SEMI-STABLE AND STABLE CACTI

K. L. MCAVANEY

(Received 21 May 1974)

1. Introduction

Holton (1973) introduced the following concept. A graph G is semi-stable if there exists a point v in G for which $\Gamma(G_v) = \Gamma(G)_v$: where $\Gamma(G)$ is the automorphism group of G, G_v is the graph G with v deleted and $\Gamma(G)_v$ is the subgroup of $\Gamma(G)$ that fixes v. We say G is semi-stable at v. A partial stabilising sequence in G is a sequence $v_1, v_2, \dots v_k$ of its points such that $\Gamma(G)_{v_1v_2\cdots v_l} =$ $\Gamma(G_{v_1v_2\cdots v_l})$ for $i = 1, 2, \dots, k$. If there exists a partial stabilising sequence in G for which k equals the number of points of G then G is said to be stable (Holton (1973a)). Most notation and terminology in what follows is explained in Harary (1969).

It is known (Heffernan (1972), Robertson and Zimmer (1972)) that all trees except the paths P_n with n > 3 and the smallest identity tree (T_2 in Figure 6) are semi-stable. We showed in McAvaney, Grant and Holton (1974) that the only unicyclic graphs that are not semi-stable are those in Figure 1. In Section 3 we show that these are the only cacti with a cycle that are not semi-stable. (A cactus is a connected graph in which each line lies on at most one cycle).

If a graph is stable then it has a transposition automorphism, Holton and Grant (to appear). The converse is true for trees, Holton (1973b) and unicyclic graphs, McAvaney, Grant and Holton (1974). In Section 4 we show that it is true for all cacti.

Throughout the following sections, we use implicitly a characteristic of semi-stability demonstrated in Holton and Grant (1975): a graph G is

419

K. L. McAvaney

semi-stable at v if and only if v is an isolated point or the set of points adjacent to V is a union of orbits of $\Gamma(G_v)$. We also use the following terminology. If v_1 , v_2, \dots, v_k is a partial stabilising sequence in a graph G and $H = G_{v_1v_2\cdots v_k}$, we say G is *reducible* to H. The *distance* between a point v in G and a disjoint set Aof points in G is the minimum d(v, a) over all points a in A. A *penultimate point* v in G is a point in G such that G_v contains just two components one of which is a single point. If the number of points in graph G is less than the number of points in graph H, we say G is *smaller* than H. We denote by P_n , a path P_n rooted at its endpoint.

2. Preliminaries

Before proving our main results we need to establish three lemmas. They require the following ideas. A branch at a point b of a cactus C is a maximal subcactus B of C with two or more points such that just one block of B contains b. A branch at a block D of C is a maximal subcactus of C with two or more points and which has just one point b in common with D. In both cases b is called the root of the branch.

LEMMA 1. A rooted cactus C is semi-stable at a point c which is not a cutpoint or the root.

PROOF. Let b_1 be the root of C and B_1 a smallest branch at b_1 . Let B denote the block in B_1 that contains b_1 . Let b_2 be a cutpoint in B closest to b_1 and let B'_2 be the branch at B containing b_2 . If b'_2 is another cutpoint in B such that $d(b_1, b_2) = d(b_1, b'_2)$ we assume B'_2 is not larger than the branch at B containing b'_2 . If B'_2 is P_2 and C is not semi-stable at its endpoint we redefine b_2 as a next closest cutpoint (if it exists) to b_1 and redefine B'_2 accordingly. Let B_2 denote a smallest branch at b_2 that does not contain b_1 . Thus, repeating this procedure, we generate a sequence of cutpoints b_2, b_3, \dots, b_n with associated branches B_1, B_2, \dots, B_n , where B_n has just one cutpoint b_n .

Now every automorphism of C maintains the distance of each point from b_1 . Moreover, a path between b_1 and a point a of C contains all the cutpoints w such that b_1 and a lie in different components of C_w . Hence, from the choice by size of B_i , if B_i is semi-stable at a point c then C is semi-stable at c. Therefore C is semi-stable at a point in B_n that is adjacent to b_n , unless B_n is P_2 and the block D that contains b_n and b_{n-1} is a cycle and contains no other cutpoints. To examine the latter case let m and l denote the number of consecutive points in D between b_n and b_{n-1} . We may assume m > l, for if m = l then B_{n-1} , and hence C, is semi-stable at the endpoint of B_n . Then B_{n-1} , hence C, is semi-stable at the endpoint of B_n .

