetilde{Z}_{C, i}$ of $\left(\widetilde{\theta}_{C}\right)^{-1}\left(Z_{C}\right)$ by $\widetilde{Z}_{C, i}:=\eta_{C}\left(Z_{C, i}^{\prime} \cap E_{C}\right)$. Observe that each set $\widetilde{Z}_{C, i}$ contains the point $\eta_{C}\left(p_{i}\right)$. This fact and (3.1) imply that, for each $i \in\{1, \ldots, h\}, \widetilde{Z}_{C, i}$ is a (nonempty) irreducible component of $\left(\widetilde{\theta}_{C}\right)^{-1}\left(Z_{C}\right)$ of complex dimension v_{i} such that

$$
\begin{equation*}
\widetilde{\theta}_{C}\left(\widetilde{Z}_{C, i}\right) \text { is a Zariski dense subset of } Z_{C, i} \text { and } v_{i}-d_{i} \geq c-1 \tag{3.6}
\end{equation*}
$$

Fix $i \in\{1, \ldots, h\}$. Let $\widetilde{\theta}_{C, i}: \widetilde{Z}_{C, i} \rightarrow Z_{C, i}$ be the restriction of $\widetilde{\theta}_{C}$ from $\widetilde{Z}_{C, i}$ to $Z_{C, i}$. By (3.6) and Sard's theorem, there exists a point $z_{i} \in \operatorname{Nonsing}\left(Z_{C, i}\right)$ such that, denoting by $W_{C, i}$ the set $\operatorname{Nonsing}\left(\widetilde{Z}_{C, i}\right) \cap\left(\widetilde{\theta}_{C, i}\right)^{-1}\left(z_{i}\right), W_{C, i}$ is a nonempty nonsingular Zariski locally closed subset of $\widetilde{Z}_{C, i}$ of complex dimension $v_{i}-d_{i} \geq c-1$ such that
the rank of the differential of $\tilde{\theta}_{C, i}$ at each point of $W_{C, i}$ is equal to d_{i}.
Indicate by \widetilde{X} the real part of \widetilde{X}_{C} and by $\widetilde{\theta}: \widetilde{X} \rightarrow X$ the restriction of $\widetilde{\theta}_{C}$ from \widetilde{X} to X. From (3.2) and (3.3), we infer that
(3.8) the restriction of $\widetilde{\theta}$ from $(\widetilde{\theta})^{-1}(X \backslash Z)$ to $X \backslash Z$ is a biregular isomorphism.

Moreover, for each $x \in X \backslash Z$, we have

$$
\begin{equation*}
\text { the point }(\widetilde{\theta})^{-1}(x) \text { of } \mathbb{P}^{m-1}(R) \text { coincides with } \sigma(x) \tag{3.9}
\end{equation*}
$$

Step IV. For each $e \in\{1, \ldots, c-1\}$, indicate by $G_{m, m-e}(C)$ the grassmannian of linear subspaces of $\mathbb{P}^{m-1}(C)$ of complex codimension e, equipped with the usual structure of irreducible algebraic variety over C. By point 1 b) of Corollaire 6.11 of [2], by the proof of point 2) of the same corollary and by the second part of (3.6), for each $e \in\{1, \ldots, c-1\}$, there exists a proper Zariski closed subset $\mathcal{G}_{C, e}^{\prime}$ of $\mathbb{G}_{m, m-e}(C)$ such that, for each $N_{C} \in\left(G_{m, m-e}(C) \backslash \mathcal{G}_{C, e}^{\prime}\right.$ and for each $i \in\{1, \ldots, h\}$, the following holds:

$$
\begin{equation*}
W_{C, i} \cap N_{C} \text { is nonempty and } N_{C} \text { is transverse to } W_{C, i} \text { in } \mathbb{P}^{m-1}(C) . \tag{3.10}
\end{equation*}
$$

