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Limit Sets of Typical Homeomorphisms

Nilson C. Bernardes Jr.

Abstract. Given an integer n ≥ 3, a metrizable compact topological n-manifold X with boundary, and

a finite positive Borel measure µ on X, we prove that for the typical homeomorphism f : X → X, it is

true that for µ-almost every point x in X the limit set ω( f , x) is a Cantor set of Hausdorff dimension

zero, each point of ω( f , x) has a dense orbit in ω( f , x), f is non-sensitive at each point of ω( f , x), and

the function a → ω( f , a) is continuous at x.

1 Introduction

Let X be a compact metric space with metric d. We denote by H(X) (respectively

C(X)) the set of all homeomorphisms from X onto X (respectively the set of all con-

tinuous functions from X into X) endowed with the supremum metric

d̃( f , g) = sup
x∈X

d
(

f (x), g(x)
)
.

Moreover, X∗ denotes the set of all non-empty closed subsets of X endowed with the

Hausdorff metric

dH(A,B) = max
{

max
a∈A

d(a,B),max
b∈B

d(b,A)
}
.

If M is a Baire space, we say that “the typical element of M” satisfies a certain

property P if the set of all x ∈ M that satisfy property P contains a residual subset of

M (that is, a countable intersection of dense open sets). The term “generic” is often

used instead of “typical”.

Given f : X → X and x ∈ X, recall that the limit set ω( f , x) of f at x is the set of

all limit points of the sequence ( f j(x)) j≥0.

Properties of limit sets ω( f , x) of the typical function f ∈ H(X) (respectively

f ∈ C(X)) that hold at the typical point x ∈ X were studied by Akin, Hurley, and

Kennedy in [3] (respectively by Lehning in [9]) for certain classes of spaces X includ-

ing the case X is a closed manifold (respectively in the case X is an arbitrary metriz-

able compact topological manifold with boundary). The case of the space C([0, 1])

was considered by Agronsky, Bruckner, and Laczkovich in [1]. Here we consider a

different point of view. Our goal is to study properties of limit sets ω( f , x) of the

typical homeomorphism f ∈ H(X) that hold for almost every point x with respect

to a given measure on X. More precisely, we shall establish the following.
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Theorem 1.1 Let X be a metrizable, compact, topological manifold with (or without)

boundary [10], and fix a metric d that is compatible with its topology. Assume X has

dimension n ≥ 2; if the boundary of X is nonempty, then assume n ≥ 3. Let µ be a

finite positive Borel measure on X. For the typical f ∈ H(X), there exists a residual set

G f such that µ(G f ) = µ(X) and the following properties hold for every point x in G f :

(a) ω( f , x) is a Cantor set of Hausdorff dimension zero.

(b) Each point of ω( f , x) has a dense orbit in ω( f , x).

(c) f is non-sensitive at each point of ω( f , x).

(d) The function a ∈ X 7→ ω( f , a) ∈ X∗ is continuous at x.

Recall that a Cantor set is a totally disconnected perfect set, and recall from [2, 4]

that f is non-sensitive at a if for every ǫ > 0 there is δ > 0 such that for any choice

of points a0 ∈ B(a; δ), a1 ∈ B( f (a0); δ), a2 ∈ B( f (a1); δ), . . . , we have that

d
(

am, f m(a)
)
< ǫ for every m ≥ 0.

A version of Theorem 1.1 for the space C(X) was obtained by the author in [6].

Some results in this direction were obtained earlier by Agronsky, Bruckner, and Lacz-

kovich in [1] in the case X = [0, 1] and µ = Lebesgue measure.

Let us remark that if X is a perfect compact metric space and µ is a finite positive

Borel measure on X, then the set

Nµ = {A ∈ X∗ ; µ(A) = 0}

is residual in X∗. In fact, since Nµ =

⋂∞

k=1{A ∈ X∗ ; µ(A) < 1/k}, it follows from

the regularity of µ that Nµ is a Gδ set. Moreover, if Z is the set of atoms of µ, then Z

is countable because µ is a finite positive measure. Since X is perfect and compact,

the set D = X − Z is dense in X. Therefore, the set of finite subsets of D is dense in

X∗ and is contained in Nµ, which proves that Nµ is dense in X∗.

