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On the role of unsteadiness in
impulsive-flow-driven shear instabilities:
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Shear instabilities at the interface of two fluids, such as classical Kelvin–Helmholtz
instability (KHI), is the precursor of interface destabilization, leading to fluid
fragmentation critical in a wide range of applications. While many insights into such
instabilities are derived for steady background forcing flow, unsteady impulse flows are
ubiquitous in environmental and physiological processes. Yet, little is understood on
how unsteadiness shapes the initial interface amplification necessary for the onset of
its topological change enabling subsequent fragmentation. In this combined theoretical,
numerical and experimental study, we focus on an air-on-liquid interface exposed to
canonical unsteady shear flow profiles. Evolution of the perturbed interface is formulated
theoretically as an impulse-driven initial value problem using both linearized potential
flow and nonlinear boundary integral methods. We show that the unsteady airflow
forcing can amplify the interface’s inherent gravity–capillary wave, up to wave-breaking
transition, even if the configuration is classically KH stable. For impulses much shorter
than the gravity–capillary wave period, it is the cumulative action, akin to total energy,
that determines amplification, independent of the details of the impulse profile. However,
for longer impulses, the details of the impulse profile become important. In this limit,
akin to a resonance, it is the entangled history of the interaction of the forcing, i.e. the
impulse, that changes rapidly in amplitude, and the response of the oscillating interface
that matters. The insights gained are discussed and experimentally illustrated in the context
of interface distortion and destabilization relevant for upper respiratory mucosalivary fluid
fragmentation in violent exhalations.
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1. Introduction

1.1. Ubiquity of shear instabilities
Shear instabilities are ubiquitous at a range of scales and for a range of applications, from
extragalactic jets (Lobanov & Zensus 2001) and interstellar clouds (Berné, Marcelino
& Cernicharo 2010), the solar atmosphere and geomagnetosphere (Johnson, Wing &
Delamere 2014; Mishin & Tomozov 2016), to the Earth’s ocean waves and clouds
(Smyth & Moum 2012; Houze 2014). At air–liquid interfaces, shear instabilities of the
Kelvin–Helmholtz type can initiate a chain of events creating sheets, themselves then
coupled with Rayleigh–Taylor or Rayleigh–Plateau family types of instabilities (Helmholtz
1868; Kelvin 1871; Rayleigh 1879), that culminate in fragmentation, forming emitted
droplets of a range of sizes and speeds (Villermaux 2007, 2020; Eggers & Villermaux
2008; Wang & Bourouiba 2018; Wang et al. 2018).

Recall that, in the classical Kelvin–Helmholtz (KH) instability with sharp discontinuity,
for constant/steady shear and using normal modal analysis with small-amplitude interfacial
waves of the form ei(kx−ωt), the dispersion relation is

ω2 =
[

gk
(
ρ1 − ρ2

ρ1 + ρ2

)
+ σk3

ρ1 + ρ2

]
− k2(U1 − U2)

2ρ1ρ2

(ρ1 + ρ2)2
, (1.1)

where i is the imaginary unit number, x is the coordinate whose axis aligns with the mean
interface, t is time, k is the wavenumber, ω(k) is the wave frequency, g is the gravitational
acceleration, σ is the surface tension, ρ1,2 and U1,2 are the density and imposed shear
velocity in the lower and upper fluid, respectively. As formulated above, in (1.1), a flow
configuration is stable if ω is real and unstable if ω is imaginary. The role of viscosity
and a spatially varying, but constant in time, velocity profile within a thin shear layer has
received extensive attention since Rayleigh, for example, how viscosity would give rise
to (Yih 1967; Hinch 1984) or shift the selection of the fastest growing mode (Villermaux
1998; Yecko, Zaleski & Fullana 2002; Boeck & Zaleski 2005). Moreover, most theoretical
and numerical studies of such KH type canonical shear instabilities in a range of systems
consider parallel shear flows with a focus on either constant velocity, or in the following
references, for example, strictly oscillatory velocities in time (Kelly 1965; Lyubimov
& Cherepanov 1986; Khenner et al. 1999; Poulin, Flierl & Pedlosky 2003; Yoshikawa
& Wesfreid 2011). In these studies, it is established that both modal and parametric
instabilities can occur in oscillatory flows. In the former case, the Kelvin–Helmholtz
instability (KHI) threshold is lowered because oscillations reduce the effective interface
stiffness.

1.2. Ubiquity of impulsive flows, and importance for respiratory violent exhalations
However, in a range of environmental and physiological settings the liquid–air interface
perturbation is driven by intrinsically impulsive, and often asymmetric in time, flow
profiles. For example, violent exhalation processes last about 100–200 milliseconds for
sneezes and 200–300 milliseconds for coughs (Bourouiba, Dehandschoewercker & Bush
2014; Scharfman et al. 2016), with peak velocities upwards of O(10)–O(100) metres
per second (Han, Weng & Huang 2013; Bourouiba 2021b). Sample human impulse
cough flows obtained from spirometry are shown in figure 1(a) (Bourouiba 2021b). The
interaction between the impulsive violent pulmonary airflows and the mucosalivary fluid
lining creates a rich class of interfacial destabilization mechanisms, ultimately culminating
in fluid fragmentation. For example, the early stage of liquid lining destabilization and
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Figure 1. (a) Flow rate measurements for unsteady violent exhalations such as coughs that drive mucosalivary
liquid fragmentation (Bourouiba 2021b). (b) Images of a thin layer of liquid being sheared, and consequently
fragmented, by an unsteady impulsive parallel airflow. The flow direction is right to left and its temporal
velocity profile is discussed in figure 19 (Impulse B). (c) Visualization of the resulting fragmentation and
emission of mucosalivary liquid from the respiratory tract during a violent exhalation (Scharfman et al. 2016;
Bourouiba 2021b). The scale bars shown in (b) and (c) refer to 1 mm and 1 cm, respectively; and the time origin
from onset of airflow impulse for (b) and (c) are distinct.
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Figure 2. (a) Canonical flow profile ΔU for an idealized typical cough. The maximum and time-averaged flow
speeds are 10 m s−1 and 5 m s−1, respectively. Thick lines are used to label portion of the profile that is KH
unstable with respect to wavelength λ = 2 cm. (b) Classical KH instability dispersion map, (1.1), plotted for
liquid–air interface with flow speeds ΔU = 5, 10 m s−1.

fragmentation is shown in figure 1(b) in a mimic trachea size cylinder subject to a mimic
cough impulse of the type shown in figure 2(a). The resulting fragmentation shapes the
formation of mucosalivary fluid droplets, of a continuum of sizes, that can encapsulate and
transport pathogens in exhalation turbulent puff clouds (Bourouiba et al. 2014; Bourouiba
2020, 2021b) as seen at the exit of the respiratory tracts in figure 1(c).
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Continuing with the example of respiratory impulsive flows, attention has been paid to
the role of flexible walls in mucous clearance, with Scherer & Burtz (1978) conducting
mimic cough experiments where sudden blasts of air were introduced into a flexible tube
lined with a Newtonian liquid layer. Large-amplitude waves on the air–liquid interface
and droplets breaking were observed. Attention has also been given to the role of
rheology with King, Brock & Lundell (1985) and Basser, McMahon & Griffith (1989)
using a similar impulse release approach in rigid channels lined with non-Newtonian
and yield stress liquids aiming to mimic some aspects of mucous. Such impulse release
on a liquid lining in a square channel was recently revisited with experiments and
simulations with liquid lining (Kant et al. 2022) with a focus on the overall droplet sizes
generated.

1.3. Limited understanding of the role of unsteadiness and study questions
Yet, despite these efforts and attention, we still understand little about how the properties
of the unsteadiness of the rapidly changing pulse governs the destabilization of the
interface on the time scale of the pulse. Equation (1.1) with constant ΔU = U2 − U1 is
not applicable for an unsteady, let alone impulsive flow to gain insights on the interface
stability. To derive insights on how the instability is selected and develops in such flows,
one could take the instantaneous velocity at a given time, and using (1.1) assess stability
given a wavelength of interest.

For example, figure 2(a) gives an idealized impulsive temporal profile of a cough flow
in the upper respiratory tract corresponding to the measurements of figure 1(a). Taking
λ = 2 cm, figure 2(a) shows the thick black portion of the unsteady flow profile that would
be classically KH linearly unstable. More typically, one could take either the peak or the
mean, time-averaged, velocities (5 and 10 m s−1, respectively, in figure 2a) to examine
stability maps (e.g. Yoshikawa & Wesfreid 2011; Fraser, Cresswell & Garaud 2022), such
as that shown in figure 2(b). However, this map shows that, doing so, in fact leads to
misleading insights with contradicting stability results between these two characteristic
velocities: the choice of average velocity would suggest that the interface would remain
stable, while the peak velocity would suggest that instability can occur. These motivating
examples lead to the following questions:

(i) Can impulsiveness lead to counterintuitive results, where destabilization is enhanced
or hindered due to the transient nature of the impulse, when compared with
the expected outcome from a steady classical KH stability analysis, where some
instantaneous or integrated properties of the impulse flow are used?

(ii) When mapping the canonical shear instability framework associated with a constant
imposed shear flow to an interfacial perturbation subjected to an impulse, what
physical quantity or property of the impulse matters to trigger instability, and on
which time scale? For example, should one reason with peak and/or averaged flow
velocities, total energy injection or something else?

(iii) How does the interface evolve during such impulsive perturbations? In particular,
given the very transient nature, how does the time scale of perturbation growth
compare with the impulse time scale to shape transient vs asymptotic amplitude
growth and transition from linear to nonlinear regimes of perturbations?

(iv) How does the time scale of instability onset compare with that of the impulse
imposed? For example, does the instability develop always during the ramp up of
the impulse, or can it develop during ramp down or even after end of the impulse?
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1.4. Study approach, assumptions and outline
To address these questions, we use a combination of linear and nonlinear theoretical
and numerical analyses combined with experiments. To crystalize the essential role
of unsteadiness, we focus our analysis and simulations on a configuration of reduced
complexity in which a two-dimensional air-on-liquid interface is subjected to spatially
uniform, but time-varying velocity profiles that mimic respiratory flow impulses such as
shown in figure 1(a) or idealized forms such as that shown in figure 2(a). In our present
study, we consider only the case of the liquid layer, of density ρ1, below the air layer,
of density ρ2, so as to focus on the shear destabilization effect. We also consider the
two phases to be incompressible, immiscible, inviscid and subject to gravity and surface
tension. While discontinuity of velocity is typically regularized by viscosity, which has
received extensive attention (Rayleigh 1879; Betchov & Szewczyk 1963; Villermaux 1998;
Marmottant & Villermaux 2004; Boeck & Zaleski 2005), we here chose to focus on the
inviscid regime as the simplest canonical unsteady configuration enabling us to gain a
focused insight into the dominant role of sharp time variation rather than mixing spatial
and temporal variations. Moreover, the error committed by neglecting viscous effects is
reduced in flows of high Reynolds numbers (Villermaux 1998; Boeck & Zaleski 2005)
and short duration, such as those associated with violent exhalations (Bourouiba 2021a).
Furthermore, we verify qualitatively the insights gained by our theory and modelling
with an experimental configuration (§ 4) that includes not only viscosity but also confined
geometry.

We focus on the interfacial response to impulsive shearing specifically accounting for
the flow history and its cumulative effects. We achieve this by formulating the evolution of
a sinusoidally perturbed interface as an impulse-driven initial value problem. We solve also
the linearized flow equations based on the framework of Kelly (1965), where the amplitude
of the interface perturbation is governed by an ordinary differential equation (ODE). We
simulate the nonlinear behaviour of the interface as a vortex sheet using a boundary
integral method that extends the development of Pullin (1982) and Baker, Meiron &
Orszag (1982) explicitly to accommodate unsteady background flows. This differentiates
the present work from previous studies for the motion of vortex sheets (Krasny 1986;
Rangel & Sirignano 1988; Hou, Lowengrub & Shelley 1997; Sohn, Yoon & Hwang 2010)
where steady parallel shear flows were considered.

Our results show that the amplitude of a gravity–capillary wave (GCW) initially at
the interface can be amplified by the imposed impulse shear flow, even if such flow
is classically KH stable. We find that we could classify the stability into four regimes
discussed in § 2.4 after introduction of all notations and framework. If the impulse duration
is short relative to the interface’s GCW natural oscillation period, the maximum amplitude
can be reached after the end of the impulse. While, if the two time scales are comparable,
the maximum amplitude can occur before the end of the impulse. Moreover, we show that
if sufficient transient perturbation growth can be generated by the impulse, a transition
from persistent oscillations to wave breaking can occur independent of the classical KH
stability framework applied to an instantaneous value of the impulse velocity.

We next discuss, in § 2, the linearized potential flow theory where we introduce the
unperturbed interface base flow and the impulsive profiles used as canonical functional
forms of violent exhalations. We obtain the ODE system that governs the amplitude of
a single-mode perturbation around the base flow in the linear regime and derive both
numerical and asymptotic solutions for impulses of short and long durations with respect to
the period of the unperturbed interface oscillation. In § 3 we discuss the nonlinear analysis
for the impulse-driven interfaces and derive the governing equations using a boundary

973 A28-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.722


N. Shen and L. Bourouiba

g

U2(t)

y

x
U1(t)

y = η(x, t)
σ

λ

ρ2

ρ1

η0

Figure 3. Schematic of a two-dimensional interface separating two fluids of different densities ρ. A Cartesian
coordinate system is used to specify the interface location η. Unsteady parallel shear flows U(t) are imposed
in each fluid region defined by an initial interfacial perturbation of size η0. Gravitational acceleration g and
surface tension σ are labelled.

integral as an integro-differential equation (IDE) system. We present the simulation results
for amplified waves, breaking waves and stability transition as a function of the flow
impulse’s strength and duration. In § 4, we support our findings experimentally in a
configuration that accounts for viscosity and confined trachea-like geometry.

2. Linearized potential flow theory and simulations

To gain fundamental insights, we first explore the simplified theory of linearized potential
flow. We consider the unbounded two-dimensional motion at a liquid–gas interface, under
immiscible, incompressible and inviscid flow assumptions (see figure 3 for a schematic).
The x-axis labels the horizontal direction along the mean interface, while the y-axis
labels the vertical direction aligned with gravity, g pointing in the negative direction.
The interface shape is prescribed by y = η(x, t) and is periodic in the x-direction with
wavelength λ. The subscript j labels the lower (liquid, j = 1) and upper (gas, j = 2)
phases, with densities, ρj, pressures pj, velocity potentials φj and velocity fields uj =
∇φj = (uj, vj). We define the perturbation of the interface relative to a spatially uniform
but temporally unsteady parallel base flow in the positive x-direction of magnitude Uj(t),
over the undisturbed flat interface η = 0, with examples given in figure 4(b) and introduced
formally in § 2.3.