e point adjacent	to b_{n-1} ,		
re point adjacent	to b_n ,		
re point adjacent	to b_{n-1} and	b_n ,	
re point adjacent	to b_{n-1} and	farthest from	$\boldsymbol{b}_n.$
1	re point adjacent re point adjacent re point adjacent re point adjacent	The point adjacent to b_{n-1} , repoint adjacent to b_n , repoint adjacent to b_{n-1} and repoint adjacent to b_{n-1} and	The point adjacent to b_{n-1} , re point adjacent to b_n , re point adjacent to b_{n-1} and b_n , re point adjacent to b_{n-1} and farthest from

The next lemma requires the following concepts. A cactus C rooted at b and containing at least one copy of a cycle U is called a U-pole if (i) all blocks in C are U or P_2 , (ii) all points in the block-cutpoint tree (Harary (1969)) of C, bc(C), have degree at most 3 and (iii) if u is a point in bc(C) of degree 3 then u is a copy of U and of the three branches at u one contains b, one contains a copy of U and one is P_2 . C is called a U-pillar if, for all pairs of points in the block-cutpoint tree of C that are copies of U, one lies on the path between the other and the block containing b.

LEMMA 2. A U-pillar is reducible to a U-pole.

PROOF. Let C be the U-pillar and b_1 its root. By Lemma 1, we reduce to b_1 , in increasing order of size, each branch at b_1 that does not contain a copy of U. Let D be the block that contains b_1 . We define b_2 and B'_2 as in the proof of Lemma 1. If B'_2 does not contain U we reduce it to P_2 . If C is now semi-stable at the endpoint of B'_2 , we remove it. Otherwise we redefine b_2 as the next closest cutpoint to b_1 and redefine B'_2 accordingly. Then we reduce B'_2 to b_2 and repeat this procedure until all branches (except possibly for a single P_2) that do not contain U are removed from D. Finally, let b_2 denote the root of the branch (if it exists) at D that contains U. Then b_2 is fixed in C and we repeat the above procedure on all branches at b_2 except the branch containing b_1 . In this way we generate a sequence of cutpoints b_2 , b_3 , \dots , b_n where b_n lies in a copy of U.

If the block containing b_i and b_{i+1} is a cycle which is not U and has \underline{P}_2 as a branch, let b'_i denote the root of that \underline{P}_2 . Then, for each *i* in turn for which b'_i is defined, we remove b'_i followed by the isolated point and reduce the resulting path branches at b_i and b_{i+1} to their roots. Similarly, if the cycle containing b_i and b_{i+1} is not U and has no branch \underline{P}_2 , we remove a point adjacent to b_i and reduce the resulting path branch at b_{i+1} to its root. The resulting cactus is a U-pole.

LEMMA 3. A U-pole is semi-stable at a non-cutpoint c in the copy of U farthest from the root.

PROOF. Define c as in the proof of Lemma 1.

3. Semi-stable Cacti

Our aim in this section is to show that the graphs in Figure 1 are the only cacti with a cycle that are not semi-stable. We shall use the following notation. Let C denote a cactus with at least one cycle. For a cycle R in C, let n(C, R)

denote the number of copies of R in C. Let m(C) be the minimum n(C, R) over all cycles R in C. Finally, let U denote the smallest cycle in C for which n(C, U) = m(C).

We first establish

THEOREM 1. If m(C) = 1 then C is semi-stable unless it is one of the cacti in Figure 1. Moreover C is semi-stable at a point which is a penultimate point or non-cutpoint.

PROOF. We assume m(C) = 1 and that C is not semi-stable. If there is only one branch B at U then its root b is fixed in C and hence, by Lemma 1, B is \underline{P}_2 . But then C is semi-stable at b. Hence there are at least two branches at U.

We shall call a point in U of degree 2 a bare point. Let t denote the maximum number of consecutive bare points in U. Then t > 0; otherwise a smallest branch at U is reducible to its root, by Lemma 1. Let S denote the collection of branches at U whose roots are adjacent to a string of t consecutive bare points. Let B_1 denote a smallest branch in S and b_1 its root. Let B_2 denote a smallest branch in S whose root b_2 is adjacent to the same string of t consecutive bare points as is the root of a branch in S that is isomorphic to B_1 . We may assume b_2 is adjacent to the same string of t consecutive bare points as b_1 . Noting that the set of roots of the branches in S is a union of orbits of $\Gamma(C)$, Lemma 1 implies that B_1 is P_2 .