2 C-trees

Let X be a compact metric space with metric d. Given A ⊂ X, we denote by A, Int A,

Bd A, and diam A the closure, the interior, the boundary, and the diameter of A in X,

respectively. For each δ > 0,

Nδ(A) = {x ∈ X ; d(x,A) < δ}

is the δ-neighborhood of A. Note that

dH(A,B) = inf{δ > 0 ; A ⊂ Nδ(B) and B ⊂ Nδ(A)}

for every A,B ∈ X∗. If A and B are subsets of X, we write A ⋐ B to mean that

A ⊂ Int B.

Given a collection C of nonempty closed subsets of X, recall from [5] that a C-tree

is a pair (T, ϕ), where T is a finite rooted tree ([8]), and ϕ is a bijective correspon-

dence between the set V (T) of all vertices of T and a collection of pairwise disjoint
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sets in C. If (T, ϕ) is a C-tree, we usually omit the correspondence ϕ and speak just

of the C-tree T; moreover, we identify each vertex of T with its corresponding set of

C (under ϕ). If T is a C-tree and A,B ∈ V (T), we write “B < A” or “A > B” to mean

that B is the successor of A in the tree; that is, A and B are adjacent, and the unique

path connecting B to the root of T passes through A. Moreover, we define

Q(T) =
⋃
{A ; A ∈ V (T)} and θ(T) = max{diam A ; A ∈ V (T)}.

Two C-trees, T1 and T2, are said to be disjoint if A∩B = ∅ whenever A ∈ V (T1) and

B ∈ V (T2).

Given a function f : X → X, a C-tree for f is a C-tree T that satisfies the following

conditions:

(α) If A,B ∈ V (T) and B < A, then f (B) ⋐ A.

(β) If R is the root of T, then there is an S ∈ V (T) such that f (R) ⋐ S.

Note that such an S is necessarily unique, since the sets in V (T) are pairwise disjoint.

The chain

T̃ = {S = A1 < · · · < Ak = R}

of successive elements of V (T) connecting S to R is called the special branch of T.

Moreover, a thickening of T is a C-tree T ′ with the same number of vertices such that

for each A ∈ V (T) there is (a necessarily unique) A ′ ∈ V (T ′) with A ⋐ A ′ so that

the following properties hold:

(α ′) If A,B ∈ V (T) and B < A, then f (B ′) ⋐ A.

(β ′) f (R ′) ⋐ S.

Note that T ′ is also a C-tree for f .

Proposition 2.1 If f ∈ C(X) and T is a C-tree for f , then there exists δ > 0 such that

f
(

Nδ(B)
)
⋐ A

whenever A,B ∈ V (T) and B < A, and such that

f
(

Nδ(R)
)
⋐ S,

where R and S are as in (β). Moreover,

(A) If a ∈ Q(T) and we choose a0 ∈ B(a; δ), a1 ∈ B( f (a0); δ), a2 ∈ B( f (a1); δ), . . . ,
then for every j = 1, 2, . . . there exists a unique A j ∈ V (T) such that

f (a j−1), f j(a) ∈ A j ; in particular,

d
(

a j , f j(a)
)
< θ(T) + δ.

(B) If x ∈ Nδ(Q(T)), then

ω( f , x) ⊂
⋃
{ f (A) ; A ∈ V (T̃)} ⋐ Q(T̃)

and

ω( f , x) ∩ A 6= ∅ for every A ∈ V (T̃).

In particular, if y ∈ Nδ(Q(T)), then dH(ω( f , x), ω( f , y)) ≤ θ(T).
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Proof Suppose C,D ∈ V (T) and f (D) ⋐ C . Then we have a positive distance

from the compact set f (D) to the compact set X − Int C . Therefore, by the uniform

continuity of f , there exists η > 0 such that f (Nη(D)) ⋐ C. By choosing one such

η for each pair A,B ∈ V (T) with B < A and one such η for the pair S,R, we see

that the smallest of these η’s is the δ we are looking for. Property (A) follows easily

by induction. If x ∈ Nδ(Q(T)), then f (x) ∈ Q(T), and so f k(x) ∈ R for a certain

k ≥ 1. It follows that f j(x) belongs to the compact set
⋃
{ f (A) ; A ∈ V (T̃)} for

every j ≥ k, and therefore ω( f , x) is contained in this compact set. Moreover, since

each A ∈ V (T̃) contains a subsequence of the sequence ( f j(x)) j≥0, the compactness

of X implies that ω( f , x) ∩ A 6= ∅. The other assertions in (B) are clear.