Unless otherwise specified, we use dimensionless variables, non-dimensionalized using
the length scale λ, velocity scale Um = maxt≥0 Uj and density scale (ρ1 + ρ2)/2, leading
to a unit time λ/Um and potential λUm. As a result, the two-phase flow system is governed
by the non-dimensional continuity and Bernoulli equations

∇2φj = 0, (2.1a)

pj

ρj
+ 1

2
(u2

j + v2
j )+ y

Fr2 + ∂φj

∂t
= Fj(t), (2.1b)

where

Fr = Um√
gλ
, (2.2)

is the Froude number, and Fj(t) is an arbitrary function of time. Being a material separation
line, the interface must also satisfy the kinematic and dynamic conditions

∂tη + lim
y→η

uj∂xη = lim
y→η

vj, (2.3a)

lim
y→η+

p2 − lim
y→η−

p1 = κ

We
= ∂2

x η

We(1 + ∂xη)3/2
, (2.3b)
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Figure 4. (a) Schematic of the temporal profile of a canonical airflow impulse U2(T). A stability line is drawn
at U2 = M−1, indicating that portions of the flow impulse above the stability line (U2 > M−1, shaded) is KH
unstable in the classic linear theory. Here, M is the effective impulse strength defined in (2.13). (b) Examples
of the canonical pulse velocity profiles given formally in (2.16), where, here, the common impulse peak time is
τ1/τp = 0.006. In both panels, normalized time unit T = τ/τp is used.

where κ is the interfacial curvature and

We = (ρ1 + ρ2)U2
mλ

2σ
(2.4)

is the Weber number and σ is the surface tension.

2.1. Flow velocities of the air impulse and resulting unsteady base state in the liquid
phase

The temporal variation of the air impulses U2(t) considered is specified in § 2.3 in detail.
From such temporal functional forms, we can obtain the parallel flow velocity and pressure
fields in the liquid phase by solving (2.1b) and (2.3b) for a flat interface η = 0. Following
Kelly (1965) we obtain the unsteady base flow in the liquid phase

U1(t) = 1 − A
1 + A

ˆ
U′

2(t) dt, (2.5)

where

A = ρ1 − ρ2

ρ1 + ρ2
, (2.6)

is the Atwood number, and the prime symbol denotes time derivative. Here, A > 0 with
U1(0) = 0 to ensure a vanishing integration constant. Substituting (uj, vj) = (Uj, 0) and
φj = xUj into (2.1b) leads to the pressure profile in phase j

pj = ρj

(
Fj − |uj|2

2
− y

Fr2 − ∂φj

∂t

)
≡ Pj. (2.7)

We are now ready to examine the perturbation of this base state next.
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2.2. Linearized equations
Next, we follow Kelly (1965) and solve for the linearized equations. This begins with
a single Fourier mode perturbation of small amplitude ε � 1 and wavenumber k = 2π
to the originally flat interface at t = 0. The resulting governing equations subject to the
modelled velocity impulse take the form

fj(x, y, t) = fj,0(x, y, t)+ f̃j( y, t) eikxε + O(ε2), (2.8)

where f is one of our variables φ, u, p, η and fj,0 is the corresponding base state solution:
φj,0 = xUj, pj,0 = Pj (2.7) and η0 = 0. Note that we focus on perturbations with explicit
x-dependence of the form eikx and generally unspecified temporal dependence in f̃j( y, t).
Substituting (2.8) into (2.1) and (2.3) yields the linearized equations for f̃ at O(ε) that
reduce to

φ̃j = (−1)j+1

k

(
dη̃
dt

+ ikUjη̃

)
exp((−1)j+1ky), (2.9)

where the interface displacement, η̃, viewed in the centre of mass frame as

η̃(t) = η̂(t) exp
(

− ik
2

ˆ t

0
[ρ1U1(t′)+ ρ2U2(t′)] dt′

)
, (2.10)

is governed by the following ODE:

d2η̂

dt2
+
[

kA

Fr2 + k3

2We
− k2(1 − A2)

4
(U1 − U2)

2
]
η̂ = 0, (2.11)

equivalent to the result of Kelly (1965).
Using (2.5) to eliminate U1, from (2.11) it is clear that the velocity impulse in the

gas phase drives interfacial perturbation amplitude growth, whereas gravity and surface
tension are stabilizing. Conveniently, we introduce the rescaled time

τ = t

√
kA

Fr2 + k3

2We
= tΩ, (2.12)

and combine this competition in an effective flow strength M, defined as

M = M(Fr,We,A; k) ≡ tkA
τ

√
1 − A
1 + A

, (2.13)

where M, a dimensionless parameter, measures the relative strength of the imposed gas
flow U2 opposing the restoring forces. As such, (2.11) simplifies to

d2η̂

dτ 2 + [1 − M2U2(τ )
2]η̂ = 0. (2.14)

We recover that, for constant U2 and for MU2 > 1, η̂ exponentially grows, as expected
when recovering the classical steady KH instability. For a time-varying impulse U2(τ ), we
thereafter refer to the interval of time over which MU2(τ ) > 1 as classically KH unstable
and that for which MU2(τ ) < 1 as classically KH stable, i.e. with η̂ oscillatory in nature
(see figure 4a).
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Markedly, using (2.2) and (2.4), we find that M is maximized at the physical wavelength
λ

λ = λ0 = 2π

√
σ

(ρ1 − ρ2)g
, (2.15)

independent of the flow velocity. In other words, at the capillary length, below which
surface tension dominates gravity, λ0, the interface is easiest to destabilize for any imposed
flow U2(τ ). We are now ready to introduce formally the canonical impulsive flow profiles
we consider in this study.

2.3. Canonical impulsive flows considered for the air layer, U2(t)
We examine analogue violent exhalation flows consistent with observations (King et al.
1985; Basser et al. 1989; Bourouiba et al. 2014; Bourouiba 2021b) as seen in figure 1(a).
To do so, we consider canonical impulsive flows U2(t) shown in figure 4(b) and given by

US
2(t; t1, t2) ≡ H(t − t1)− H(t − t2), Step profile, (2.16a)

UL
2 (t; t1, t2) ≡ t

t1
[1 − H(t − t1)] + t2 − t

t2 − t1
[H(t − t1)− H(t − t2)], Linear profile,

(2.16b)

UE
2 (t; t1, β) ≡ t

t1
[1 − H(t − t1)] + e−(t−t1)/βH(t − t1), Exponential profile, (2.16c)

UG
2 (t; t1, μ) ≡ t

t1
[1 − H(t − t1)] + e−(t−t1)2/μH(t − t1), Gaussian profile, (2.16d)

where the superscripts S, L, E and G denote the abbreviated profile names, H(t) is the
Heaviside function with H(0) = 1.

We choose the three parametrized functions to be piecewise monotonic with properties
that U2(0) = U2(∞) = 0 and maxt≥0 U2(t) = 1, in order to capture the rise and decay
stages of the impulses. The step profile US

2 features discontinuities at t = t1 > 0 and t =
t2 > t1 that turn the driving impulse on and off, respectively. The continuous profiles,
UL,E,G

2 , share the same linear increase for 0 ≤ t ≤ t1 to reach peak velocity but differ in
the subsequent velocity decay: UL

2 linearly decreases for t1 < t < t2, UE
2 exponentially

decays at a rate β and UG
2 has a Gaussian decay of variance μ > 0 for t > t1.

The characteristic parameters of each of the canonical airflow impulses U2(t), given
in (2.16), are further detailed in table 1. In particular, this includes the effective
non-dimensional impulse duration τd defined for the exponential (E) and Gaussian
impulses (G) in terms of a small threshold value 0 < d � 1 such that

τd = tdΩ = max{τ : UE,G
2 (τ ) = d}. (2.17)

In the cases of the linear (L) and step (S) impulses, clearly τd = τ2 (see table 1).
Note that our focus is on dramatic transient effects and so we chose rapidly linearly

increasing functional forms up to their maximum velocity value reached at t1; with
t1 � td to ensure that the rise time is significantly shorter than the total duration of
the impulse. This choice was done to remain consistent with physiological observations.
However, we a posteriori also confirm these choices do not affect the amplification of
the interface for short impulses, and in fact such choices maximize amplification for
long impulses as discussed in § A.1. Finally, we denote the characteristic times of these
impulses in their non-dimensional forms as τ1 = t1Ω , τ2 = t2Ω (see 2.12 for definition

973 A28-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.722


N. Shen and L. Bourouiba

Impulse profile Impulse duration: τd Cumulative action: S∞ Action’s correction: α

US
2(τ ; τ1, τ2) τ2 τ2 − τ1

1
2 − ε

2

UL
2 (τ ; τ1, τ2) τ2

τ2
3

9
4 − 3ε

2 + O(ε2)

UE
2 (τ ; τ1, β) τ1 − β ln d τ1

3 + β
2 1 + 1−d2

2 ln d + O(ε)

UG
2 (τ ; τ1, μ) τ1 + √−μ ln d τ1

3 + 1
2

√
πμ
2 1 − 1√−2π ln d

+ O(d2)+ O(ε)

Table 1. Characteristic parameters of the four velocity impulse profiles specified in (2.16) and shown with
examples in figure 4(b). A sharp cutoff duration, t2, or non-dimensional τ2 = t2Ω (see (2.12)) is only strictly
defined for the step (S) and linear (L) profiles. Thus, we introduce the small parameter d and impulse duration
τd , defined by (2.17) for the exponential (E) and Gaussian (G) profiles. The approximate expressions for the
total action, S∞, defined in (2.21), and the impulse’s profile action correction factor α, defined in (2.29), are
computed in the limit of ε = τ1/τd → 0. We chose d = 0.01 for all the numerical results we display in this
study. Moreover, we introduced time normalized with respect to the interface natural oscillation, τp = 2π : T =
τ/τp, with associated normalized characteristic times of the impulse T1 = τ1/τp, T2 = τ2/τp or Td = τd/τp.

of Ω) and we examine our results, for the most part, in the limit of ε = τ1/τd → 0. We
also introduce another characteristic time, normalized with respect to the interface natural
oscillation, τp = 2π, with associated normalized characteristic impulse functional form
times T1 = τ1/τp, T2 = τ2/τp or Td = τd/τp.

2.4. Stability regimes: framing of the analysis and results
With effective impulse strength M and its normalized duration (T2 = τ2/τ2 or more
generally Td = τd/τp discussed in table 1) that vary independently, we identify that
representative exhalation impulses can be categorized into four stability regimes shown
in figure 5. Each regime generates qualitatively distinct interface responses. We will use
the framing of this regime map to discuss the details of our linear analysis (presented
in § 2) and nonlinear analysis (§ 3). First, we will show with linear theory that, in the
limit of very short impulses T2 → 0, regardless of the impulse strength, M (regimes
I and IV), the response of the interface is independent of the details of the impulse’s
functional form and is entirely determined by a quantity analogous to cumulative imparted
energy: the total action, S∞ defined by (2.21) in § 2.6. Transient linear growth of the
interface’s amplitude can lead to maximal amplification reached in the first oscillation of
the interface, despite the impulse being considered classically KH stable at all times. As
the impulse lengthens and for strong impulses in the limit M → ∞ (regime III), we show
that we recover an increasing dependence of the interface’s response on the impulse’s
functional form, in addition to the time-varying injected action S. In the extreme part
of this limit, in fact, we recover the classical KH linear instability exponential growth,
expected to subsequently transition to nonlinear fragmentation. Next, and transiting to
both nonlinear and linear theory and simulations, we will show that the behaviour of the
interface in the intermediate regimes I (M � 1, T2 � 1) and II (M � 1, T2 � 1) depend
on the cumulative effect of the GCW amplification through the duration of the impulse
imposed. As a result, we have transition from sustained GCW to nonlinear wave breaking,
revealed fully when considering nonlinear effects in § 3. With this framing in mind, we
next present the analytical and numerical results from our linear analysis, starting with the
importance of considering non-modal transient growth.
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Figure 5. Schematics for flow impulses UL
2 of varying effective strength M and normalized duration T2. Four

stability regimes are given as regime I, M � 1,T2 � 1; regime II, M � 1,T2 � 1; regime III, M � 1,T2 � 1;
and regime IV, M � 1,T2 � 1. In each case, a stability line is drawn at U2 = M−1, indicating that portions of
the flow impulse above the stability line (U2 > M−1, shaded) is KH unstable in the classic linear theory.

2.5. Non-modal transient growth and maximum growth in the limit of U2 ≡ 1 > M
The initial condition required to integrate (2.14) is chosen to be one that corresponds to
the normal mode of the form η̂(τ ) = e−iωτ , where the instantaneous (complex) angular
frequency is ω =

√
1 − M2U2(τ )2 evaluated τ = 0. Since U2(0) = 0, we arrive at the

following initial values:

η̂(0) = 1, η̂′(0) = −i. (2.18a,b)

However, the normal mode does not solve (2.14) generally for τ > 0 where U2 and
therefore ω are no longer constant (travelling wave solutions exist only for constant U2
and U2M < 1). It is critical thus to focus on transient growth and associated maximum
amplification.

We do so now in the limits of U2 ≡ 1 > M and weak impulses with M < 1 (regimes
IV and II), where we solve for the perturbation amplitude η̂ and using the initial values
(2.18a,b), leading to

|η̂(τ )|2 =
M2 cos

(
2τ

√
1 − M2

)
+ M2 − 2

2M2 − 2
, (2.19)

which oscillates between zero and a maximum value first obtained at τ = τm =
π/(2

√
1 − M2), given by ηmax = |η̂(τm)| = 1/(1 − M2) > 1. Markedly, at least in the

inviscid limit considered here, transient growth of the amplitude |η̂| is observed for the
time interval 0 ≤ τ < τm.