Let B_3 denote the branch at U whose root b_3 is the closest to b_1 . Let $r = d(b_1, b_3) - 1$ (the number of bare points between b_1 and b_3). Note that r < t, for if r = t then C is semi-stable at the endpoint e of B_1 . It follows from the definition of t that the removal of e introduces the "reflection" automorphism g that maps b_2 into b_3 . Hence B_2 and B_3 are isomorphic if not the same branch (see Figure 2).

422

423

It follows from Lemma 1 and the definition of B_2 that B_2 has at most 3 points, otherwise C is semi-stable at a point in B_2 . Thus B_2 is \underline{P}_2 , \underline{P}_3 or one of the branches in Figure 3.

If $b_2 \neq b_3$ and B_2 is not P_2 , then the removal of one of its non-cutpoints introduces the "reflection" automorphism f that maps b_1 into b_2 . Define inductively the points b_4 , b_5 , \cdots on U as follows: $b_{2i} = f(b_{2i-1})$ and $b_{2i+1} = g(b_{2i})$ for $i = 1, 2, 3, \cdots$. Then the branch at U with root b_i is isomorphic to B_2 for $j \neq 1$, and (excluding b_1) all other points on U are bare. But then C is semi-stable at a non-cutpoint in B_3 . Hence B_2 is P_2 or $b_2 = b_3$. Thus, if $b_2 = b_3$, Cfalls into one of the three cases indicated in Figure 4 which we now examine in turn. (By the definition of U, B_2 is not isomorphic to the second branch in Figure 3.)

Figure 4.

Case I:

If r = 0 and t = 1, C is the first graph in Figure 1. If r = 0 and t = 2, C is the third graph in Figure 1. If r = 0 and t = 3, C is semi-stable at the bare point adjacent to b_2 . If r = 0 and t = 4, C is the fifth graph in Figure 1. If r = 0 and t > 4, C is semi-stable at the bare point adjacent to b_2 . If r = 1 and t = 2, C is semi-stable at the bare point adjacent to b_1 but not b_2 . If r = 1 and t > 2, C is semi-stable at b_1 . If r = 2, C is semi-stable at the bare point adjacent to b_1 that is closer to b_2 . If r > 2, C is semi-stable at b_1 . Case II: If r = 0 and t = 1, C is semi-stable at the bare point. If r = 0 and t > 1, C is semi-stable at b_1 . If r = 1, C is semi-stable at the bare point adjacent to b_1 and b_2 . If r > 1, C is semi-stable at b_1 .

Case III:

If r = 0 and t = 1, C is semi-stable at the bare point. If r = 0 and t = 2, C is the second graph in Figure 1. If r = 0 and t = 3, C is the fourth graph in Figure 1. If r = 0 and t > 3, C is semi-stable at the bare point adjacent to b_1 . If r = 1, C is semi-stable at the bare point adjacent to b_1 and b_2 . If r > 1, C is semi-stable at b_1 .

If $b_2 \neq b_3$ and B_2 is P_2 then the removal of its endpoint introduces the "reflection" automorphism h that maps b_1 into a_4 , the point in U that is closest to b_2 and which is not a bare point. Thus we define inductively the points a_4 , a_5 , a_6 , \cdots in U as follows: $g(b_2) = b_3$, $h(b_1) = a_4$, $g(a_4) = a_5$, $h(b_3) = a_6$, etc. Then the branches at U with roots b_1 , b_2 , b_3 , a_i $(j \ge 4)$ are P_2 and all other points in U are bare (see Figure 5). If $s = d(b_2, a_4) - 1$ then s < t and we may assume that $s \le r$. Thus:

Figure 5.

Case IV:	
If $r = 0$ and t	= 1, C is semi-stable at the bare point.
If $r = 0$ and t	> 1, C is semi-stable at b_3 .
If $r = 1$,	C is semi-stable at the bare point adjacent to
	b_1 and b_3 .
If $r > 1$,	C is semi-stable at b_1 .

This completes the proof of Theorem 1.

Our second main result is

THEOREM 2. If m(C) > 1 then C is reducible to a cactus C' for which m(C') = m(C) - 1.

PROOF. The rationale of this proof is to remove a sufficient number of branches of C in order to allow us to remove a point of some copy of U. The resulting cactus suffices for C'. A variety of cases present themselves according to the distribution in C of its copies of U.