3 Proof of Theorem 1.1

Let X, d, and n be as in the statement of Theorem 1.1, and let i(X) (respectively b(X))

be the interior (respectively the boundary) of the manifold X ([10]). We denote by Bn

and Dn the closed unit ball and the open unit ball of R
n with respect to the Euclidean

norm, respectively, and we define

Hn
= {(x1, . . . , xn) ∈ R

n ; xn ≥ 0}.

Moreover, UX (respectively VX) denotes the set of all subsets A of i(X) (respectively

A of X) for which there is a homeomorphism ψ : A → Bn (respectively ψ : A →
Bn ∩ Hn) with ψ(Int A) = Dn (respectively ψ(Int A) = Dn ∩ Hn). Finally, WX

(respectively ZX) denotes the set of all A ∈ UX (respectively A ∈ VX) such that A

has a fundamental system of neighborhoods that belong to UX (respectively to VX).

Note that each point a ∈ i(X) (respectively a ∈ b(X)) has a fundamental system of

neighborhoods that belong to WX (respectively to ZX).

Suppose that Theorem 1.1 is true if we replace “residual set” by “Gδ set” in its

statement. Let (Ok)k≥1 be a countable basis for the topology of X consisting of sets

Ok for which there is a homeomorphism hk : Ok → Bn with hk(i(X)∩ Ok) = Dn. For

each k ≥ 1 and each Borel set S of X, define

λk(S) = mn

(
hk(S ∩ Ok)

)
,

where mn denotes n-dimensional Lebesgue measure. Then

λ =

∞∑

k=1

1

2k
λk

is a finite positive Borel measure on X with the property that λ(U ) > 0 for every

nonempty open set U in X. By replacing µ by µ + λ, it follows from our assumption

that for the typical f ∈ H(X), there is a Gδ set G f such that (µ+λ)(G f ) = (µ+λ)(X)

and properties (a)–(d) hold for every x ∈ G f . Clearly, µ(G f ) = µ(X) and λ(G f ) =

λ(X). Since λ(G f ) = λ(X) implies that G f is dense in X, we conclude that G f is

necessarily a residual subset of X. This shows that it is enough to prove Theorem 1.1

with “Gδ set” instead of “residual set”. Moreover, it is enough to consider the case
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“µ(b(X)) = 0” and the case “b(X) 6= ∅ and µ(i(X)) = 0”. So, we divide the proof

into these two cases.

CASE I: µ(b(X)) = 0.

For each integer k ≥ 1, let Ok be the set of all f ∈ H(X) for which there are finitely

many pairwise disjoint WX-trees T1, . . . ,Ts for f such that:

(i) θ(Ti) < 1/k for all 1 ≤ i ≤ s;

(ii) µ(X − (Q(T1) ∪ · · · ∪ Q(Ts))) < 1/k.

(iii) For each 1 ≤ i ≤ s, the special branch of Ti has the form

Si = Ai,1 < Ai,2 < · · · < Ai,di
< Bi,1 < Bi,2 < · · · < Bi,di

= Ri ,

where

diam(Ai, j ∪ Bi, j) < 1/k for 1 ≤ j ≤ di .

(iv)
∑s

i=1

∑di

j=1[(diam f (Ai, j))1/k + (diam f (Bi, j))1/k] < 1.

Clearly, each Ok is open in H(X). Let f ∈
⋂∞

k=1 Ok. Then, for each k ≥ 1,

there are pairwise disjoint WX-trees Tk,1, . . . ,Tk,sk
for f so that (i)–(iv) hold with

Tk,1, . . . ,Tk,sk
in place of T1, . . . ,Ts. By replacing each Tk,i by a thickening, if neces-

sary, we may assume the following strengthening of property (ii):

(ii ′) µ(X − (Int Q(Tk,1) ∪ · · · ∪ Int Q(Tk,sk
))) < 1/k.

Put

Qk = Q(Tk,1) ∪ · · · ∪ Q(Tk,sk
) (k ≥ 1) and G =

∞⋂
r=1

∞⋃
k=r

Int Qk.

Then G is a Gδ set. By property (ii′), µ(X − Int Qk) < 1/k for every k ≥ 1, and

therefore µ(G) = µ(X). Moreover, by Proposition 2.1, for each k ≥ 1 there exists

0 < δk < 1/k such that f (Nδk
(B)) ⋐ A whenever A,B ∈ V (Tk,i) and B < A

(1 ≤ i ≤ sk), and such that

f
(

Nδk
(Rk,i)

)
⋐ Sk,i ,

where Rk,i and Sk,i are related to Tk,i (1 ≤ i ≤ sk) as R and S are related to T in

property (β). Property (iii) tells us that

Sk,i = Ak,i,1 < · · · < Ak,i,dk,i
< Bk,i,1 < · · · < Bk,i,dk,i

= Rk,i ,

where

(3.1) diam(Ak,i, j ∪ Bk,i, j) < 1/k for 1 ≤ j ≤ dk,i .