Although the growth rate is at most linear in this case (exactly linear if M = U2 = 1), the
peak amplitude ηmax and time to maximum amplitude, τm, both increase with increasing
M < 1 and approach infinity as M → 1. In such unbounded limit, a transient growth
(Kerswell 2018) found for conventionally KH stable flows (M < 1) is also potentially
capable of destabilizing the two-fluid interface. Indeed, it will be shown in § 3.3.3 that,
with sufficiently large initial perturbation size ε, nonlinear wave breaking can occur in
the transient growth regime. This result complements the conventional understanding of
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linearized KH instability that is associated with exponential perturbation growth of normal
modes.

2.6. Asymptotic solution for short impulses and importance of the action integral S
The ODE system (2.14) and (2.18a,b) for general M and U2 can be readily solved using
standard numerical methods and we discuss such numerical results in § 2.7. Here, we start
by deriving an analytic solution that explicitly elucidates the effect of an impulsive U2
on the interfacial evolution. An iterative perturbation method demonstrated in Bender &
Orszag (1999) is used in the following.

To begin, as t → 0+, the leading-order behaviour of η̂ is given by η̂ = 1 + O(τ ).
Substituting this limit into the second term of (2.14) allows the resulting equation to be
explicitly integrated, producing the first-order approximate solution

η̂(τ ) ≈ η̂1(τ ) = 1 − iτ − τ 2

2
+ M2

ˆ τ

0
S(τ̃ ) dτ̃, (2.20)

where S is the action integral

S(τ ) =
ˆ τ

0
U2(τ̃ )

2 dτ̃. (2.21)

Note that, by further requiring sufficient decay of U2(τ ) → 0 for large τ , the integral S(τ )
converges for large τ ; and we denote the limit S∞ = limτ→∞ S(τ ), whose significance
will be discussed in detail later.

The η̂ approximation derived in (2.20) improves on the limit η̂ = 1 by including not
only correction due to the initial first-order derivative, as expected in a power series, but
also the integral of action S that captures the air kinetic energy injected into the system.
Further, because η̂1 is also explicit in τ , it can be used again in (2.14) to obtain corrections
of next order. Iterating this process thus leads to the exact series solution as follows:

η̂(τ ) = lim
N→∞

η̂N(τ ) = 1 + lim
N→∞

ˆ τ

0
dτ̃

N∑
n=1

Ln(τ̃ ), (2.22)

where η̂N is the Nth-order approximation, Ln is defined through the recursion relation

Ln(τ ) =
ˆ τ

0

{
[M2U2(τ1)

2 − 1]
ˆ τ1

0
Ln−1(τ2) dτ2

}
dτ1, (2.23)

for n ≥ 2 and

L1(τ ) = −i +
ˆ τ

0
[M2U2(τ̃ )

2 − 1] dτ̃ = −i − τ + M2S(τ ). (2.24)

The time derivative η̂′ follows immediately as η̂′(τ ) = ∑∞
n=1 Ln(τ ). It can be easily

verified that η̂(τ ) given by the convergent series (2.22) (at a rate faster than a power series
expansion), satisfies the ODE system (2.14) and (2.18a,b).

On the other hand, because U2 vanishes for large times, (2.14) dictates that the series
solution converges to the form

η̂(τ ) ∼ η̂d cos(τ − τd)+ η̂′
d sin(τ − τd), (2.25)

for τ > τd, as U2(τd) → 0, where η̂d = η̂(τd), η̂′
d = η̂′(τd) and τd defines the imposed

flow duration given in (2.17). This suggests that the two-fluid interface ultimately
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undertakes sinusoidal oscillations of finite amplitude after the exhalation impulse decays.
Recall that, for such linear theory to hold, the interfacial perturbation amplitude |η(x, t)| =
|η̂(τ )|ε must remain small for all times. The properties of maximum |η̂(τ )| associated with
impulses of short duration are examined next.

2.6.1. Short impulse (regimes I and IV): linear growth
Comparing the two time scales involved in (2.25), i.e. the impulse duration τd versus the
natural oscillation period τp = 2π associated with the GCW, we assume in the following
that τd � τp. In physical units, the natural period obtained for the critical mode using
(2.15) is independent of the velocity scale Um, given by

T0 =
√

2πσ 1/4(ρ1 + ρ2)
1/2

[g(ρ1 − ρ2)]3/4 . (2.26)

Accordingly, the peak amplitude ηmax = maxτ≥0 |η̂(τ )| = |η̂(τm)| occurs at a time τm >
τd, and its magnitude corresponds to that of the waveform (2.25), read as

η2
max = |η̂d|2 + |η̂′

d|2
2

+
√
(|η̂d|2 − |η̂′

d|2)2
4

+ [Im(η̂d)Im(η̂′
d)+ Re(η̂d)Re(η̂′

d)]
2. (2.27)

Further, for short impulses of τd → 0, the asymptotic behaviour of η̂d and η̂′
d is captured

well by the first-order truncated solution η̂1 given in (2.20), leading to

η̂1(τd) = 1 − iτd − τ 2
d
2

+ ατdM2S∞, η̂′
1(τd) = −i − τd + M2S∞, (2.28a,b)

where the assumption S(τd) = S∞ is used, and for each given U2 as a function of time, the
constant fraction

α = 1
τdS∞

ˆ τd

0
S(τ ) dτ ∈ (0, 1], (2.29)

is introduced when U2 ≤ 1 in (2.21). Substituting (2.28a,b) into (2.27) thus generates the
following limit as τd → 0:

ηmax ∼
√

1 + M4S2∞ + M2S∞
√

M4S2∞ + 4
2

∼ 1 + M2S∞
2

+ o(S∞), (2.30)

that is independent of α, the impulse’s profile action correction factor. Therefore, at
leading order, the maximum interfacial perturbation caused by a given imposed airflow
is completely determined by its total action S∞, regardless of its temporal profile. In the
small S∞ → 0 limit, we will show, in § 2.7.2 that, for all four U2 impulse profiles of (2.16),
with formally different τd, S∞ and α given in table 1, a common linear increase of ηmax
with corresponding S∞ emerges.

2.6.2. Long impulse (regimes II and III): exponential growth
Having established that S∞ is the key quantity intrinsic to U2 that governs the maximum
interfacial growth for sort impulses, we investigate next the behaviour of ηmax for larger
τd when the first-order approximation η̂1(τd) no longer holds. We derive asymptotic
results for the step (S), linear (L) and exponential (E) profiles to demonstrate that ηmax
grows exponentially with respect to S∞ in this regime at a rate that is dependent on the
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detailed U2 shape. Note that the Gaussian (G) profile is excluded in this calculation due to
difficulties in evaluating the associated (2.22) in closed form, but is confirmed numerically
to be consistent with the other three profiles considered here (see § 2.7.2)

The step profile, US
2 given by (2.16a) in the limit of τ1 = 0, is considered first. We obtain

the exact solutions to η̂ and η̂′ in this case by either integrating and summing (2.22), or
solving (2.14) directly, leading to the exponential solution

η̂S(τ ) = cosh
(
τ
√

M2 − 1
)

−
i sinh

(
τ
√

M2 − 1
)

√
M2 − 1

. (2.31)

Therefore, substituting η̂d = η̂S(τ2) = η̂S(S∞) into (2.27) gives the desired result

ηS
max ∼

M2 exp
(

S∞
√

M2 − 1
)

2
√

M2 − 1
, (2.32)

as S∞ → ∞, where it is also evident that ηS
max ∝ M for large M.

Next, we examine the linear and the exponential profiles, given by (2.16b) and (2.16c),
respectively, using τ1 = 0 and M → ∞ (regime III). These limits are taken to enable
analytic evaluation of (2.22). Following the derivations detailed in § A.3, one arrives at
asymptotic expressions for η̂L,E and ηL,E

max analogous to (2.31) and (2.32). Particularly,
again, in the limit of M → ∞ (regime III), we show that

ηL
max ∼

Γ

(
3
4

)
(2π)1/231/4

M3/4 exp
(

3MS∞
2

)
S1/4
∞

, (2.33)

for the linear profile UL
2 , and

ηE
max ∼ M1/2 exp(2MS∞)

2
√

πS1/2
∞

, (2.34)

for the exponential profile UE
2 . In both cases, ηL,E

max as a function of S∞ are again dominated
by an exponential term.

The comparison between (2.32), (2.33) and (2.34) reveals that, although ηmax generated
by the three different U2 profiles grow similarly with an exponential pattern as S∞
increases, the exact asymptotic forms for the growth differ between the profiles for
large S∞. Therefore, the total action of an imposed flow in this case, while remaining
an important predictive variable, no longer uniquely determines the resulting interfacial
perturbation. In this regime III, the dependence of ηmax on the impulse functional form
details in this limit of S∞ → ∞, i.e. long impulses, is in contrast with that of regimes I
and II in the limit of S∞ → 0 (§ 2.6.1), where we had found that ηmax is independent of
the details of the impulse flow profile functional form (as we also confirm with numerical
simulations in figure 6).

2.7. Numerical solutions for linear interface amplification
In this section, we now compare our asymptotic results from § 2.6 with the numerical
solution of the interface amplitude η̂ obtained by solving the ODE system (2.14) and
(2.18a,b), using a fourth-order Runge–Kutta scheme.
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Figure 6. (a) Profiles of imposed airflow U2(τ ) given in (2.16). Normalized time unit T = τ/τp is used.
A common flow peak time of τ1/τp = 0.006 and total action of S∞ = 0.04 are used with effective impulse
strength M = 10. This regime illustrates imposed short impulses, with Td � 1, and large part of the impulse
being classically KH unstable. The numerical solutions for the interfacial perturbation amplitude |η̂(τ )| in
response to the imposed airflow impulse shown in (b). Here, the interface response curves collapse on a
single curve independent of the details of the impulse airflow functional form as predicted by the small action
asymptotic solution we gave in (2.22), where |η̂| is uniquely determined by the total impulse action S∞ in the
limit of S∞ → 0. This insight helps guide our thinking about the key quantity governing destabilization for
transient impulses. However, the total action S∞ is not a universal quantity capturing the fate of the interface
given an arbitrary impulse functional form as seen in panels (c) and (d), depending on the limits of S∞ and M
values, we note that amplification can start to depend on the details of the impulse functional form imposed, as
seen in the insets.

2.7.1. Evolution of η̂ for short and long impulses and importance of action S∞
Recall that from (2.16) we model the flow impulse U2 using four different types of temporal
profiles. Representative examples for each of the profiles are illustrated in figure 6(a).
A normalized time unit T ≡ τ/τp, with respect to the interface’s natural oscillation period
τp = 2π, or in physical units Π given in (2.26), is used henceforth for all canonical
impulses, so that the imposed flow duration Td = τd/τp and its effective strength M
(see (2.13)) can be independently determined by the dimensional maximum velocity and
duration, respectively. Recall that the horizontal line positioned at U2 = 1/M divides the
flow history into portions that are conventionally KH unstable (MU2 > 1) and KH stable
(MU2 < 1). In figure 6, we discuss the response of the interface with respect to short
impulses (regimes I and IV). In figure 7 we discuss the long ones.

973 A28-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.722


N. Shen and L. Bourouiba

0 1 2 3 4 5 6

0

0.2

0.4

0.6

U2

|η̂|

0.8

1.0

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1.0

Linear

Step

Linear

Exponentials

Gaussian

1/M = 0.7

1/M = 1.1

0 1 2 3 4

0

50

100

150

0 1 2

T T
3 4

1.0

1.5

2.0

(a) (b)

(c) (d )

Figure 7. (a),(b) Profiles for the imposed airflow U2(τ ) given in (2.16) with long duration. Normalized time
unit T = τ/τp is used. A common flow peak time of τ1/τp = 0.3 and total action of S∞ = 6.28 are used in
(a) and τ1/τp = 0.4, S∞ = 8.38 in (b). The effective impulse strength are M = 1.4 and M = 0.9, respectively
in (a,b). (c,d) The numerical solutions for the interfacial perturbation amplitude |η̂(τ )| in response to the
imposed flow signals given in (a) and (b), respectively. Oscillatory interface response is established, where the
maximum amplitude occurs at the first peak.

In figure 6(a), we show short impulses, defined with Td � 1 and 1/M � 1 and with
a common impulse peak time τ1/τp = 0.006 as well as common total action S∞ = 0.04.
We show the corresponding responses of the interface in figure 6(b). We see an overall
sinusoidal behaviour of |η̂| for all canonical impulse airflows as expected from our
derivation of (2.25). We also see a collapse of the interface response for different impulse
airflow profiles. In other words, the response of the interface is independent of the details
of the impulse’s functional form and only depends on the total action S∞ as predicted
by the small action asymptotic solution we derived in (2.22), where we showed |η̂| to be
uniquely determined by S∞ in the limit of S∞ → 0 (extreme limits of regimes I and IV).
This independence of the interface’s response to the impulse airflow details remains true
as long as S∞ → 0, regardless of M, as seen in figure 6(c,d). As S∞ increases, i.e. the
impulse duration increases, figure 6(c,d) shows how the peak amplitude response ηmax
starts differing between canonical impulse functional forms. Note, however, that, even
then, the initial increase of |η̂| for small times during the impulse, e.g. T � 0.1, remains
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On the role of unsteadiness in impulsive shear instabilities

insensitive to the impulse’s particular shape. Generally, this initial stage of the |η̂| growth
is well captured by the series solution we derived in (2.22).

In figure 7(a,b), we show long impulses defined to have a duration comparable to the
natural oscillation period: Td � 1 (regimes II and III). The responses to the impulses with
strength 1/M = 0.7 and 1.1 are shown in figures 7(c) and 7(d), respectively. In figure 7(c),
in contrast to the short impulse response (figure 6b), the impulse in figure 7(a) leads to
an interface amplitude that peaks at its first oscillation and then decreases over time. The
length of the impulse enables, for an initial amplification phase that lasts long enough,
the creation of a higher first peak that ends up also being the global amplitude maximum
ηmax. This peak occurs at T = Tm before the airflow impulse ends, i.e. Tm < Td. This
suggests that the decay of U2 does not allow a larger interface perturbation beyond the
first peak to be sustained. This transient growth and maximum initial peak amplification
property is further discussed § 2.7.3. Note also that, in this regime, the |η̂| response
of the interface is more sensitive to the details of the impulse functional form despite
the use of a common total action, S∞ = 6.28. Thus, the total action S∞, as derived
in § 2.6.1, is less of a universal predictor for |η̂| outside the asymptotic limit of large
M for long impulses (S∞ → ∞). Finally, the transient growth introduced in § 2.5 is
shown in figure 7(b,d), where M = 0.9. Hence, the entire flow impulse is considered KH
stable (regime II), yet we see interface amplitude amplification in figure 7(d) for both
impulses imposed. These are similar to the long impulse response of figure 7(c) with a
maximum amplitude of the perturbation ηmax at a time Tm < Td, followed by oscillations
of decreasing amplitude. However, here, we also see more clearly the increase in frequency
for subsequent oscillations.