We will show that, for each $e \in\{1, \ldots, c-1\}$ and for each $N_{C} \in \operatorname{G}_{m, m-e}(C) \backslash \mathcal{G}_{C, e}^{\prime}$, the following holds:

$$
\begin{equation*}
Z_{C} \text { is contained in the Zariski closure of } \widetilde{\theta}_{C}\left(\widetilde{X}_{C} \cap N_{C}\right) \text { in } X_{C} \tag{3.11}
\end{equation*}
$$

Let e and N_{C} be as above. For each $i \in\{1, \ldots, h\}$, choose a point q_{i} in $W_{C, i} \cap N_{C}$ (which exists by the first part of (3.10)) and indicate by $\theta_{C, i}^{*}: \widetilde{Z}_{C, i} \cap N_{C} \rightarrow Z_{C, i}$ the restriction of $\widetilde{\theta}_{C, i}$ to $\widetilde{Z}_{C, i} \cap N_{C}$. Fix $i \in\{1, \ldots, h\}$. By the second part of (3.10), N_{C} is transverse to $W_{C, i}$ in $\mathbb{P}^{m-1}(C)$ at q_{i} and, by (3.7), the rank of the differential $\mathrm{d}_{q_{i}} \widetilde{\theta}_{C, i}$ of $\widetilde{\theta}_{C, i}$ at q_{i} is equal to $d_{i}=\operatorname{dim}_{C}\left(Z_{C, i}\right)$. Since the kernel of $\mathrm{d}_{q_{i}} \widetilde{\theta}_{C, i}$ coincides with the tangent space of $W_{C, i}$ at q_{i}, it follows that q_{i} is a nonsingular point of $\widetilde{Z}_{C, i} \cap N_{C}$ of complex dimension $v_{i}-e$ and the rank of the differential of $\theta_{C, i}^{*}$ at q_{i} is equal to d_{i}. In particular, we have that, for each $i \in\{1, \ldots, h\}, \theta_{C, i}^{*}$ is dominating. This fact and the inclusion $\bigcup_{i=1}^{h} \theta_{C, i}^{*}\left(\widetilde{Z}_{C, i} \cap N_{C}\right) \subset \widetilde{\theta}_{C}\left(\widetilde{X}_{C} \cap N_{C}\right)$ imply (3.11).

Step V. Fix $e \in\{1, \ldots, c-1\}$. Since \widetilde{X}_{C} is irreducible, point 3) of Corollaire 6.11 of [2] ensures the existence of a proper Zariski closed subset $\mathcal{H}_{C, e}^{\prime}$ of $\mathbb{G}_{m, m-e}(C)$ such that, for each $N_{C} \in \mathbb{G}_{m, m-e}(C) \backslash \mathcal{H}_{C, e}^{\prime}$, it holds:

$$
\begin{equation*}
\widetilde{X}_{C} \cap N_{C} \text { is irreducible and of complex codimension } e \text { in } \widetilde{X}_{C} \tag{3.12}
\end{equation*}
$$

Indicate by $\mathcal{N}_{e, m}^{*}(C)$ the vector space of $(e \times m)$-matrices with coefficients in C and rank e, equipped with its natural structure of algebraic variety over C. Observe that the real part of $\mathcal{M}_{e, m}^{*}(C)$ coincides with $\mathcal{M}_{e, m}^{*}(R)$. Define the surjective complex regular map $\Phi_{C}: \mathcal{M}_{e, m}^{*}(C) \rightarrow\left(G_{m, m-e}(C)\right.$ as follows: $\Phi_{C}\left(A_{C}\right):=\rho_{C}\left(\operatorname{ker}\left(A_{C}\right) \backslash\{0\}\right)$, where $\rho_{C}: C^{m} \backslash\{0\} \rightarrow \mathbb{P}^{m-1}(C)$ is the natural projection and $\operatorname{ker}\left(A_{C}\right)$ is the kernel of the complex matrix A_{C}. Let $\mathcal{G}_{C, e}:=\left(\Phi_{C}\right)^{-1}\left(\mathcal{G}_{C, e}^{\prime}\right)$ and $\mathcal{H}_{C, e}:=\left(\Phi_{C}\right)^{-1}\left(\mathcal{H}_{C, e}^{\prime}\right)$. Define the proper Zariski closed subset $\mathcal{B}_{e}(Q)$ of $\mathcal{M}_{e, m}^{*}(R)$ by

$$
\mathcal{B}_{e}(Q):=\mathcal{G}_{C, e}(R) \cup \mathcal{H}_{C, e}(R) \cup \mathcal{V}_{e}
$$

