On Self-Adjoint Partial Differential Equations of the Second Order.

By E. T. Copson.

Received 14th October 1924. Read 7th November 1924.
§ 1. Let $F(u)=\sum_{i, k} A_{i k} \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}+\sum_{i} B_{i} \frac{\partial u}{\partial x_{i}}+C u$ be a linear differen-
tial expression involving n independent variables x_{i}, the coefficients A_{i}, B_{i} and C being functions of the independent variables but not involving the dependent variable u. Associated with $F(u)$ is the adjoint expression

$$
G(v)=\sum_{i, k} \frac{\partial^{2}}{\partial x_{i} \partial x_{k}}\left(A_{i k} v\right)-\sum_{i} \frac{\partial}{\partial x_{i}}\left(B_{i} v\right)+C v .^{*}
$$

If the expressions $F(u)$ and $G(u)$ are identical, $F^{\prime}(u)$ is said to be self-adjoint, and the equation $F(u)=0$ is a self-adjoint linear partial differential equation of the second order.

If a second order linear partial differential equation is obtained by annulling the variation of an integral according to the methods of the calculus of variations, this equation must be self-adjoint, and conversely. Also by applying the theory of continuous groups of transformations to such an integral, certain conservation theorems \dagger satisfied by the solution of the partial differential equation will be obtained.

Consequently the investigation of the conditions which the coefficients of a general linear second order partial differential equation must satisfy to be self-adjoint appears to be of interest.

[^0]The principal result here obtained is that in general a linear partial differential equation of the second order with constant coeffcients can be made self-adjoint by multiplication by a factor $e_{i}^{\sum_{i} x_{i}}$ where the coefficients λ_{i} are certain constants. The exceptional case is when the equation is of parabolic type.
§2. Let us denote derivatives by suffixes. Then we may write $F(u)=\sum_{i, k} a^{i k} u_{i k}+2 \sum_{i} b^{i} u_{i}+c u$, where the coefficients $a^{i k}, b^{i}, c$ are functions of the variables x_{i}, and where $a^{i k}=a^{k_{i}}$. We easily see that

$$
G(v)=\sum_{i, k} a^{i k} v_{i k}+2 \sum_{i} v_{i}\left(\sum_{k} a_{k}^{i k}-b^{i}\right)+c v+v \sum_{i}\left(\sum_{k} a_{i k}^{i k}-2 b_{i}^{i}\right) .
$$

If the coefficients satisfy the n first order partial differential equations $\sum a_{k}^{i k}=2 b^{i} \quad(i=1,2, \ldots \ldots n)$ then $F(u)$ is identical with $G(u)$ and is consequently self-adjoint. If the coefficients do not satisfy these equations, it may be possible to find a function $\phi\left(x_{1}, x_{2}, \ldots \ldots x_{n}\right)$ which is such that $\phi F(u)$ is self.adjoint. For the purpose of finding conservation theorems, this would be just as useful. The function ϕ must satisfy the n equations

$$
\sum_{k} \phi a_{k}^{i k}+\sum_{k} \phi_{k} a^{* k}=2 \phi b^{i} \quad(i=1,2, \ldots \ldots n) .
$$

The case of particular interest is the equation with constant coefficients. Such an equation can only be self-adjoint if the coefficients b^{i} are all zero. But if $\phi F(\imath)$ is self-adjoint and the expression $F(u)$ has constant coefficients, ϕ must satisfy the n equations $\sum_{k} a^{i k} \phi_{k}=2 b^{i} \phi \quad(i=1,2, \ldots \ldots n)$.