2.7.2. Maximum amplitude ηmax
The analytic theory for maximum perturbation amplitude ηmax developed in §§ 2.6.1
and 2.6.2 is considered next. By comparing ηmax generated by different U2 profiles
of common S∞, figure 6 shows that the numerical data clearly collapse for S∞ → 0.
In this short impulse regime, we find an excellent agreement between the numerical
results and the analytical estimate from (2.30), for both large and small flow strengths,
M. This is illustrated in figure 6(c) with M = 50 and figure 6(d) with M = 5. The
key insight is that the leading-order behaviour of ηmax associated with imposed flows
of regimes I and IV with short τd, or equivalently small S∞, is uniquely specified by
S∞, independent of the details of the exact temporal profile of the impulse. However,
such universality and reduction deteriorates for impulses of long duration, where we find
increasing discrepancies among the U2 profiles as S∞ increases (figure 6c,d).

In the large S∞ limit (regimes II and III), the ηmax approximations are shown in figure 8
for each flow impulse. Assuming τ1 → 0 for all four cases, the asymptotic ηmax takes the
form

ηmax ∼ C
M exp(aMS∞)
(MS∞)b

, (2.35)

where C, a and b are constants given by (2.32) and (2.33) and (2.34) for the step, linear
and exponential profiles, respectively; and are fitted for the Gaussian profile as C = 0.36,
a = 1.35, b = 0.11, according to the numerical solutions obtained using M = 500.

Formally derived for impulses of high strength, i.e. M → ∞ (regime III), the
exponential growth described by (2.35) performs reasonably well matching the numerical
solutions in figure 8, across all flows for a range of M down to order unity (regimes II and
III). These results suggest that, despite the differences in C, a and b, the empirical form
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Figure 8. Value of ηmax as a function of S∞, for a given M, obtained numerically (open circles) and its analytic
approximations for both small and large S∞ limits, given by the dashed and solid lines, respectively (see (2.30),
(2.35)). For each flow profile shown in (a)–(d), τ1 = 0 and three different values of M are compared, showing
a transition into the regime of exponential dependence of ηmax observed for large S∞.

(2.35) holds true for the U2 profiles considered. Together with the small S∞ theory given
in (2.30), this establishes a full asymptotic description of ηmax for M > 1.

Finally, note that our asymptotic and numerical results of exponential η̂ growth so
far relied on the assumption that the imposed impulse airflow profile reaches maximum
velocity close to instantaneously at t = 0+, that is, τ1 = 0 and U2(0+) = 1. We tested
the sensitivity of our results to this assumption. This is shown in § A.1 with figure 21
showing that the maximum amplification, ηmax, is essentially insensitive to the time ratio
τ1/τd for a given impulse action S∞ and given intensity M where amplification occurs.
Figure 21 also supports that, for long impulses, of increasing S∞ values, ηmax is maximized
when τ1 = 0. Physiologically, this observation implies that the τ1/τd → 0 limit of violent
exhalation would be favoured to promote maximal interface perturbation. This is consistent
with exhalation impulse flow profiles measured (Bourouiba 2021b) to be compatible with
τ1/τd � 1.
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On the role of unsteadiness in impulsive shear instabilities

2.7.3. Amplitude peak time Tm
Next, we discuss the critical time Tm at which the maximum interface amplitude first
occurs. For flow impulses of short duration (regimes I and IV), we show using (2.25)
and (2.28a,b) that Tm → 1/8 as Td → 0+, regardless of the U2 temporal profile and the
impulse strength M. For the regime I and III partly unstable flows illustrated in figure 9(a),
we take the linear and Gaussian flow profiles in figures 9(b) and 9(c), respectively, to
show that increasing the impulse duration Td (from regime I to III) increases Tm which
starts becoming greater than Td, but is eventually exceeded by Td as Td increases. This
means that the maximum interface amplitude, ηmax, is reached after the impulse vanishes
if the impulse is short (regime I), and before the flow impulse ends if the impulse is long
(regime III). The exact transition time between these two regimes depends on M and the
flow profile details. Assuming M > 1 and Td large, Tm is also bounded below by

T∗ = max
{

T = τ

2π
: U2(τ ) = M−1

}
, (2.36)

where T∗ is the transition time during the imposed airflow from being classically KH stable
to unstable, giving T∗ < Tm < Td as compared in figures 9(b) and 9(c) for both profiles.
This is because |η̂| must exponentially increase during the period over which MU2 > 1,
based on (2.14). Further, the increase of Tm with Td appears to be linear and unbounded
for large Td when M > 1, since T∗ → ∞ as Td → ∞. Note that these findings appear to
be robust for both the linear and Gaussian profiles and especially insensitive to the cutoff
value d in (2.17) used to define Td in the latter case. We also obtain similar results for the
exponential flow profile (not shown).

In contrast, the amplitude peak time associated with transient growth where M < 1
(part of regime II) does not increase indefinitely, as shown in figures 9(d)–9( f ). Instead,
because the flow is never classically KH unstable, Tm must converge to the limiting value
Tm = 1/(4

√
1 − M2), and is independent of Td, as we derived in (2.19) in the limits of

τ1 → 0 and Td → ∞. Figure 9( f ) shows the match between the numerical results and our
asymptotic results.

In both cases (M > 1 and M < 1), the observation that Tm < Td for flow impulses with
Td � 1 suggests again that, once the interface has reached its local maximum amplification
during its first period, the following period is unable to generate a higher subsequent
perturbation, rendering the first amplitude peak a global maximum. On the other hand,
the lower bound Tm > T∗ implies that it is beneficial to have the impulse’s peak time
τ1 → 0 so that T∗ is minimized in order to induce maximum interface perturbation as
early as possible.

2.8. Summary
In the above linear analysis, we considered the evolution of a single (Fourier) mode/scale
perturbation on a two-fluid interface subjected to an airflow impulse U2 and governed by
the ODE system (2.14) and (2.18a,b). We summarize the findings thus far as follows.

(i) Amplified GCWs are generated by the impulse for all the canonical U2 profiles
considered (figure 4). Distinct from the plane-wave solution assumed by the classic
KH dispersion relation (1.1), here, in the linear regime, we find that the long-term
behaviour of the interface (T � 1) is characterized by GCW with temporary
amplitude amplification followed by oscillation at a fixed period.

(ii) The magnitude ηmax and the time of first occurrence Tm of the maximum GCW
amplitude depends on the effective strength M and normalized duration Td of
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Figure 9. Maximum amplitude time Tm as a function of impulse duration Td . The linear flow impulse profile
is used in (a) and (d) and the Gaussian profile in (c) and ( f ), where Td is defined using d = 0.01 in (2.17).
For both profiles, τ1 = 0 is applied. The flow impulses imposed in (b) and (c) have effective strength M > 1,
while M < 1 in (e) and ( f ). This is schematically illustrated in (a) and (b), respectively, where Td and T∗
(defined in (2.36)) are labelled along the velocity profile. In all plots, the solid lines of different colour give T∗
obtained with varying M. In (b) and (c), the upper bound Td is given by the dashed line, and the lower bound
T∗ is shown as the dotted line. In ( f ), the large Td limit ((2.19)) is given by the dot-dashed lines. The figure
shows that, for strong impulses (M > 1), the interface peak amplification time occurs after the impulse relaxes
into the classically KH stable regime, i.e. Tm > T∗. And for weak but long impulses (M < 1, Td > O(1)), a
peri-impulse peak occurs (Tm < Td) at a time bounded below by the limit 1/(4

√
1 − M2) as Td → ∞ (§ 2.5).

the imposed impulse. This again contrasts with (1.1), where the flow history
is not considered. In the limit of Td → 0 (normalized by the GCW period),
we predict and confirm numerically that the maximum amplitude ηmax (2.30)
is entirely determined by the total action S∞ of the impulse’s temporal profile.
The total action S∞ is an analogous quantity to imparted total energy over the
duration of the impulse. As Td increases, exponential growth in ηmax of the
form (2.35) can occur, provided that M > 1. Interestingly, for impulses that are
conventionally KH stable, i.e. M ≤ 1, the GCW amplitude can also be amplified:
ηmax in this case is given by (2.19), albeit increasing at most linearly with
Td.

(iii) For all U2 profiles, ηmax is always obtained at the first amplitude peak led by
the transient interfacial growth between 0 ≤ T ≤ Tm. As a proxy to the onset of
nonlinear shear flow instability, the GCW peak amplitude time occurs after the end
of the imposed flow for short impulses, i.e. Tm > Td if Td � 1; at the impulse end
if Td is increased to comparable magnitude, i.e. Tm < Td if Td � O(1).
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On the role of unsteadiness in impulsive shear instabilities

3. Nonlinear dynamics and simulation: unsteady vortex method

The exponential interfacial growth subject to long flow impulses, seen in § 2.6.2, urges us
to transition to a nonlinear analysis. In fact, it is well known that a surface gravity wave
is unstable when its steepness exceeds H/λ = 0.14 (Schwartz & Fenton 1982; Tanaka
1983, 1985; Saffman 1985), where, H is the wave height. Breaking waves are typically
observed for H/λ < 1, as reviewed by Perlin, Choi & Tian (2013). Similar superharmonic
instabilities also apply to the GCWs of interest here (MacKay & Saffman 1986; Sato &
Yamada 2019). In the absence of surface tension, the classical KH instability associated
with steady constant background flows can lead to spontaneous formation of curvature
singularities along an inviscid two-fluid interface, consequently causing surface rolling
and breaking (Moore 1979; Siegel 1995; Cowley, Baker & Tanveer 1999; DeVoria &
Mohseni 2018).

Here, we adopt the generalized vortex method to investigate the nonlinear behaviour
of the two-fluid interface. Following Pullin (1982) and Baker et al. (1982), boundary
integral methods based on the Birkhoff–Rott equation (Saffman 1995) (a special case of
the Biot–Savart law Pozrikidis 2011) have been widely used to track interfacial motion
between two potential flows (Scardovelli & Zaleski 1999). In the following, we give a
brief derivation of the governing equations that accommodate (unsteady) impulses for a
periodic vortex sheet, based on the complex-variable formulation of Pullin (1982) and
Baker et al. (1982). This leads to an evolution equation for the vortex sheet strength
that explicitly contains the unsteady background flow’s velocity and acceleration terms
that are admissible under the vortex method framework given by Pullin (1982) and
Baker et al. (1982) but practically missing in their original applications to constant shear
flows. Although these terms are shown in Pozrikidis (2011), we also give specialized
evaluation of the associated Biot–Savart integral, including periodicity, desingularization
and regularization, that is absent in standard texts such as Pozrikidis (2011).

3.1. Governing equations

3.1.1. The unsteady vortex method
First, we parameterize the periodic interface in complex plane using Lagrangian markers
a ∈ [0, 1], such that the interface shape at time t is given by z = z(a, t) = x(a, t)+ iy(a, t).
We also introduce a vortex strength γ (a, t) along the interface, a local jump in tangential
velocity, Δu, between the two fluids from below (j = 1) to above (j = 2), and cumulative
circulation Γ measured from a = 1

Δu(a, t) = γ (a, t)
sa

, Γ (a, t) = −
ˆ 1

a
γ (a′, t) da′ = −

ˆ 1

a
Δu(a′, t)sa(a′, t) da′,

(3.1a,b)
where sa = √

x2
a + y2

a is the arclength metric, with subscript a denoting partial derivatives
with respect to a. Periodicity in the x-direction then reads z(a + 2π, t) = z(a, t)+ 2π
and γ (a + 2π, t) = γ (a, t). This vortex sheet formulation of the interface, as shown in
figure 10, enables us to construct the complex potential W, valid in both fluid regions

W(Z, t) = φ + ψ i = 1
2πi

ˆ 1

0
log{sin[π(Z − z(a′, t))]}γ (a′, t) da′ + Ū(t)Z, (3.2)

where φ and ψ are the velocity potential and streamfunction, respectively, Z = X + iY
represents any field point (X, Y) in the complex plane and Ū = [U1(t)+ U2(t)]/2 is the
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X
Y

Figure 10. Schematic of the periodic vortex sheet parameterization of a two-fluid interface. Here, 0 ≤ a ≤ 1 is
the particle-like marker, z(a, t) is the complex interface shape and γ (a, t) gives the vortex strength distribution.

average unsteady flow impulse between the two fluids (Pullin 1982). We note that, while
ψ is continuous everywhere, φ jumps across the interface, leading to

W− − W+ = φ− − φ+ = Γ (a, t), (3.3)

where the subscripts ± denote the Z → z limit taken from above and below the interface,
respectively.

It also follows that the complex velocity field q is given by the Birkhoff–Rott integral

q∗(Z, t) = ∂W
∂Z

= u − iv = 1
2i

ˆ 1

0
cot[π(Z − z′)]γ ′ da′ + Ū(t), (3.4)

where again the asterisk denotes complex conjugate, and the shorthand notation z′ ≡
z(a′, t), γ ′ ≡ γ (a′, t) are used. As such, the potential flow equation introduced in (2.1a)
and the interface kinematic condition (2.3a) are automatically satisfied. The far-field limits
of q as Y → ±∞ must match the imposed flow impulse, leading to the total circulation

Γ (0, t) = U2(t)− U1(t) = 2A
1 + A

U2(t), (3.5)

where we used (3.1a,b) and (2.5). Further, we define the interface velocity specified by
each marker a as the weighted average of the complex velocities on either side of the
interface, q±, as follows:

ż∗(a, t) = q̄∗ + fγ
2za

=
{

1
2i

 1

0
cot[π(z − z′)]γ ′ da′ + Ū(t)

}
+ fγ

2za
, (3.6)

where the dot symbol denotes partial derivative with respect to t while fixing a, q̄∗ =
q̄∗(a, t) is the mean flow velocity between q∗±, following the Cauchy principal value
integral, and f ∈ [−1, 1] is an arbitrary weight parameter. Taking f = ±1 recovers the
discontinuous limiting flow velocities as q∗∓ = q̄∗ ± γ /(2za).