Let $A \in \mathcal{A}_{e}(Q) \backslash \mathcal{B}_{e}(Q)$. Since $A \in \mathcal{A}_{e}(Q),\left(\pi_{A} \circ Q\right)^{-1}(0) \cap X^{*}$ is nonempty and hence, thanks to (3.5), the polynomial map $\pi_{A} \circ Q$ is good in X^{*}. In particular, we have that $\left(\pi_{A} \circ Q\right)^{-1}(0) \cap X^{*}$ is a nonempty (nonsingular) Zariski closed subset of X^{*} of codimension e. Let A_{C} be the matrix A, viewed as an element of $\mathcal{M}_{e, m}^{*}(C)$. Let $N_{C}:=\Phi_{C}\left(A_{C}\right)$ and let N be the real part of N_{C}. By (3.9), we have:

$$
\widetilde{X} \cap N \supset \sigma(X \backslash Z) \cap N=\sigma\left(\sigma^{-1}(N)\right) \supset \sigma\left(\left(\pi_{A} \circ Q\right)^{-1}(0) \cap X^{*}\right)
$$

In particular, the codimension of $\widetilde{X} \cap N$ in \widetilde{X} is $\leq e$. On the other hand, $\widetilde{X} \cap N$ is the real part of $\widetilde{X}_{C} \cap N_{C}$ and hence, by (3.12), $\widetilde{X} \cap N$ is a (nonempty) irreducible Zariski closed subset of \widetilde{X} of codimension e and is Zariski dense in $\widetilde{X}_{C} \cap N_{C}$. Let Y be the Zariski closure of $\widetilde{\theta}(\widetilde{X} \cap N)$ in X. From (3.8) and (3.9), it follows that Y is an irreducible algebraic subset of X of codimension e and $\widetilde{\theta}(\widetilde{X} \cap N) \backslash Z=\sigma^{-1}(N)$. In particular, we have:

$$
\begin{equation*}
Y \backslash Z=\sigma^{-1}(N)=\left(\pi_{A} \circ Q\right)^{-1}(0) \backslash Z \tag{3.13}
\end{equation*}
$$

Let Y_{C} be the Zariski closure of $\widetilde{\theta}_{C}\left(\widetilde{X}_{C} \cap N_{C}\right)$ in X_{C}. Since $\widetilde{X} \cap N$ is Zariski dense in $\widetilde{X}_{C} \cap N_{C}$, it is easy to verify that Y is a Zariski dense subset of Y_{C}, and hence $Y_{C}(R)=$ Y. Thanks to (3.11), Z_{C} is contained in Y_{C}, so we have that $Z=Z_{C}(R) \subset Y_{C}(R)=Y$. On the other hand, by definition of Q, Z is contained in $\left(\pi_{A} \circ Q\right)^{-1}(0)$. In this way, (3.13) implies that $Y=\left(\pi_{A} \circ Q\right)^{-1}(0)$ and the proof is complete.

A byproduct of the argument used in the preceding proof is as follows.
Theorem 3.2 Let \mathbb{K} be an algebraically closed field. Let X be an irreducible algebraic subset of \mathbb{K}^{n}, let Z be an algebraic subset of X of codimension $c \geq 2$, let q_{1}, \ldots, q_{ℓ} be generators of $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and let X^{*} be the set of nonsingular points of X which are not contained in Z. Define: the polynomial map $q: X \rightarrow \mathbb{K}^{\ell}$ by $q(x):=\left(q_{1}(x), \ldots, q_{\ell}(x)\right)$, the integer $m:=\ell(n+1)$ and the polynomial map $Q: X \rightarrow$ $\left(\mathbb{K}^{\ell}\right)^{n+1}=\mathbb{K}^{m}$ by setting