This system of equations has the solution $\phi=e^{\Sigma \lambda_{i} x_{i}}$ where

$$
2 b^{r}=a^{r} \lambda_{1}+a^{r 2} \lambda_{2}+\ldots \ldots+a^{r n} \lambda_{n}(r=1,2, \ldots n) .
$$

If we exclude the case of an equation of parabolic type which is such that the determinant of the coefficients $a^{i k}$ vanishes, the constants λ_{i} can be uniquely determined; hence any second order linear non-parabolic partial differential equation with constant coefficients can be made self-adjoint by multiplication by a factor $\epsilon^{\sum \lambda_{i} x_{i}}$ and so can be derived from a calculus of variations problem.
§3. To discuss the case when the determinant $\left|a^{i k}\right|$ vanishes, it is convenient to make use of a linear change of the independent variables x_{i} to \underline{x}_{i}, where $\underline{x}_{i}=\sum_{k} l_{k i} x_{k}$. Denoting $\frac{\partial u}{\partial x_{i}}$ by \underline{u}_{i} and so on, we have

$$
F(u)=\sum_{i . k} u_{i k}\left(\sum_{r, s} a^{r s} l_{r i} l_{s k}\right)+2 \sum_{i} u_{i}\left(\sum_{r} b^{r} l_{r i}\right)+c u
$$

Since $\left|a^{a x}\right|=0$, we can choose $l_{11}, l_{21}, \ldots l_{n 1}$ so as to satisfy the n equations $a^{1 s} l_{11}+a^{2 s} l_{21}+\ldots+a^{n s} l_{n 1}=0(s=1,2, \ldots n)$. When this is done, the expression $F(u)$ becomes

$$
\sum_{i, k}^{\prime} a^{i k} u_{i k}+2 \Sigma_{i}^{\prime} b^{i} u_{i}+c u+2 b^{1} u_{1}
$$

where Σ^{\prime} means that the summation is made over the values $2,3, \ldots n$. instead of $1,2, \ldots n$, and where the coefficients $a^{i k}, b^{i}$ are constants.

Now it can easily be shewn that $\phi F(u)$ will be self-adjoint after such a change only if it was before. The conditions then are that

$$
\begin{aligned}
2 b^{i} & =a^{i 2} \lambda_{2}+u^{i s} \lambda_{3}+\ldots+a^{i n} \lambda_{n}(i=2,3, \ldots n) \\
2 b^{1} & =0 \\
\phi & =e_{i=}^{\sum_{i}} \underline{X}_{i}
\end{aligned}
$$

where
Hence if the expression $F(u)$ has constant coefficients which are such that $\left|a^{i k}\right|=0$, and if it becomes self-adjoint on multiplication by a factor $e^{\sum_{i} \lambda_{i} x_{i}}$, it must be reducible to an expression in $(n-1)$ independent variablss.

Exc. 1. The equation $\frac{\hat{\sigma}^{2} u}{\partial x^{2}}+\frac{\hat{\sigma}^{2} u}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\hat{o}^{2} u}{\partial t^{2}}-\frac{\gamma}{c^{2}} \frac{\partial u}{\partial t}-\lambda u=0$
is not self-adjoint. But considered in the form

$$
e^{\gamma t}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\hat{\partial}^{2} u}{\partial t^{2}}-\frac{\gamma}{c^{2}} \frac{\partial u}{\partial t}-\lambda u\right)=0
$$

it is self-adjoint, and can be derived from the Calculus of Variations Problem

$$
\delta \iiint e^{r t}\left\{\left(\frac{\partial u}{d x}\right)^{2}+\left(\frac{\partial u}{d y}\right)^{2}-\frac{1}{c^{2}}\left(\frac{\partial u}{\partial t}\right)^{2}+\lambda u^{2}\right\} d x d y d t=0 .
$$

$E x$. 2. The equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+u^{\partial u}+\beta \frac{\partial u}{\partial y}+\gamma \frac{\partial u}{\partial z}+\lambda u=0$
is not self-adjoint, and can only be made self-adjoint by multiplication by an exponential factor when $\gamma=0$, that is, when the equation reduces to one in two independent variables.

[^0]: *See Courant u. Hilbert: Methoden der Mathematischen Physik. Band I., Kap. IV., \&8.

 + E.g. in Dynamics, the theorems of conservation of energy and momen. tum. See a paper by Emay Noether: Gött. Nach. (1918), p. 238. Also the present author's paper Proc. Edin. Math. Soc., 42, p 61.