Let bc(C) denote the block-cutpoint tree of C. Let N be the set of points in bc(C) which are either copies of U or points of degree 3 or more and at which there exists 3 or more distinct branches each containing a copy of U. Let T(C, U) denote the tree whose points are the points in N and in which two points a, b are adjacent if and only if the path in bc(C) joining a to b does not contain a point in N. Finally, let E be the centre of T(C, U).

We now assume for the moment that T(C, U) is not a path $P_n (n \ge 2)$ or one of the trees T_1 or T_2 in Figure 6. Heffernan (1972) has shown that all trees Texcept $P_n (n > 2)$, T_1 and T_2 are semi-stable at an endpoint u. His argument is constructive and ensures that u lies in a smallest branch at each point v on the path in T from u to the closer centre point in T. We tighten this condition for T(C, U) by choosing from the smallest branches at v a branch that corresponds to a smallest branch at v in C. We note that u is a copy of U.

Let w be the point in T(C, U) that is adjacent to u. If w is not in E, let a denote the point of C in w that is closest to E in C. If w is in E and T(C, U) is

bicentral, let a denote the point of C in w that is closest to $E \setminus \{w\}$ in C. In both cases let b denote the point of C in w that is closest to u in C. If w isacyclein C, let b' denote the point of C in w for which d(a, b) = d(a, b'). Let B(B') denote the maximal subcactus of C that contains b(b') but not the rest of the branch at b that contains E. If B' contains one copy of U, then by the definition of u, we may assume B' is not smaller than B. Thus we may regard b as fixed in C and use Lemma 2 to reduce B to a U-pole at b. If B' contains no copy of U,

we use Lemma 1 to reduce B' to its root. By Lemma 3, B is semi-stable at a non-cutpoint c in u. Hence, from the definition of u, C is semi-stable at c.

If w is in E and T(C, U) is unicentral, let b denote the point of C in w that is closest to u. By Lemma 2, we may assume the branch B at w that contains u is a U-pole. (Also, if w is a point in C, we use Lemma 1 to reduce to b the branches at w, in increasing order of size, that do not contain a copy of U.) Let c be a point in u at which B is semi-stable. Then two cases present themselves.

Case I: w is not fixed in C_c . Then there are just three branches in T(C, U)at w. Let v and v' be the other two points in T(C, U) adjacent to w. Let A(A')be the branch in C at w that contains v(v') and let a(a') be its root. Let e(e')denote the point in v(v') that is closest to a(a'). Let w map into w' in C_c . We assume that w' is in A'. Thus d(a', e') > d(a, e) and a' is therefore fixed in C. Then by the methods of Lemma 2, we reduce A' so that all points between a' and e' have degree 2 and no branches remain at e' that do not contain a copy of U. Note that, while reducing A' in this way, d(a', e') is non-decreasing. Thus we may assume the w', and hence w, is a point in C. But then w(=b) can not map into w' as B_c is a branch that does not contain a copy of U and is not smaller than P_2 and no such branch exists at a point between a' and e'. Hence C is now semi-stable at c.

Case II: w is fixed in C_c . If w is a point in C we reduce, in increasing order of size, all the branches at w that do not contain U. Then C is semi-stable at c or Case I applies.

If w is a cycle in C, we use the methods of Theorem 1. Define a bare point as a point in w of degree 2 or a root of a branch at w that contains U. Then, as in the proof of Theorem 1, several cases present themselves. Note that there are at least three branches at w containing U.

Case II. 1: There is no branch at w not containing U. Then C is semi-stable at c.

Case II. 2: There is only one branch A at w not containing U and it is P_2 . If C is not semi-stable at c then B_c is P_2 and B is Q, the second branch in Figure 3. If B is the only branch at w isomorphic to Q and C is not semi-stable at the endpoint of A, then a "reflection" argument similar to that in the proof of Theorem 1 guarantees at least three isomorphic branches at w containing U.

Let B' be one of these branches with its root closest to the root of A. Then, noting that the root of A is fixed in C, we use Lemma 1 to reduce B' to Q or until a point in a copy of U is removed. If there are at least two branches at wisomorphic to Q and C is not semi-stable at a point with degree 2 in any of them, then another "reflection" argument shows that their roots together with the root of A are distributed uniformly in w a constant distance apart. Hence we may remove the endpoint of A and then Case II.1 applies.