For closure, we derive the evolution equation for γ next. Evaluating the Bernoulli
equation (2.1b) in the limit of Z → z± and substituting into the dynamic condition (2.3b)
generates

− κ

We
= ∂(φ+ − φ−)

∂t
− A

∂(φ− + φ+)
∂t

+ (1 − A)|q+|2 − (1 + A)|q−|2
2

− 2Ay

Fr2

+ F1(t)− F2(t), (3.7)

where ∂/∂t is understood as the Eulerian derivative at constant Z. The interface curvature
here can be expressed as

κ(a, t) = Im{(∂z∗/∂a)(∂2z/∂a2)}
|∂z/∂a|3 . (3.8)
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On the role of unsteadiness in impulsive shear instabilities

Substituting (3.2), (3.3) and the Lagrangian velocity (3.6) into (3.7) yields

Γ̇ = −2A ˙̄φ + fAγRe
{

q̄
za

}
+ A|q̄|2 +

(
f
2

− A
4

)
γ 2

|za|2 − 2Ay

Fr2 + κ

We
+ F1(t)− F2(t),

(3.9)
where ˙̄φ = (φ̇+ + φ̇−)/2. Next, using the identity

φ̄a = Re{q̄∗za}, (3.10)

as well as (3.6), we can differentiate (3.9) with respect to a. After some algebra, we arrive
at the following Fredholm equation of the second kind for γ̇ :

γ̇ + A
 1

0
Im{γ̇ ′za cot π(z − z′)} da′ = Q(a, t), (3.11)

where γ̇ ′ ≡ γ̇ (a, a′) and

Q =
(

f
2

− A
4

)
∂

∂a

(
γ 2

|za|2
)

+ A
(

Im{zaI} + fγRe
{

q̄a

za

}
− 2xa

˙̄U − 2ya

Fr2

)
+ κa

We
,

(3.12)
with

I = I(a, t) =
 1

0

γ ′π(ż − ż′)
sin2 π(z − z′)

da′, ż′ ≡ ż(a, a′). (3.13)

Equations (3.6) and (3.11) form a system of IDEs that determines the evolution of
the two-fluid interface. An alternative derivation for (3.11) (equivalent in principle but
differing in formulations) can also be found in Pozrikidis (2011). Compared with the
results of Pullin (1982) and Baker et al. (1982), unsteadiness in the flow field here enters
explicitly in terms of the average velocity Ū and acceleration ˙̄U, so the flow impulse needs
to be continuous and piecewise differentiable in time. This also differs from the linear
theory (2.14) where U2 is only required to be square integrable.

3.1.2. The vortex blob regularization
Although the present boundary integral techniques are popularly used to model vortex
sheets, it is also well known that standard numerical discretizations can produce
unstable schemes. This is partly due to the curvature singularity in the exact solution
without surface tension. Therefore regularization of the Birkhoff–Rott integral in (3.6) is
commonly used to overcome both the physical and numerical instabilities (Baker & Pham
2006; Sohn et al. 2010).

Here, we implement the vortex blob method developed by Baker & Beale (2004), which
allows control of physical instabilities in the fluid motion and permits calculation past
the time of singularity formation by introducing a smoothing length scale δ. This provides
numerical damping that adds to surface tension that also acts as a dispersive regularization
of the KH instability (Hou et al. 1997; Baker & Nachbin 1998). However, the dispersive,
small-scale capillary waves associated with surface tension are possibly dampened as a
result.
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Specifically, we introduce the vortex blob by replacing the original periodic kernel K =
cot π(z − z′) in (3.6) with the following modification:

Kδ(a, a′) = K(a, a′)
[
1 + g

( r
δ

)]
, (3.14)

where δ � 1 is the smoothing length, and

r = r(a, a′) = | sin π(z − z′)|
π

, g(r/δ) = − exp(−(r/δ)2). (3.15a,b)

We chose a Gaussian smoothing function, g, in order to ensure that, as δ → 0, the
regularized vortex sheet approaches a classical weak solution of the Euler equations (Baker
& Pham 2006). Moreover, the simple poles in (3.6) and (3.11) can be removed using the
following identity (Baker & Beale 2004):

Im
 1

0
Kδ(a, a′)z′

a =
 1

0
B(a, a′)[1 + g(r/δ)] da′ = 0, (3.16)

where z′
a ≡ za(a, a′) and

B = B(a, a′) = −{x′
a(2π(x − x′))+ y′

a sinh[2π( y − y′)]}
2πr2 . (3.17)

As a result, the regularized IDE system becomes

ż∗ = 1
2i

ˆ 1

0

{
γ ′ cot π(z − z′)+ γB

πza

}
[1 + g(r/δ)] da′ + Ū(t)+ fγ

2za
, (3.18a)

γ̇ + A
ˆ 1

0
Im
{
γ̇ ′za cot π(z − z′)+ γ̇B

π

}
[1 + g(r/δ)] da′ = Qδ(a, t), (3.18b)

where Qδ modifies Q given in (3.12) by replacing I with desingularized Iδ as follows:

Iδ =
 1

0

γ ′π(ż − ż′)
sin2 π(z − z′)

[1 + g(r/δ)] da′ =
ˆ 1

0

[
γ ′π(ż − ż′)

sin2 π(z − z′)
+ γ żaB

πz2
a

]
[1 + g(r/δ)] da′.

(3.19)

3.1.3. Initial conditions
The initial values of z and γ considered here are derived from the same normal mode used
in the linear theory (§ 2.5), where the perturbed interface shape is

z(a, 0) = a + iε sin(2πa). (3.20)

Using the initial travelling wave ansatz η̂ = exp(−iΩt), as well as (2.9) and (3.1a,b), the
corresponding circulation distribution at order O(ε) is

Γ (a, 0) = εΩ

π
[1 − cos(2πa)], γ (a, 0) = 2εΩ sin(2πa), (3.21a,b)

where we recall that

Ω =
√

kA

Fr2 + k3

2We
. (3.22)
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3.2. Numerical solution approach
The numerical solutions to the initial value problem (3.18) is obtained over a uniform grid
{ak = k/N | k = 0, 1, . . . ,N − 1}. Derivatives with respect to a are computed using the
fast Fourier transform (FFT), and the desingularized integrals are approximated by the
trapezoidal rule, where spectral accuracy is expected from both calculations. The integral
equation (3.18b) for discretized γ̇ is then solved by directly inverting the corresponding
linear system. For time stepping, we use a standard variable-step and variable-order
Adams–Bashforth–Moulton predictor–corrector solver.

In addition, we use Fourier filters to mitigate round-off errors in the derivatives and
aliasing instability (Hou, Lowengrub & Shelley 1994; Baker & Beale 2004). Specifically,
the Fourier spectrum F(k) of function f (a), i.e. FFT of f (a) �→ F(k), is processed by the
νth-order filter

Fν[ f ](k) = exp(−10(|k|/N)ν)F(k), (3.23)

and the resulting amplitudes below a tolerance θ are set to zero.
We checked accuracy of the numerical scheme during flow impulse at each time step t

by comparing the input impulse U2(t) against the numerical value computed using (3.5)
as follows:

Un
2 = [Ū(t)+ Γ n(0, t)]/2, (3.24)

where Ū(t) is known as the prescribed mean flow and Γ n(0, t) is the approximated
quadrature of (3.1a,b). After the flow impulse vanishes, we also confirm conservation of
total energy numerically, as discussed next.

3.3. Numerical results
In this section we discuss the nonlinear simulations of the two-fluid flow using (3.18),
(3.20) and (3.21a,b). We consider the liquid–air interface with gravity and surface
tension under standard conditions. According to (2.15), the single Fourier mode of
wavelength λ0 = 1.7 cm produces the highest effective flow strength M that maximizes the
interfacial disturbance given any imposed exhalation flow. Notably, this length scale is also
comparable to the typical cross-section dimensions of the human upper respiratory tract
(Bourouiba 2021b), and is thus adopted in the present numerical scheme. Accordingly, the
natural oscillation period of the interface given by (2.26) is T0 = 74 ms, comparable to the
order of duration of a typical violent exhalations.

In particular, we investigate the interface’s response to the linear flow impulse UL
2 (t)

given in (2.16), with t1/t2 = 0.1. Such a canonical profile is chosen as a canonical impulse
relevant to respiratory violent exhalation flows, and informed by the linear analysis where
all proposed flow profiles affect the interface similarly. The maximum flow velocity Um is
estimated from the flow rate measurements of Bourouiba (2021b) to range from O(10)
to O(100) m s−1, resulting in approximately a maximum M = 14.6 and a minimum
M = 1.46, respectively, for the aforementioned fastest growing mode calculated using
(2.13). Accordingly, convergent numerical solutions to the nonlinear IDE system are
obtained using initial perturbation size ε = 0.001, grid size N = 512 and vortex blob size
δ = 1/1024. In the remainder, we use a Fourier filter order ν = 10 and cutoff θ = 10−10,
unless otherwise specified. Finally, the properties of numerical convergence with respect
to grid size N and blob size δ are demonstrated in Appendix B.
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Figure 11. (a) Comparison of maximum interface amplitude ηmax as a function of flow action S∞, between
the linear and nonlinear theories, for high and low impulse strength M. (b) Nonlinear interface profiles z =
x + iy at maximum amplitude obtained for large M = 14.6 and S∞ = 0.1, 0.15, 0.17 (equivalently, increasing
normalized impulse duration T2 = 0.05, 0.07, 0.08, with T1 = 0.1T2). Although the linear theory captures the
nonlinear maximum amplitude for the plotted range of S∞ well in (a), the associated wave shapes given in
(b) are nonlinear and clearly deviate from the single harmonic assumed in the linear theory. The regimes
covered in this figure are regimes I and IV as M changes.

3.3.1. Amplified GCWs, ηmax and associated energy
First, we validate the linear theory for regimes I and IV of flows of short duration
T2 (or small S∞). We expect the amplitude of the interface in these flow regimes to
sustain long term oscillations of decreasing amplitudes. We can compare our prediction
of the maximum amplitude ηmax, (2.14), with its nonlinear counterpart defined as ηmax =
max1>a≥0,t>0 |y(a, t)/ε|. Figure 11(a) shows ηmax for impulses of high and low strength
M (in regimes I and IV, respectively), where we find good agreement between the
linear and nonlinear predictions of ηmax. However, while maintaining a similar maximum
displacement, the spatial wave shape given by the nonlinear theory starts to deviate
from the linearly assumed harmonics as the flow action S∞ increases. This is shown in
figure 11(b) for the large M case for three impulses, where the nonlinear surface profile is
shown when ηmax is reached.

Next, we examine in detail the flow field, interface response and perturbation energy
system given by two typical impulses: one with high effective strength M = 14.6 and short
normalized duration T2 = 0.07 (regime I), and another with low strength with M = 1.46
but longer duration with T2 = 1.5 (regime II). For each of these two impulses, detailed
flow streamlines and kinetic energy density are illustrated in figure 12 at progressive time
instants. The streamlines are computed according to the flow velocity field q(Z, t) given
in (3.4). The energy density distribution � is defined here as �(Z, t) = ρj(|q(Z, t)|2/2 −
U2

j /2), where j = 1, 2 if Y ≶ y. In each fluid region, normalized �̄ = �/maxY≶y |�| is
shown as a colour map, so that −1 ≤ �̄ ≤ 1 in both regions. The analysis that leads
to the energy results shown here is given in Appendix C. To separate the different
scaling used for the liquid and gas, the ratio between the two normalization factors,
rk = maxY>y |�|/maxY<y |�| (gas over liquid), is also reported. In figures 12(a)–12(d),
flow details are given for the low strength impulse with M = 1.46 (regime II) at the initial
time T = 0, the impulse peak time T = T1 = 0.15, the maximum interface amplitude time
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T = Tm = 0.8 and the impulse stop time T = T2 = 1.5. We see that, by the end of the
flow impact, energy gains are concentrated around the interface, and because rk = 0.001
at this instance, most of the kinetic energy is indeed absorbed by the liquid phase. More
interestingly, the flow field obtained for high strength impulse with M = 14.6 (regime I)
is depicted in figure 12(e)–12(h). Formation of opposite shearing, and/or vortex strength,
along the interface here is kinematically responsible for the interfacial growth immediately
after the flow impulse at T = T2 = 0.07. At maximum perturbation time T = Tm = 0.3,
a finer vortex pattern is created, implying imminent interface distortion at smaller length
scales, powered by a narrow encircling zone of high kinetic energy.

3.3.2. Transition to breaking waves
Further increasing the imposed flow duration necessarily generates large surface
disturbances that cannot be supported by periodic, oscillatory waves. Instead, wave
breaking could occur. For example, formation of a plunging breaker is captured in
figure 13(a) for the high strength and moderate duration impulse with M = 14.6 and
T2 = 0.5 (regime III), where the y-values are successively elevated for each interface
profile at different times. Note that the numerical method for breaking waves suffers
additional flow instabilities caused by the dispersive capillary waves propagating along
the interface found in figure 13(a), and more importantly, the Rayleigh–Taylor instability
due to reversed density stratification, thus we only use it to investigate onset of overturning
in what follows.

The impulse velocity as a function of time is given in figure 13(b), where the wave
shape corresponding times are marked. Clearly, dramatic interface rolling rapidly takes
place over a relatively short time window. The accelerating rotation of wave shape z
overturning around the point of infinite slope at T = 0.0723 is shown in the close-up
in figure 13(c). During this process, although curvature singularity associated with the
present vortex sheet is presumably removed by surface tension (Baker & Nachbin 1998),
substantial increase of κ is still numerically observed during wave breaking in figure 13(d).
Lastly, evolution of the perturbative energies discussed in § C.2 is shown in figure 13(e),
where the liquid flow accumulates kinetic energy throughout the process while the gas
flow consistently loses relative kinetic energy. The surface and potential energies of the
interface also increase significantly compared with the system’s initial condition.