By Proposition 2.1(B), if x ∈ Qk, y ∈ X and d(y, x) < δk, then

ω( f , y) ⊂ f (Ak,i,1) ∪ · · · ∪ f (Ak,i,dk,i
) ∪ f (Bk,i,1) ∪ · · · ∪ f (Bk,i,dk,i

)(3.2)

⊂ Ak,i,1 ∪ · · · ∪ Ak,i,dk,i
∪ Bk,i,1 ∪ · · · ∪ Bk,i,dk,i

,(3.3)

ω( f , y) ∩ Ak,i, j 6= ∅ and ω( f , y) ∩ Bk,i, j 6= ∅ for 1 ≤ j ≤ dk,i ,(3.4)
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and because of (i),

dH

(
ω( f , y), ω( f , x)

)
< 1/k,(3.5)

where 1 ≤ i ≤ sk is such that x ∈ Q(Tk,i). Thus, if x ∈ G, then the limit set ω( f , x)

is totally disconnected (by (i) and (3.3)), perfect (by (3.1), (3.3), and (3.4)) and has

Hausdorff dimension zero (by (i), (iv), and (3.2)), which gives property (a). Property

(d) follows from (3.5), and property (b) follows from (i) and (3.3). Finally, (c) holds

in view of (i), (3.3), and Proposition 2.1(A).

It remains to show that each Ok is dense in H(X). Fix k ≥ 1, h ∈ H(X), and

ǫ > 0. In the proof of [7, Theorem 1 (case I)], we saw that the set of all f ∈ H(X) for

which there are finitely many pairwise disjoint WX-trees T1, . . . ,Ts for f satisfying

properties (i) and (ii) is dense in H(X). Therefore, if we choose an integer k ′ ≥ k such

that 1/k ′ < ǫ/3, then there are a function g ∈ H(X) and pairwise disjoint WX-trees

T ′
1, . . . ,T

′
s for g so that d̃(g, h) < ǫ/3 and (i) and (ii) hold with T ′

1, . . . ,T
′
s in place

of T1, . . . ,Ts and k ′ in place of k. Let R ′
i denote the root of T ′

i , and let S ′
i ∈ V (T ′

i ) be

such that g(R ′
i ) ⋐ S ′

i (1 ≤ i ≤ s). Now we will have to enlarge the trees T ′
1, . . . ,T

′
s

and make some small pertubations on g in order to obtain property (iii). Let

S ′
i = Ai,1 < · · · < Ai,di

= R ′
i

be the special branch of T ′
i . For each 1 ≤ i ≤ s and each 1 ≤ j ≤ di , choose a

neighborhood Ui, j of Ai, j that belongs to UX and has diameter < 1/k ′ so that the

family {Ui, j}1≤i≤s,1≤ j≤di
is pairwise disjoint,

g(Ui, j) ⋐ Ai, j+1 for 1 ≤ j < di and g(Ui,di
) ⋐ Ai,1.

We may also assume that Ui, j is disjoint from every A ∈ (V (T ′
1)∪· · ·∪V (T ′

s ))−{Ai, j}.

For each 1 ≤ i ≤ s and each 1 ≤ j ≤ di , choose Bi, j ∈ WX such that Bi, j ⋐ Ui, j and

Bi, j ∩Ai, j = ∅. We enlarge each T ′
i by putting Bi,1, . . . ,Bi,di

as new vertices satisfying

Ai,di
< Bi,1 < · · · < Bi,di

. In this way we obtain a new tree Ti whose root is Ri = Bi,di

(1 ≤ i ≤ s). Clearly, the trees T1, . . . ,Ts so constructed satisfy (i), (ii), and (iii). For

each 1 ≤ i ≤ s and each 1 < j ≤ di , let φi, j : Ui, j → Ui, j be a homeomorphism such

that

• φi, j

(
g(Bi, j−1)

)
⋐ Bi, j , and

• φi, j is the identity map on Bd Ui, j and on g(A) whenever A < Ai, j .