Case II.3: There are only two branches A and A' at w not containing U; A is \underline{P}_2 and A' is \underline{P}_2 , \underline{P}_3 or one of the branches in Figure 3. If C is not semi-stable at c then B_c maps into A or A'. If the former, we may remove the endpoint of A and then Case II.2 applies. If the latter, then because B is a U-pole, A' is either \underline{P}_2 or \underline{P}_3 . Hence we may remove respectively the endpoint or point of degree 2 in A' and then Case II.2 applies.

Case II.4: There are three or more branches at w not containing U. These are distributed about w as in Case IV of Theorem 1. If C is not semi-stable at c then B is C_3 (rooted at one point) and b is one of the t consecutive bare points at distance r + 1 from b_2 or distance s + 1 from b_1 . But then C is semi-stable at the endpoint of B_1 or B_2 respectively, giving a contradiction.

To complete the proof of Theorem 2 we now investigate the cases where T(C, U) is $P_n(n \ge 2)$, T_1 or T_2 (Figure 6).

If T(C, U) is P_2 , let u and u' be the copies of U. Let b'(b) be the point of Cin u(u') closest to u'(u). Let B(B') be the maximal subcactus of C that contains b(b') but no other point in the branch A(A') at b(b') that contains u'(u). We assume B is not larger than B' and use Lemma 2 to reduce B to a U-pole. Then, by the methods of Lemma 2, A is reducible to u' with at most two other points, that is, at most one more point than A'. Let c be a point in uat which B is semi-stable. If C is not semi-stable at c then B_c maps into a branch at u'. Then B_c is P_2 , P_3 or one of the branches in Figure 3. The cacti that satisfy these constraints consist of just two copies of either C_3 or C_4 together with at most three other points. It can be shown exhaustively that all such cacti are semi-stable at some point in u or u'.

If T(C, U) is P_n with n > 2 let u and u' be the endpoints of T(C, U). Let v(v') be the point in T(C, U) adjacent to u(u'). Let b(b') be the point of C in v(v') closest to u'(u). Let B(B') be the maximal subcactus of C containing b(b') but no other point in the branch at b(b') that contains u'(u). We assume B is not greater than B' and use Lemma 2 to reduce B to a U-pole. Let a(a') be the point of C in u'(u) closest to u(u') and let A(A') be the maximal subcactus of C that contains a(a') but no other point of the branch at a(a') that contains u(u'). Then, by the methods of Lemma 2, A is reducible to u' with at most two other points, that is, at most one more point than A'. Let c be a point in u at which B is semi-stable. If C is not semi-stable at c then B_c maps

into A. Hence B_c consists of v with a branch that is P_2 , P_3 or one of the branches in Figure 3. Hence U is C_3 or C_4 , and it can be shown exhaustively that all cacti satisfying these constraints are semi-stable at some point in u, u' or v.

If T(C, U) is T_1 (Figure 6) let w be the point in T(C, U) of degree 3 and v the point of degree 2. Let a denote the point of C in w closest to v. Let A denote the branch of C at w that contains v. Since a is fixed in C, we may use Lemma 2 to reduce A to a U-pole. Let B and B' be the branches at w, with roots b and b' respectively, that contain one copy of U. Assuming B is not larger than B' we reduce B to a U-pole. Let e be the point of C in w for which d(a, b) = d(a, e). In increasing order of size, the branches at e that do not contain U are reduced to e using Lemma 1. Let c be a point in u, the copy of U in B, at which B is semi-stable. Suppose C is not semi-stable at c. If w is a point in C, then w = a = b and maps, in C_c , into a point w' between v and the end copy of U in A. But B_c is not smaller than P_2 and no branch exists at w' that does not contain U. Hence w is a cycle, and w maps into v in C_c . Then there is a branch P_2 at v, B_c is P_2 and therefore U is C_3 . Hence, in reducing A to a U-pole, we can reduce P_2 at v to its root. This contradiction ensures C is semi-stable at c.

If T(C, U) is T_2 (Figure 6) let w be the point in T(C, U) of degree 3. Let A(B) be the branch at w, with root a(b), that contains one (two) copy(ies) of U. Using Lemma 2 we may reduce A and B to U-poles. Let c be a point in the end copy of U in B at which B is semi-stable. If C is not semi-stable at c then B_c maps into A, there is a branch P_2 at the end copy of U in A and U in C_3 . Then C is semi-stable at the point of degree 2 in the penultimate copy of U in B.

This concludes the proof of Theorem 2. As a corollary to Theorem 2 we have

THEOREM 3. All cacti C with at least one cycle are semi-stable except those in Figure 1. Also, C is semi-stable at a point which is a penultimate point or non-cutpoint.