$$
Q(x):=\left(q(x), x_{1} q(x), \ldots, x_{n} q(x)\right)
$$

for each $x=\left(x_{1}, \ldots, x_{n}\right) \in X$. Indicate by $\mathcal{M}_{e, m}(\mathbb{K})$ the vector space of $(e \times m)$-matrices with coefficients in \mathbb{K}, equipped with its natural structure of algebraic variety over \mathbb{K}. Then, for each $e \in\{1, \ldots, c-1\}$, there exists a proper Zariski closed subset $\mathcal{D}_{e}(Q)$ of $\mathcal{M}_{e, m}(\mathbb{K})$ with the following property: for each $A \in \mathcal{M}_{e, m}(\mathbb{K}) \backslash \mathcal{D}_{e}(Q)$, the polynomial map $\pi_{A} \circ Q: X \rightarrow \mathbb{K}^{e}$ is good in X^{*} and $\left(\pi_{A} \circ Q\right)^{-1}(0)$ is an irreducible algebraic subset of X of codimension e containing Z.

Proof of Theorem 1.2 Fix $e \in\{1, \ldots, c-1\}$. Let q_{1}, \ldots, q_{ℓ} be generators of $\mathscr{I}_{R^{n}}(Z)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $\max _{i \in\{1, \ldots, \ell\}} \operatorname{deg}\left(q_{i}\right)=\mu$, let $q: X \rightarrow R^{\ell}$ be the polynomial map defined by $q(x):=\left(q_{1}(x), \ldots, q_{\ell}(x)\right)$ and let $F^{\prime}: X \rightarrow R^{0}=\{0\}$ be the polynomial map constantly equal to 0 . Define the integer $m^{\prime}:=\ell(n+1)$ and indicate by $Q^{\prime}: X \rightarrow R^{m^{\prime}}$ the polynomial map which sends $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ into $\left(q(x), x_{1} q(x), \ldots, x_{n} q(x), F^{\prime}(x)\right)=\left(q(x), x_{1} q(x), \ldots, x_{n} q(x)\right) \in R^{m^{\prime}}$. Define the integer $m:=m^{\prime}+e$ and indicate by $Q: X \rightarrow R^{m}$ the polynomial map which sends $x=\left(x_{1}, \ldots, x_{n}\right) \in X$ into $\left(q(x), x_{1} q(x), \ldots, x_{n} q(x), F(x)\right) \in R^{m}$. By applying Theorem 3.1 to Q^{\prime}, we obtain a matrix $B^{\prime} \in \mathcal{M}_{e, m^{\prime}}^{*}(R)$ such that the polynomial map $P: X \rightarrow R^{e}$ defined by $P:=\pi_{B^{\prime}} \circ Q^{\prime}$ has the properties required in (1). Let us prove (2). Indicate by B the matrix $\left(b_{i j}\right)_{i, j}$ in $\mathcal{M}_{e, m}^{*}(R)$ such that $b_{i j}=1$ if $j=m^{\prime}+i$ for some $i \in\{1, \ldots, e\}$ and $b_{i j}=0$ otherwise. Since $\pi_{B} \circ Q=F$ and F is admissible, we have that $B \in \mathcal{A}_{e}(Q)$. By Theorem 3.1 applied to Q, it follows that $\mathcal{A}_{e}(Q)$ is an open (semialgebraic) subset of $\mathcal{M}_{e, m}^{*}(R)$ and there exists a proper Zariski closed subset $\mathcal{B}_{e}(Q)$ of $\mathcal{M}_{e, m}^{*}(R)$ such that, for each $A \in \mathcal{A}_{e}(Q) \backslash \mathcal{B}_{e}(Q)$, $\pi_{A} \circ Q$ is good in X^{*} and $\left(\pi_{A} \circ Q\right)^{-1}(0)$ is irreducible, has codimension e in X and contains Z. Choose a matrix D in $\mathcal{M}_{e, m}(R) \backslash\left(\mathcal{B}_{e}(Q) \cup\{B\}\right)$. The affine line of $\mathcal{M}_{e, m}(R)$ containing B and D intersects $\mathcal{B}_{e}(Q)$ in a (possibly empty) finite set. In this way, since $\mathcal{A}_{e}(Q)$ is open in $\mathcal{M}_{e, m}(R)$, there exists a positive element ε of R such that $B+t \varepsilon(D-B) \in \mathcal{A}_{e}(Q) \backslash \mathcal{B}_{e}(Q)$ for each $t \in(-1,1) \backslash\{0\}$. The polynomial map $G: X \rightarrow R^{e}$ defined by $G:=\pi_{\varepsilon(D-B)} \circ Q$ has the desired properties.
Proof of Theorem 1.3 The second part of the theorem follows immediately from the first one by choosing F constantly equal to 0 . Let us prove the first part. Let q_{1}, \ldots, q_{ℓ}
be generators of $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $\max _{i \in\{1, \ldots, \ell\}} \operatorname{deg}\left(q_{i}\right)=\mu$, and let P_{1}, \ldots, P_{e} be polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $F=\left(P_{1}, \ldots, P_{e}\right)$ on X and $\max _{i \in\{1, \ldots, e\}} \operatorname{deg}\left(P_{i}\right)=d$. It is now sufficient to repeat the preceding proof of point (2) of Theorem 1.2, using Theorem 3.2 instead of Theorem 3.1 with P_{1}, \ldots, P_{e}, q_{1}, \ldots, q_{ℓ} as generators of $\mathscr{I}_{\mathbb{K}^{n}}(Z)$ in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Remark 3.3. Let $X \subset R^{n}$ be a real algebraic set, let $F=\left(F_{1}, \ldots, F_{e}\right): X \rightarrow R^{e}$ be a polynomial map and let T be a nonempty Zariski open subset of Nonsing (X). For each $i \in\{1, \ldots, e\}$, we denote by $F_{i}^{\prime}: T \rightarrow R$ the restriction of F_{i} to T. We say that F is very good in T if the origin 0 of R is a regular value of each F_{i}^{\prime},