For each 1 ≤ i ≤ s, let φi,1 : Ui,1 → Ui,1 be a homeomorphism such that

• φi,1

(
g(Ai,di

)
)
⋐ Bi,1, and

• φi,1 is the identity map on Bd Ui,1, on g(Bi,di
) and on g(A) whenever A < Ai,1.

The existence of the homeomorphisms φi, j follows from the following argument.

We may think of Ui, j as being Bn with Int Ui, j being Dn. There are a finite num-

ber of subsets of Dn, say D1, . . . ,Dα, on which we want φi, j to coincide with the

identity map. Since each of these sets has a fundamental system of neighborhoods

whose boundaries are path connected, it follows that Dn − (D1 ∪ · · · ∪ Dα) is path

connected. There are also two subsets of Dn, say D and E, such that we want φi, j
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to satisfy φi, j(D) ⊂ Int E. Choose a point a ∈ D and a point b ∈ Int E, and let

γ : [0, 1] → Dn − (D1 ∪ · · · ∪ Dα) be a path from a to b. Cover γ([0, 1]) by a finite

number of open balls B1, . . . ,Bβ whose closures are contained in Dn−(D1∪· · ·∪Dα)

so that

a ∈ B1,Bi ∩ Bi+1 6= ∅ (1 ≤ i < β) and b ∈ Bβ ⊂ Int E.

Let VD be a neighborhood of D contained in Dn − (D1 ∪ · · · ∪ Dα) such that there

is a homeomorphism from VD onto Bn mapping Int VD onto Dn. By working on

VD ∪ B1 ∪ · · · ∪ Bβ , we can construct a homeomorphism φi, j : Ui, j → Ui, j such that

φi, j(D) ⊂ Int E and φi, j(x) = x for all x ∈ Ui, j − (VD ∪ B1 ∪ · · · ∪ Bβ).

Now, we define φ : X → X by φ = φi, j on each Ui, j and

φ(x) = x for all x ∈ X −
⋃
{Ui, j ; 1 ≤ i ≤ s, 1 ≤ j ≤ di}.

Put u = φ ◦ g. Then u ∈ H(X), d̃(u, g) < ǫ/3 and T1, . . . ,Ts are trees for u. Finally,

in order to obtain property (iv), let us now denote the special branch of Ti by

Si = Ci,1 < · · · < Ci,2di
= Ri .

For each 1 ≤ i ≤ s and each 1 ≤ j ≤ 2di , choose a neighborhood Vi, j of Ci, j

that belongs to UX and has diameter < 1/k ′ so that the family {Vi, j}1≤i≤s,1≤ j≤2di
is

pairwise disjoint and each Vi, j is disjoint from every A ∈
(

V (T ′
1) ∪ · · · ∪ V (T ′

s )
)
−

{Ci, j}. Let ψ be a homeomorphism of X onto X that coincides with the identity

map outside the Vi, j ’s, maps each Vi, j onto itself, and maps each Ci, j onto a subset

of Int Ci, j of very small diameter. Then f = ψ ◦ u ∈ H(X), d̃( f , u) < ǫ/3 (so that

d̃( f , h) < ǫ), and T1, . . . ,Ts are trees for f . Moreover, by choosing ψ so that the sets

ψ(Ci, j) have sufficiently small diameters, we have that f also satisfies (iv).

CASE II: b(X) 6= ∅ and µ(i(X)) = 0.

For each integer k ≥ 1, let Ok be the set of all f ∈ H(X) for which there are

finitely many pairwise disjoint ZX-trees T1, . . . ,Ts for f satisfying properties (i)–(iv)

as in CASE I. Then, each Ok is open in H(X) and each f ∈
⋂∞

k=1 Ok has the desired

properties. In order to prove that each Ok is dense in H(X), we fix k ≥ 1, h ∈ H(X)

and ǫ > 0. In the proof of [7, Theorem 1 (Case II)], we saw that the set of all

f ∈ H(X) for which there are finitely many pairwise disjoint ZX-trees T1, . . . ,Ts for

f satisfying properties (i) and (ii) is dense in H(X). Therefore, if we choose an integer

k ′ ≥ k such that 1/k ′ < ǫ/3, then there are a function g ∈ H(X) and pairwise disjoint

ZX-trees T ′
1, . . . ,T

′
s for g so that d̃(g, h) < ǫ/3 and (i) and (ii) hold with T ′

1, . . . ,T
′
s

in place of T1, . . . ,Ts and k ′ in place of k. Now, it is enough to continue by arguing as

in CASE I, but we need to consider the collection ZX instead of WX and the collection

VX instead of UX .
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