PROOF. If m(C) = 1 then the result follows immediately from Theorem 1. In the case where m(C) > 1 the proof of Theorem 2 tacitly secures the required point.

4. Stable Cacti

Our aim now is to show that a cactus with a transposition automorphism is stable. We first characterise these cacti. To do this, we define a certain class of subcacti. A cactus C is said to contain a *transfig* at a point b if there is (i) a branch at b isomorphic to C_3 (rooted at one point), or (ii) a branch in which the

block D containing b is C_4 and in which the two points in D adjacent to b have degree 2, or (iii) two or more branches at b isomorphic to P_2 , or (iv) any combination of (i), (ii) and (iii).

We note that, in this section, the cacti include trees.

THEOREM 4. A cactus C with at least three points has a transposition automorphism if and only if it contains a transfig.

PROOF. If C contains a transfig and a and a' denote its points of degree 2 (in types (i) and (ii)) or its endpoints (in type (iii)), then clearly the transposition (aa') is an automorphism of C.

Conversely, suppose g = (aa') is a transposition automorphism of C. Then, because C is connected and it has at least three points, there is another point u of C adjacent to a or a'. Suppose $u \sim a$. Then $g(u) \sim g(a)$, that is $u \sim a'$. If $a \sim a'$, then u is unique, otherwise the line (a, a') lies on more than one cycle in C. If $a \neq a'$, then there is at most one other point u' of C for which $u' \sim a$ and $u' \sim a'$, otherwise the line (u, a) lies on more than one cycle in C. Either way u is a root of a transfig.

Using this characterisation we can now prove

THEOREM 5. A cactus containing just one transfig is stable.

PROOF. Let C denote such a cactus and b the root of the transfig. Let A denote the maximal subcactus of C that contains b but not the rest of the transfig. If A_b is empty and C is C_3 or C_4 then clearly C is stable. If A_b is empty and C is neither C_3 nor C_4 then b is fixed and, by Lemma 1, C is reducible to one of the cacti in Figure 7. These cacti are stable; we delete the points in the indicated order.

Suppose now that A_b is not empty. Since A contains no transfig it is reducible, by Lemma 1, to \underline{P}_3 or the rooted cactus A' (Figure 8). In the latter case we then remove the cutpoint u followed by the isolated point, thus leaving \underline{P}_3 . We assume in the case where the transfig is of type (ii), that A is not larger than the other branch at C_4 .

If the resulting cactus is B in Figure 8, we continue the stabilising sequence as indicated. Otherwise we remove the point of degree 2 in A followed by the isolated point. Then, as before, C is reducible to one of the cacti in Figure 7 and hence stable.

Combining Theorem 5 and Theorem 3 we have

THEOREM 6. A cactus C is stable if and only if it has a transposition automorphism.

PROOF. We may assume from Theorem 4 and Theorem 5 that C has at least two transfigs. Then, by Theorem 3 and the analogous result (Heffernan (1972)) for trees, C is semi-stable at a non-cutpoint or penultimate point v. If C_v contains just one transfig (after removing any isolated point), the result follows from Theorem 5. Otherwise we continue reducing C until only one transfig remains.

References

- F. Harary (1969), Graph Theory (Addison-Wesley, 1969).
- P. Heffernan (1972), Trees (Masters Dissertation, University of Canterbury, New Zealand).
- D. A. Holton (1973), 'Two applications of semi-stable graphs', Discrete Math. 4, 151-158.
- D. A. Holton (1973a), 'A report on stable graphs', J. Austral. Math. Soc. 15, 163-171.
- D. A. Holton (1973b), 'Stable trees', J. Austral. Math. Soc. 15, 476-481.
- D. A. Holton and D. D. Grant (1975), 'Regular graphs and stability', J. Austral. Math. Soc. 20, 377-384.
- D. A. Holton and D. D. Grant, (to appear), 'Products of graphs and stability', J. Combinatorial Theory.
- K. L. McAvaney, D. D. Grant and D. A. Holton (1974), 'Stable and semi-stable unicyclic graphs', Discrete Math. 9, 277-288.
- N. Robertson and J. A. Zimmer (1972), 'Automorphisms of subgraphs obtained by deleting a pendant vertex', J. Combinatorial Theory Ser. B. 12, 169-173.

Mathematics Department Gordon Institute of Technology Geelong, Vic. 3220 Australia.