Having established two categories of interface responses to a given flow impulse,
namely amplified GCW and roll-ups, in figure 14 we investigate the stability transition
as flow duration increases. Using low effective strength M = 1.46, figure 14(a) shows
four simulated flows of increasing T2 = 2, 2.4, 2.5, 3 (regime II). Accordingly, the history
of wave height, computed as H(t) = maxa( y(a, t))− mina( y(a, t)), in response to the
imposed impulses is shown in figure 14(b). It is clear that regime transition takes place
between T2 = 2.4 and T2 = 2.5; the interface survives the entire short impulse without
breaking and continues to oscillate after reaching peak height at H = 0.12 while, for the
slightly longer impulse, H rises monotonically and develops a vertical slope that leads to
a breaker at T = 1.27. Note that wave breaking in this case occurs during the KH stable
portion of the flow impulse, i.e. times when MU2 < 1. To emphasize the importance of
continued interaction between the flow impulse and the interface in sustaining the breaking
process even after the conditions return to being classically KH stable again, we impose
a hypothetical flow impulse that follows the T2 = 2.5 curve until T = 1.18 and drastically
decays to zero at T = 1.24 (see the dashed line with an open square in figure 14a). The
resulting H evolution given by the dashed curve in figure 14(b) suggests that a breaker
does not develop and the wave amplitude starts declining if the impulse is rapidly turned
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Figure 12. Flow streamlines and perturbative kinetic energies (colour map) around the interface in response
to a flow impulse of low strength M = 1.46 in (a–d) (regime II), and high strength M = 14.6 in (e–h) (regime
I). The time instants are labelled in the U2 history. The same initial condition given in (a) is shared between the
two sequences. Normalized energy density �̄ in each fluid region at each time instance is given. Ratio between
the two reference scales at each instance is rk = maxY>y |�|/maxY<y |�|. Illustrations for the corresponding
U2 profiles are not to scale. The figure reveals the difference between peri-impulse amplification in (a)–(d) and
post-impulse amplification in (e, f ).

off. Comparison between the interface profiles at peak amplitude given by T2 = 2, 2.4 and
those at turning point generated by T2 = 2.5, 3 is shown in figure 14(c).

Analogous results for the high strength flow impulses of M = 14.6 and T2 =
0.06, 0.07, 0.08, 0.09 are shown in figures 14(d)–14( f ) (transitioning from regime I into
III). The spontaneous amplitude growth immediately after the end of the impulse is
clear for all impulses, except for the longest one with T2 = 0.9, where instead a breaker
forms near the end of the impulse, marked by the asterisk sign (figure 14d). Interestingly,
figures 14(e) and 14( f ) show that the wave steepness at turning point in this case,
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Figure 13. Wave breaking for flow impulse of M = 14.6 and T2 = 0.5, an example of a regime III
response. Progressive interface profiles with elevated y values by increasing constants are shown in
(a). The corresponding time and impulse instants, U2(T), are marked in (b). Four close ups at T =
0.717, 0.721, 0.723, 0.726 in (c) delineate the overturning, and in (d) the associated curvature increase is shown
as a function of T . Evolution of the perturbative energies is given in (e) where the inset zooms in for Es and Ep.
This is an example close to a classic KH instability that leads to interface roll-up.

H = 0.09, is lower than the peak height attainable by impulses of shorter duration, in
the regime where post-impulse oscillation is observed. This breaking height of H = 0.09
is also smaller than those seen in figure 14(b) for the weaker impulses. Nonetheless, all
values of critical H at which breakers emerge in figure 14 fall within the range surveyed
by Perlin et al. (2013). Further, wave breaking with T2 = 0.09 here, albeit at a relatively
smaller critical H, must be supported by a larger energy influx from the flow impulse.
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Figure 14. Stability transition of interface response to flow impulses of increasing duration. Regime II cases
leading to destabilization with M = 1.46 are given in (a)–(c), with amplification occurring during the impulse’s
duration. Regime I to regime III with M = 14.6 are shown in (d)–( f ), with amplification occurring mostly
post-impulse. Panels (a) and (d) plot the sequence of imposed flows U2(T), (b) and (e) give the resulting wave
height H(T). In (a) the horizontal dividing line marks linear stability. The triangles mark instants when the
interface is at peak amplitude without wave breaking, whereas the asterisks mark the onset of wave overturning
when a vertical slope occurs. The solid circles indicate times after which a larger numerical smoothing length
δ = 1/128 is used. The open squares designate impulse end time of the hypothetically switched off impulse
drawn using a dashed line. For each impulse, (c) and ( f ) display the wave shape at peak amplitude or breaking
point. By gradually increasing the impulse duration T2, the transition of interface stability from persisting
waves into breaking waves is demonstrated.

Indeed, figure 15 shows the total energy injection into the two-fluid system, as well as the
kinetic energy gain in the liquid phase, produced by the entirety of the flow impulse, up to
T2 = 0.08 (see Appendix C for energy calculations). The matching linear and nonlinear
results show exponential energy growth as T2 increases that is predominantly in the form
of liquid kinetic energy Ek1 . Therefore, regime transition to interface rolling comes as no
surprise if T2 is further increased. Finally, note that with the current numerical scheme
where surface tension effect is not completely resolved due to smoothing, we do not
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Figure 15. Normalized total energy injection into the two-fluid system (circles), and the kinetic energy gain in
the liquid phase (squares), generated by regime I flow impulses of increasing duration T2. Results are obtained
at T = T2 after which E is conserved, and Ek1 becomes the total kinetic energy in the liquid phase. This also
show goods agreement with the linear theory from § C.1.

establish the long-term stability of post-impulse surface waves of large amplitude (e.g.
gravity waves of H > 0.14). We illustrate such oscillatory behaviour of high frequency
capillary waves and its numerical properties in Appendix B.

3.3.3. Breaking due to transient growth
So far, the initial perturbation size ε = 0.001 in (3.20) and (3.21a,b) has been used,
although the phenomenon of over-energized interface losing stability is not limited to
such specific choice of initial conditions. In fact, here we show that even transient growth
supported by a classically KH stable flow, as introduced in § 2.5, can cause transition
toward wave breaking.

Figure 16 shows two impulses of varied duration T2 = 1, 2, but the same strength
M = 0.95 < 1 (regime II). Linear analysis shows that a maximum interface amplification
exists for transient growth when M < 1, independent of the imposed flow duration, and in
this case ηmax � O(10) according to (2.19). Therefore, a larger perturbation size ε = 0.05
is adopted to promote wave destabilization. As a result, evolution of wave steepness H
follows in figure 16(b), where the short impulse yields stable oscillations whereas the long
impulse causes the wave to overturn, starting at T = 0.534 marked by the asterisk. The
nonlinear solutions here are also compared with the linear ones, where the results match
qualitatively for the short impulse, with particularly good agreement in the early stages.
However, for the long impulse, the two predictions diverge around the time of peak H given
by the dashed line, after which oscillation continues for one and wave breaking initiates
for the other. Figure 16(c) shows a sequence of wave profiles taken at times marked by
open circles in figure 16(a,b), and starting at T = 0. Clearly, the initial perturbation wave
travels in the flow direction while the wavefront keeps steepening, until overturning occurs
drastically over a short window of time. Note that the entire breaking process remains in
the flow regime where the interface is linearly classically KH stable.

To understand this surprising behaviour, insights are gained from § A.2, where (A2)
shows that the asymptotic solution of the linear system for small flow strength M, where
H = 2|η|ε is controlled by the convolution integral between flow action U2

2 and the
unforced interface GCW of the form sin(4πT). The GCW oscillation offers a finite time
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Figure 16. Wave breaking during transient growth despite the flow regime being classically KH stable.
(a) Two impulses U2(T) with weak effective strength M = 0.95 are applied. (b) Comparison between the linear
(dashed lines) and nonlinear (solid lines) predictions for wave height H driven by the two flow impulses as a
function of time. (c) Snapshots of wave shapes from the initial condition ε = 0.05, to the formation of wave
breaker. The corresponding times are marked using open circles in (a) and (b). This is an example of wave
breaking in regime II induced by increasing the duration of a classically KH stable flow impulse.

scale for the imposed flow to resonate with the interface, so the wave amplitude grows.
In the small M limit, this window is exactly T ∈ (0, 1/4) according to (A2). However,
for larger M < 1, this time of overlap can be longer as observed in the linear solutions
shown in figure 16(b). Further, figure 16 shows that, with sufficient amplification during
the transient flow–interface resonance, wave breaking can occur, even if the flow is
classically KH linearly stable all along. The transition from persisting waves to breaking
waves is further demonstrated in figure 17 for weak impulses (M = 0.95) of increasing
duration T2. If the amplified wave persists after reaching peak amplitude, we can define
a maximum wave steepness Hmax = max0≤T≤1 H(T) from each airflow impulse. In this
regime, our linear analysis captures well that Hmax is an increasing function of T2.
However, as T2 increases, the interface response deviates increasingly from persistent
waves (stable over at least T ≤ 1) to breaking waves, where the wave shape overturns.
For these long impulses of T2 > 1.3, H∞ = H(T∗) is obtained at the overturning time,
T∗ = min{T > 0 : dy(a, T)/dx(a, T) = ∞}, and is given in figure 16 instead of Hmax.
The value of H∞ appears to plateau for large T2, suggesting a ceiling for wave amplitude
growth fuelled by adequate cumulative exposure of the interface to the impulse during
transient resonance, which, in turn, induces wave breaking.

4. Experiments

4.1. Apparatus
In this section, we support the stability transition of interface waves from persistent to
breaking discussed in §§ 3.3.2 and 3.3.3 experimentally. A cylindrical tube of dimensions
comparable to a human trachea is lined with a horizontal thin layer of liquid/water to model
the upper respiratory airway (Kleinstreuer & Zhang 2010; Bourouiba 2021b). We designed
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Figure 17. Maximum wave steepness Hmax (circles) and overturning wave steepness H∞ (triangles) as
functions of impulse duration T2. The dashed line gives Hmax = 2ε|η| from linear theory. The sharp transition
between waves for small T2 and breakers for large T2 is highlighted. Constant M = 0.95 and ε = 0.05 are used,
while the range of T2 here spans flow regimes IV to II, ultimately causing destabilization.

a flow system employed to generate airflow impulses that mimic violent exhalations
(Bourouiba 2022). We direct these impulsive flows above and parallel to an initially
stationary liquid layer inside the trachea tube. The volumetric flow rate of each impulse
is measured as a function of time. Accordingly, responses of the liquid–air interface are
recorded throughout the flow impulse duration by a high-speed camera. Figure 18 shows a
schematic of the experimental set-up.

4.2. Results and discussion
To examine the varied effect of impulses on the interface, two impulses, denoted as
A and B, are generated and shown in figure 19(a), where the native volumetric flow
rate measurements are converted to flow velocities using the tube opening area. Both
impulses, UA,B

2 (T), are normalized with velocity scale Um = 4.3 m s−1, measured as
the maximum speed of impulse B, and time scale Tp = 45.4 ms, taken as the presumed
dominate wave period. The determination of Tp will be explained shortly. Note that
both impulses qualitatively follow the linear profile of (2.16b), peaking around T ≈ 1.
Particularly, impulse B is stronger than A with UB

2 > UA
2 for all observed 0 ≤ T ≤ 6, and

the peak velocity of UA
2 is approximately 80 % of UB

2 .

4.2.1. Dominant length and time scales
The interface evolution as a result of the impulses A and B is given in figures 20(A1-6) and
20(B1-6), respectively. In both cases, periodic GCWs in the flow direction are observed,
whose dominant wavelength can be determined at each instant in the wavenumber
(Fourier) domain. Across the time windows shown here, the average dominant wavelength
is found to be λ = 1.1 cm for both impulses, with less than 20 % variability over time.
This wavelength is shorter than the critical mode λ0 = 1.7 cm given by the linear theory
in (2.15) for a liquid–air interface. Further, the wave period associated with the measured
λ = 1.1 cm is computed using (2.11) to be Tp = 45.4 ms, also shorter than that of the
critical mode T0 = 74 ms found in (2.26). These differences are most likely due to the
confined geometry in experiments, challenging the unbounded domain assumed in theory.
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0.3 – 0.4 cm

Airflow impulse Airflow 
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systems

35 cm

Figure 18. Schematic of experimental set-up representative of respiratory impulses acting inside a trachea-like
geometry lined with liquid. Exhalation airflow impulses are generated by the fluid control systems. The
corresponding interface response is imaged and quantified.

Profile A

Profile A

Profile B Profile BTheory
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0.15
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T T
0 0.5 1.0 1.53 4 5 6

(a) (b)

Figure 19. (a) Normalized airflow velocity measurement U2, as a function of dimensionless time T for the
impulses A (solid) and B (dashed) that represent exhalations profiles plausible in a trachea. (b) Evolution of the
interface wave steepness per wavelength, H, in response to the two impulses. Comparison between experiments
(dots) and the model from linear theory (lines) is given for each impulse. Here, ε = 5 × 10−6, M = 2.87 for
impulse A and ε = 5 × 10−7, M = 4.9 for impulse B moving the dynamics to regime III of our framework.

Nevertheless, we adopt Tp = 45.4 ms suggested in experiments as the aforementioned time
scale used for normalization in this section. With velocity and length scales chosen, the
effective flow strength M can be evaluated for impulses A and B using (2.13) with gravity,
surface tension and densities as MA = 0.46 and MB = 0.6, respectively. These values are
below the instability threshold of M = 1 of the classic linearized KH instability theory,
and are also weaker than those of the critical mode. A summary of all numerical values is
given in table 2.

4.2.2. Stability transition
Since both MA,MB < 1, according to the classic KH dispersion relation, e.g., figure 2,
(1.1), and (2.14), impulses A and B produced in our experiments would be predicted
classically to yield stable interfaces for all times. However, significant wave growth on an
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(A3)

(A1)

(A2)

(A4)

(A5)

(A6)

(B3)

(B1)

(B2)

(B4)

(B5)

(B6)

λH

λ

Flow direction

Figure 20. Images of the water–air interface in the model trachea reacting to impulsive airflow A in
(A1)–(A6) at times T = 0.57, 0.84, 1.01, 1.19, 1.37, 1.63; and impulse B in (B1)–(B6) at times T =
0.57, 0.71, 0.84, 0.97, 1.04, 1.1. Both scale bars shown in (A1) and (B1) give a 5 mm reference. Dimensional
wavelength λ and wave steepness λH are illustrated.