$$
\bigcap_{i=1}^{e}\left(F_{i}^{\prime}\right)^{-1}(0)=T \cap F^{-1}(0)
$$

is nonempty and the nonsingular algebraic hypersurfaces $\left(F_{1}^{\prime}\right)^{-1}(0), \ldots,\left(F_{e}^{\prime}\right)^{-1}(0)$ of T are in general position. Evidently, if F is very good in T, then it is good in T also. However, it is easy to construct examples of good polynomial maps that are not very good. The notion of very good polynomial map can be defined similarly over any field. In the statements of all our theorems, one can replace the adjective "good" with "very good". This can be done by slightly improving point (3.5) in the proof of Theorem 3.1.

Acknowledgment We wish to thank Edoardo Ballico for several useful discussions.

References

[1] D. Dubois and G. Efroymson, A dimension theorem for real primes. Canad. J. Math. 26(1974), 108-114.
[2] J.-P. Jouanolou, Théorèmes de Bertini et applications. Progress in Mathematics 42, Birkhaüser Boston, Inc., Boston, MA, 1983.
[3] W. Kucharz, A note on the Dubois-Efroymson dimension theorem. Canad. Math. Bull. 32(1989), no. 1, 24-29.
[4] D. Mumford, Algebraic geometry I. Complex projective varieties. Grundlehren der Mathematischen Wissenschaften 221, Springer-Verlag, Berlin-New York, 1976.
[5] J.-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61(1955), 197-278.
[6] I. R. Shafarevich, Basic algebraic geometry 1. Varieties in projective space. Second edition, Springer-Verlag, Berlin, 1994.
[7] H. Whitney, Elementary structure of real algebraic varieties. Ann. of Math. (2) 66(1957), 545-556.

Department of Mathematics, University of Trento, 38050 Povo, Italy
e-mail: ghiloni@science.unitn.it

[^0]: Received by the editors September 26, 2006; revised September 23, 2007.
 AMS subject classification: Primary: 14P05; secondary: 14P20.
 Keywords: Irreducible algebraic subvarieties, complexity of algebraic varieties, Bertini's theorems.
 (C)Canadian Mathematical Society 2009.