Impulse A Impulse B Critical mode

Wavelength, λ (cm) 1.1 1.1 1.7
Wave period, Tp (ms) 45.4 45.4 74
Maximum speed, Um (m s−1) 3.3 4.3 (3.3, 4.3)
Effective flow strength, M 0.46 0.6 (0.48, 0.63)

Table 2. Comparison of wave characteristics between experiments for impulses A and B and the linearized
critical mode ((2.15) and (2.26)). We calculate M for the critical mode using the same Um values measured for
the impulses A and B.

initially stationary interface of undetectable perturbation sizes at T = 0 develops following
both impulses (figure 20 and supplementary movies available at https://doi.org/10.1017/
jfm.2023.722). For impulse A, the maximum wave amplitude is observed at T = 1.19
(figure 20A4) shortly after the maximum impulse speed is reached. Persistent waves of
smaller amplitudes propagate (figures 20A5 and 20A6) following the first peak. Theory
predicts that amplitude oscillation should be observed, however, this is not well resolved in
the experiments due to wave reflections and interference soon after T > 1.6. Nonetheless,
it is clear that, although impulse A continues to have a relatively high velocity at later
times, the interface does not develop a second peak higher than the first, while also not
fragmenting. This shows again that only maintaining a positive flow velocity is insufficient
to amplify sustainably or break interface waves.

In contrast, switching to a stronger impulse B sufficiently overturns the interface wave
shape as it rises (figure 20B3 and 20B4), and ultimately causes wave breaking, interface
fragmentation and subsequent droplet formation (figure 20B5 and 20B6). The comparison
of the two impulses and their corresponding interface responses experimentally illustrates
the stability transition from regimes II to III we discussed in § 2.4. The experimental
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results further establish our theoretical and numerical results, showing that cumulative
flow reaches a threshold necessary to destabilize and disintegrate the interface even if
exponential growth from linear classical KH theory is not applicable.

Lastly, we note that, to verify the theoretical prediction of post-impulse wave
amplification in regime I, strong impulses of short duration, e.g., those last less than
O(10) ms, are required. The generation of such rapid flow transition pauses significant
technical challenges and is currently ongoing experimental work.

4.2.3. Wave steepness measurements
A comparison between the interface responses following the airflow impulses A and B
is given in figure 19(b) where the wave steepness per wavelength H is measured for
each impulse as a function of time. Steepness measurements are obtained at each time
by scanning the observational area in the flow direction through a moving window of
wavelength λ = 1.1 cm, producing for each sample window

H(x0, t) = 1
λ

[
max

x0≤x≤x0+λ
η(x, t)− min

x0≤x≤x0+λ
η(x, t)

]
, (4.1)

where x is the coordinate in the flow direction, x0 is the beginning end of a window, t
is time and η(x, t) is the interface position. Taking the mean and standard deviation of
H(x0, t) with respect to x0 at each time t thus gives the average measurement and its
associated error.

Figure 19(b) shows that H exhibits a maximum peak over time for both impulses at
early stages of the impulse. The strong impulse B reaches its peak steepness, shortly
before fragmentation occurs, at an earlier time and with a higher height than those of
the weak impulse A. The difference in maximum H between these waves, i.e. H ≈ 0.2 for
impulse B and H ≈ 0.14 for impulse A, clearly results in distinct interface amplification
and fragmentation, as predicted by the wave-breaking transition nonlinear simulations
of figures 14 and 16. Notably, the linear and nonlinear theories in the present study are
developed for deep water waves, and are hence not strictly applicable to the experiments
with bounded geometry. Both impulses A and B are long and would fall in regime II
and be stable with respect to classical KH. Their admitted transient wave growth (see
§§ 2.5 and 3.3.3) is expected to amplify the interface’s height up to a factor O(10). This
is not sufficient to generate the amplification of wave height necessary to capture the
interface’s response seen in figures 20 and 19(b) quantitatively. Allowing microscopic
yet positive initial perturbation amplitude values leads to ε = 5 × 10−6, M = 2.87 for
impulse A and ε = 5 × 10−7, M = 4.9 for impulse B that capture the amplification
quantitatively. However, these values of M are significantly higher than their theoretical
counterpart in table 2. Nonetheless, interesting insights emerge when comparing the
measurements with our linear theory results (figure 19b); the trend of the experimental
temporal response of the interface’s height is captured by the linear theory. The qualitative
agreement in temporal evolution seen in figure 19(b) suggests that, although outside
the strict domain of validity of the linear theory, the unsteady framework can still be
used to rationalize the experimental observation obtained by conceptually mapping the
observations to the idealized theoretical framework, but with an inflated effective flow
strength M. This finding is also particularly interesting given that the experiments are
conducted in confinement and, obviously, with viscosity, where it has been shown that, for
example, viscous interfacial stress in the normal direction enhances KHI in a channel flow
(Funada & Joseph 2001); the drag force exerted by a bottom surface in a shallow water
KH flow can be destabilizing (Jin, Le & Fukumoto 2019); and KHI could be increased
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in shallower water due to wave dispersiveness (Le 2021). Therefore, we have reasons to
expect a priori more interface destabilization rather than less for a given impulse profile
and intensity in our experiments. Further work is ongoing to rationalize and incorporate
the role of these effects in our unsteady theoretical framework.

5. Conclusions

Shear instabilities are ubiquitous and can initiate air–liquid interface fragmentation into
droplets of a range of sizes and speeds. Although the family of the classical KH instabilities
received a lot of attention, it mostly focused on the role of viscosity, geometry or spatially
varying imposed velocity profiles, but restricted to steady or strictly oscillatory profiles
in time. Yet, unsteadiness with transient or impulsive airflow profiles shearing liquid
interfaces is ubiquitous in a wide range of physical, environmental and physiological
processes. Much remains to be understood on how such unsteadiness shapes the onset
of interface amplification necessary to trigger the interface’s topological change and its
subsequent fragmentation. Indeed, given the flow impulsiveness classical normal mode
approaches used for steady flows do not apply and intuition based on asymptotic stability
criteria does not map.

Our focus has been on crystalizing the essential role of unsteadiness, hence, we
considered a setting of reduced complexity in which a two-dimensional air-on-liquid
interface is exposed to spatially uniform but time-varying airflow velocity profiles. We
chose velocity profiles that are canonical representations of impulsive flows. We focused
on the interfacial response to impulsive shearing, specifically accounting for the flow
history and its cumulative effects. This was achieved by formulating the evolution of a
sinusoidally perturbed interface as an impulse-driven initial value problem. We examined
both the linearized flow equations, where the interface perturbation amplitude is governed
by an ordinary differential equation, and the nonlinear behaviour, with the interface shape
tracked as a vortex sheet coupled with the flow using a boundary integral method explicitly
accommodating the unsteady background flow. We combined theoretical, numerical and
experimental approaches to address the following questions:

(i) Can impulsiveness lead to counterintuitive results, where destabilization is enhanced
or hindered due to the transient nature of the impulse, when compared with expected
outcome from a steady classical KH stability analysis where some instantaneous or
integrated properties of the impulse flow are used?

(ii) When mapping the canonical shear instability framework associated with a constant
imposed shear flow to interfacial perturbation subjected to an impulse, what physical
quantity or property of the impulse matters to trigger instability, and on which time
scale? For example, should one reason with peak and/or averaged flow velocities,
total energy injection or something else?

(iii) How does the interface evolve during such impulsive perturbations? In particular,
given the very transient nature, how does the time scale of perturbation growth
compare with the impulse time scale to shape transient vs asymptotic amplitude
growth and transition from linear to nonlinear regimes of perturbations?

(iv) How does the time scale of instability onset compare with that of the impulse
imposed? For example, does the instability develop always during the ramp up of
the impulse, or can it develop during ramp down or even after end of the impulse?

In response to (i), we find that the impulsiveness of the background flow does introduce
surprising results. Transient growth and linear amplification, and transition to nonlinear
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GCW profiles enabling onset of breaking, can indeed emerge even if a configuration
is classical KH stable for most, or all, of its impulse profile. Indeed, and in response
to (ii), we find that, due to the unsteadiness, the focus on an instantaneous intuition,
picking, for example, the maximum or average intensity of the airflow impulse to estimate
stability outcome leads to inconsistent and incorrect results. Similarly, well-established
stability criteria for temporally oscillatory KH-type flows, in terms of modal growth and/or
parametric resonance uniquely specified using oscillation amplitude and period, are not
directly applicable to the impulsive flows that we presently studied. Instead, accounting for
the history of the impulse is essential. In response to (iii)–(iv), we find that, for impulses
much shorter than the GCW period, it is the impulse’s total action, akin to a cumulative
energy imparted into the system, that governs the amplification regardless of the impulse’s
detailed profile. Note that in this case transient amplification can occur after the impulse’s
end. While for longer impulses, the details of the impulse profile start to matter and,
akin to a resonance, it is the entangled history of the interaction of the forcing, i.e. the
impulse, that changes rapidly in amplitude, and the response of the oscillating interface
that matters. Such history of interaction is not mappable to the classical steady KH
framework. Here, although the interface’s amplitude may not be exponentially growing,
its amplitude may still end up being comparable to the impulse background flow that is
rapidly changing in the meantime. Such interactions being therefore shaped by how the
impulse’s amplitude evolves relative to the history of the interface’s response. Hence, we
frame our findings using a classification of the interface’s response in the four regimes
illustrated in figure 5 and discussed in § 2.4, capturing the effective impulse’s strength,
M, and the impulse duration, Td. The value of M is a function of fluid densities, gravity
and surface tension; Td is the impulse duration with respect to the interface’s unperturbed
oscillatory base-flow period. Both M and Td determine the potential for optimal conditions
that enable amplification, sub-exponential transient or exponential growth of the interface.
As Td increases, and assuming a KH unstable profile (M > 1), the interface’s amplitude
grows exponentially with an exponent specified by the detailed impulse velocity temporal
profile, and the classical KH instability is recovered. Extending the flow duration leads to
increased maximum GCW steepness in the first peak of its oscillations which eventually
enables onset of wave breaking during the rise towards maximum steepness. Therefore,
we observe preferential transition from persisting to breaking waves, if sufficient energy
is injected in a manner timed to maximize work on the deforming interface early in this
rising phase. Again, such transition enabling onset of nonlinear wave breaking can occur
for classically KH stable flows of low strength (M < 1).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.722. The
data that support the findings of this study are available upon reasonable request.
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Figure 21. Value of ηmax as a function of U2 with varying velocity peak time τ1 for the (a) linear,
(b) exponential and (c) Gaussian flow models. Along each curve, S∞ is held constant and the normalized
impulse duration Td attains its maximum T0

d when τ1 = 0. In (b) and (c), Td is defined using d = 0.001 (see
table 1). Here, M = 10 is used throughout. The maximum amplification is shown to be insensitive to the time
ratio τ1/τd .

Appendix A. Elements of the linear analysis

A.1. Fast ramp up compared with the full impulse duration favours stronger interface
amplification

The effect of increasing τ1 is illustrated in figure 21 for three different flow models. Here,
while holding S∞ fixed, ηmax is given for three U2 canonical profiles as a function of
the time ratio τ1/τd, which measures the profile’s relative rise time as a function of
total duration. We consider a range of values for S∞. Note that, as S∞ increases, the
flow impulse duration is increasingly comparable to the natural oscillation period of the
interface. The figure shows that, overall, for short flow impulses, ηmax is a very weak
function of τ1. As S∞ increases, ηmax does not vary significantly with respect to τ1/τd,
unless S∞ is larger than 0.5, at which point ηmax starts to decrease very moderately with
increasing τ1/τd, particularly over a range of small τ1 values. Particularly, here, using
d = 0.01 in table 1, we find that the normalized impulse duration Td attains maximum
Td = T0

d for constant S∞ when τ1 = 0, as labelled in figure 21. These findings are
applicable across all three flow models used. Particularly, using d = 0.001 in table 1,
§ 2.3, one finds that the normalized impulse duration Td as a function of time ratio τ1/τd
attains its maximum Td = T0

d for constant S∞ when τ1 = 0, (figure 21). These findings are
common to all the impulse airflow models for which a maximum airflow is relevant (i.e.
not the step impulse).

A.2. Asymptotic solution in the limit of weak impulses M → 0
In the limit of weak impulses, M → 0, we obtain the first-order perturbation amplitude by
expanding η̂(τ ) = ŷ0(τ )+ ŷ1(τ )M2 + O(M4). Accordingly, (2.14) and (2.18a,b) yield

ŷ0(τ ) = cos(τ )− i sin(τ ), ŷ1(τ ) =
ˆ τ

0
sin(2(τ − τ̃ ))ŷ0(τ̃ )U2(τ̃ )

2 dτ̃, (A1a,b)

resulting in the following amplitude magnitude:

|η̂(τ )| =
√

1 + M2
ˆ τ

0
sin(2(τ − τ̃ ))U2(τ̃ )2 dτ̃ + O(M2). (A2)
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Again, such amplitude of perturbation oscillates, rising in the phase τ ∈ (0,π/2) where
the integrand of the convolution integral in (A2), is positive. We also seen that the peak
magnitude ηmax is maximized if U2 ≡ 1.

A.3. Asymptotic ηmax for large M
Here, we derive the asymptotic behaviour of the maximum interfacial perturbation ηmax
given by the linear (L) and exponential (E) profiles for impulses of large effective
strength M and duration τd. The Gaussian airflow profile is omitted in this calculation
due to difficulties in evaluating related integrals in (2.22) in closed form. To simplify
the calculation, we assume that the flow acceleration time is small, i.e. τ1 = 0, for both
profiles.

A.3.1. The linear profile
First, by approximating M2UL

2 (τ )
2 − 1 ∼ M2UL

2 (τ )
2 as M → ∞ in Ln (2.23), where UL

2
is specified by the linear profile (2.16b), the exact solution for η̂ and η̂′ found in (2.22)
produces

d
dτ
η̂L(τd) ∼

∞∑
n=0

(
M(Mτd)

2n+1
2n+1∏
m=1

am − i(Mτd)
2n

2n∏
m=1

am

)
, (A3a)

η̂L(τd) ∼
∞∑

n=0

(
(Mτd)

2n
2n∏

m=1

bm − i
(Mτd)

2n+1

M

2n+1∏
m=1

bm

)
, (A3b)

where

am = 2
4m − (−1)m + 1

, bm = 2
4m + (−1)m − 1

, m = 1, 2, . . . . (A4a,b)

Using τd = 3S∞ as seen in table 1, the series (A3) converge exactly and asymptotically as
S∞ → ∞ as follows:

d
dτ
η̂L(τd) ∼ M2S∞ 0F1

(
; 7

4
; 9M2S2∞

16

)
− i 0F1

(
; 3

4
; 9M2S2∞

16

)

∼ (M − i)
Γ

(
3
4

)
exp

(
3MS∞

2

)
√

2π(3MS∞)1/4
, (A5a)

η̂L(τd) ∼ 0F1

(
; 1

4
; 9M2S2∞

16

)
− 3iS∞ 0F1

(
; 5

4
; 9M2S2∞

16

)

∼
(

1 − i
M

) √
2Γ

(
5
4

)
(3MS∞)1/4 exp

(
3MS∞

2

)
√

π
, (A5b)

where 0F1 is the generalized hypergeometric function (Abramowitz & Stegun 1972) and
Γ is the gamma function. Now, (2.27) and (A5) show that, at leading order for large M

973 A28-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.722


On the role of unsteadiness in impulsive shear instabilities

and large S∞,

ηL
max ∼

Γ

(
3
4

)
(2π)1/231/4

M exp
(

3MS∞
2

)
(MS∞)1/4

, (A6)

establishing the result of (2.33).

A.3.2. The exponential profile
Similarly, we can compute asymptotically Ln and therefore η̂′ from (2.23) and (2.22) using
the exponential profile (2.16c). Since τd defined by (2.17) can be arbitrarily large in this
case, the τd → ∞ limit is passed onto the reduced series for η̂′, giving

lim
τd→∞

dη̂E

dτ

∣∣∣∣
τ=τd

∼
∞∑

n=0

(
M(MS∞)2n+1

n∏
m=1

1
m2 + m

− i(MS∞)2n
n∏

m=1

1
m2

)
,

∼ MI1(2MS∞)− iI0(2MS∞), (A7)

where In, n ∈ {0, 1}, is the modified Bessel function of first kind of order n. For large S∞,
the converged series behaves asymptotically as

lim
τd→∞

dη̂E

dτ

∣∣∣∣
τ=τd

∼ (M − i)
exp(2MS∞)

2
√

π(MS∞)1/2
. (A8)

Substituting (A8) into (2.27) and taking M → ∞ yields the desired result presented in
(2.34),

ηE
max ∼ M exp(2MS∞)

2
√

π(MS∞)1/2
. (A9)

For completeness, besides η̂′
d derived in (A7), η̂d in this case also converges, summing

to the following closed form for large τ according to (2.22):

η̂E(τ ) ∼ [MI1(2MS∞)− iI0(2MS∞)]τ +
∞∑

n=0

cn(MS∞)2n − i
M

∞∑
n=0

dn(MS∞)2n+1,

(A10)
where cn and dn are coefficients recursively determined from expanding and integrating
Ln in the M → ∞ limit. The first few terms are listed below

{cn} =
{

1,−1,−5
4
,− 5

18
,− 47

1728
,− 131

86400
, . . .

}
,

{dn} =
{

0,−2,−3
4
,− 11

108
,− 25

3456
,− 137

43200
, . . .

}
.

⎫⎪⎪⎬
⎪⎪⎭ (A11)

Appendix B. Nonlinear numerical convergence

B.1. Capillary waves
Difficulty for long-term nonlinear simulation of post-impulse waves arises as surface
tension causes rapid oscillation of the high frequency modes and capillary waves are
dispersed along the interface (Hou et al. 1997; Baker & Nachbin 1998). To illustrate
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Figure 22. Capillary waves evidenced by comparing (a) the interface shape z = x + iy, (b) distribution of
vortex strength γ (a, t) and (c) the interface curvature κ(a, t), obtained at two different times, T = 0.08 (solid
lines) and T = 0.25 (dashed lines), using M = 14.6 and T2 = 0.08.

this small-scale behaviour, figure 22 compares (a) the interface shape z, (b) the vortex
distribution γ and (c) the wave curvature κ , obtained for M = 14.6 and T2 = 0.08, at
two different times: T = 0.08 and T = 0.25. When U2 vanishes at T = 0.08, the γ and κ
profiles are smooth except near the wave crest where large slopes appear. In particular,
boundary layers of positive and negative vortex strength concentrate on each side of
the z apex, forming a vortex pair of opposite sign that kinematically drives the crest to
continuously grow. During this post-impulse growth, capillary waves develop along the
interface, generating rapid oscillations in the γ and κ profiles, as seen at T = 0.25. To fully
capture these waves, high resolution markers grid with accordingly small smoothing length
is required, as illustrated in a convergence test in Appendix B. However, time integration as
such becomes prohibitively demanding due to markers clustering and the unstable growth
of sawtooth modes. Our present numerical scheme is nevertheless adequate for resolving
large-scale motion of the interface and distinguishing breaking waves.

B.2. Convergence with respect grid size and smoothing length
Here, we give examples of the convergence tests we completed for the nonlinear
simulations. Figure 23 shows the relative errors (absolute value) in the maximum interface
amplitude ηmax and the computed airflow velocity Un

2 (see (3.24)) as a function of time.
The simulation is performed for the linear model with effective strength M = 1.46 and
normalized duration Td = T2 = 0.5. Slow impulse profile and numerical results obtained
using grid size h = 1/N = 1/1024 and smoothing length δ = 1/8192 are used as reference
to measure error associated with ηmax, whereas the exact value of U2(t) is known. For
both variables ηmax and U2, the numerical scheme performs consistently across the entire
flow impulse and we obtain satisfactory accuracy in recovering U2 even when U2 → 0
as t → td. We also observe that convergence with respect to δ is quickly established as δ
decreases to subgrid scales, e.g. δ/h < 1/2, in which cases the solution accuracy depends
predominately on N.

Figure 24 shows a second typical test, with an impulse of high strength M = 14.6 and
short duration T2 = 0.08. We compare results for the wave shape z and vortex distribution
γ obtained using various N and δ at the impulse stop time T = 0.08 and the maximum
wave steepness time T = 0.25. In all cases, the difference between results given by
N = 512, δ = 1/1024 and N = 512, δ = 1/2048 is negligible, both showing reasonable
but not exact agreement with the convergent reference solution of N = 1024, δ = 1/4096.
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Figure 23. Convergence of ηmax in (a,c) and Un
2 in (b,d) as function of time with respect to grid size h = 1/N

and smoothing parameter δ. The flow impulse has effective strength M = 1.46 and duration Td = 0.5 in this
test. Results obtained using h = 1/1024, δ = 1/8192 are the reference solution against which error in ηmax is
estimated. This reference numerical solution is also compared against the known values of U2(t) in (b) and (d).

Importantly, this shows that the post-impulse free-surface growth, and the existence of
the accompanying small-scale capillary oscillations in the range 0.08 < T < 0.25, are
physical and that the lower resolution results capture these features well.

Appendix C. Perturbative energy considerations

C.1. Linear dynamics
Here, we turn our attention to the energy contributions of the air–liquid interface
perturbation per wavelength; the potential, kinetic and surface energies. At any given time
τ , these are defined relative to the flow field at time τ for the unperturbed surface (ε = 0)
subject to a prescribed unsteady velocity impulse that is spatially uniform in each fluid. As
such, the perturbative energies remain finite for all times. Specifically, we determine the
surface energy from the arclength as

Es = 1
We

⎡
⎣ˆ 1

0

√
1 +

(
d

dx
Re(η̃ε eikx)

)2

dx − 1

⎤
⎦ . (C1)
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Figure 24. Comparisons between solutions for z and γ of different resolutions at two times, T = 0.08 and
T = 0.25. Linear flow impulse with M = 14.6 and Td = T2 = 0.08, T1 = T2/10 is considered. In all panels,
the solid, dashed and dot-dashed lines are respectively given by N = 512, δ = 1/1024, N = 512, δ = 1/2048
and N = 1024, δ = 1/4096.

Expanding the integral for small ε and using (2.10) gives, at leading order,

Es = π2|η̂(t)|2ε2

We
+ O(ε3). (C2)

Similarly, we calculate the potential energy with y = 0 chosen reference

Ep = A

Fr2

ˆ 1

0
[Re(η̃ε eikx)]2 dx = A|η̂(t)|2ε2

2Fr2 . (C3)

For the perturbation kinetic energies, we integrate the velocity field in each fluid j, giving

Ekj =

⎧⎪⎪⎨
⎪⎪⎩

1 + A
2

lim
h→∞

ˆ 1

0

ˆ Re(η)

−h
|∇Re(φ1)|2 dy dx − hU2

1, j = 1,

1 − A
2

lim
h→∞

ˆ 1

0

ˆ h

Re(η)
|∇Re(φ2)|2 dy dx − hU2

2, j = 2.
(C4)

Substituting (2.8) and (2.9) into (C4) yields for ε → 0 and h → ∞ that

Ekj ∼ 1 − (−1) jA
2

πε2{|Gj|2 + 2Uj[Re(Gj)Im(η̃)− Re(η̃)Im(Gj)]}, (C5)
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where

Gj = 1
k

(
dη̃
dt

+ ikUjη̃(t)
)
, (C6)

with η̃ given in (2.10). Combined, the total perturbative energy per wavelength is thus
E(t) = Es + Ep + Ek1 + Ek2.

Interestingly, unlike the classical KH theory for steady background flows which satisfies
conservation of total energy E(t) for all t, here with time-varying Uj, the rate of energy
change dE/dt is generally non-zero. This is expected since the pressure gradient driving
the far-field velocity profile must do positive (or negative) work on the fluids while Uj is
increasing (or decreasing). Conservation of energy within the two-fluid system can only
be re-established after the flow impulse ends. Indeed, for large t such that Uj(t) = 0, (C5)
simplifies and we obtain

dE
dt

= ε2
(

π2

We
+ A

2Fr2

)
d|η̂|2

dt
+ πε2

k2

(
d2η̂

dt2
dη̂∗

dt
+ dη̂

dt
d2η̂∗

dt2

)
= 0, (C7)

where the asterisk denotes complex conjugate, and the last equality follows from the
dynamic equation (2.11) for η̂.

C.2. Nonlinear dynamics
Analogous to § C.1, we calculate the nonlinear energy perturbation per wavelength
relative to the unsteady parallel base flows. First, the potential and surface energies are,
respectively,

Ep = A

Fr2

ˆ 1

0
y2xa da, Es = 1

We

(ˆ 1

0
|za| da − 1

)
. (C8a,b)

The derivation for the kinetic energy in each fluid region follows largely (Pullin 1982),
except for the unsteady terms explicitly involving U1,2(t) which we retain, yielding

Ek1,2 = A±1
2

ˆ 1

0
ψ
(
φ̄a ± γ

2

)
da+ (1±A)U1,2

4

ˆ 1

0
yγ da ∓ ln 2

4π
(1 ± A)U1,2(U1 − U2),

(C9)
where φ̄a is calculated using (3.10). Here, we obtain the streamfunction ψ from repeated
integration of (3.2) by parts, leading to

ψ(a, t) = 1
2

Re
ˆ 1

0
(m − m′)z′

a cot π(z − z′) da′ − U1 − U2

2π

ˆ 1

0
log
∣∣∣∣ sin π(z − z′)
sin π(a − a′)

∣∣∣∣ da′

+ ln 2
2π

(U1 − U2)+ (U1 + U2)y
2

, (C10)

where
m = m(a) = Γ (a)− (U1 − U2)a, m′ ≡ m(a′). (C11)

Therefore, we obtain the total perturbative kinetic energy

Ek =
ˆ 1

0
ψ
(

Aφ̄a + γ

2

)
da + (1 − A2)Ū

2

ˆ 1

0
yγ da. (C12)

Recall that conservation of total energy E(t) = Ep + Es + Ek can only be here, after the
end of the impulse, after which pressure stops applying work.
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Figure 25. Perturbative energies per wavelength as a function of normalized time T . Results for impulse of
high strength (M = 14.6) and short duration (T2 = 0.07) are shown in (a,b), corresponding to regime I; low
strength (M = 1.46) and long duration (T2 = 1.5) in (c,d), corresponding to regime II. Here, T1 = 0.1T2 in
both cases. All energies are normalized by the total initial energy E0 = E(0). The linear and nonlinear kinetic
energy calculations in each fluid region are compared in (b,d). Conservation of total perturbative energy E is
established after the impulse for T > T2, and the injection of the air kinetic energy into the liquid phase Ek1
during the impulse is also clear.

C.3. A case study
Here, we present results for the perturbation energy relative to the unsteady, unperturbed
basic shear flow, as derived previously, for the same two flow impulses examined in
figure 12. Figures 25(a) and 25(b) show the energy response for the impulse of high
effective strength M = 14.6 and normalized duration T2 = 0.07 (regime I). Evidently the
total energy E appears not to be constant until the imposed flow ceases at T = T2. This is
because the positive (negative) work done by the pressure gradient that drives the flow field
to accelerate and decelerate is not included in E. For T > T2 the reference basic shear flow
becomes stationary, so the total perturbative kinetic energy Ek equates to the total system
kinetic energy, resulting in conservation of E = Ep + Es + Ek. At time T = T2, Ek is at
local maximum whilst the potential Ep and surface Es components are at local minimum,
subsequent conservation of total energy requires that the system Ek relaxes into Ep and Es
immediately after the flow impulse, leading to significant amplitude growth of the interface
until Ek is depleted. Repeating this cycle of energy oscillations between Ek and Ep + Es
explains the post-impulse oscillatory behaviour of the interface. However, during the flow
impulse at times 0 < T < T2, the total kinetic energy in each fluid region is infinite in an
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unbounded domain, so the perturbative Ek1,2 shown in figure 25(b) measures differences
in pressure work relative to the one responsible for the unperturbed basic shear flow (see
(2.7)). We see that the liquid region consistently gains extra kinetic energy during the
impulse, and harvests a positive Ek1 at T = T2, whereas the gas region experiences relative
energy loss in this process until a small 0 < Ek2(T2) � 1 is approached. This suggests that
the flow impulsiveness favours energy injection into the liquid region over the gas region.
Excellent match between the linear, (C5), and nonlinear, (C9), theories is also found in this
case.

Similarly, the energy evolution of low strength flow with M = 1.46 but longer duration
with T2 = 1.5 (regime II) is given in figure 25(c,d). A longer T2 ∼ O(1) is needed here
to acquire considerable perturbation amplification. Interestingly, as predicted by the linear
analysis, the interface growth indicated by Ep and Es first peaks when T = 0.8 < T2 at an
amplitude larger than all succeeding waves. For the kinetic energies, Ek1 � Ek2 is again
observed at T = T2, but Ek continues to rise shortly after in this case because Ep and Es
are in excess when the flow impulse stops.
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