
J. Functional Programming 4 (3): 371-394, July 1994 © 1994 Cambridge University Press 371

Residual theory in X-calculus: a formal
development*
GERARD HUET

INRIA Rocquencourt, B.P. 105-78153 Le Chesnay Cedex, France

Abstract

We present the complete development, in Gallina, of the residual theory of p-reduction in pure
^.-calculus. The main result is the Prism Theorem, and its corollary Levy's Cube Lemma, a
strong form of the parallel-moves lemma, itself a key step towards the confluence theorem and
its usual corollaries (Church-Rosser, uniqueness of normal forms). Gallina is the specification
language of the Coq Proof Assistant (Dowek et al., 1991; Huet 19926). It is a specific concrete
syntax for its abstract framework, the Calculus of Inductive Constructions (Paulin-Mohring,
1993). It may be thought of as a smooth mixture of higher-order predicate calculus with
recursive definitions, inductively defined data types and inductive predicate definitions
reminiscent of logic programming. The development presented here was fully checked in the
current distribution version Coq V5.8. We just state the lemmas in the order in which they are
proved, omitting the proof justifications. The full transcript is available as a standard library
in the distribution of Coq.

Capsule review
The paper shows how a non trivial piece of theory concerned with residuals in lambda calculus
can be fully formalized using a proof developer/checker based on the calculus of inductive
constructions (Paulin-Mohring, 1993). The amount of effort needed in doing this is estimated
to be one full monk-month. Some other work on full formalizations of related theories is
mentioned.

This kind of work shows that machine checked theories are feasible. The time it took by the
author is probably less than that by the others. Compared to the pioneering work of van
Benthem Jutting (Checking Landau's 'Grundlagen', PhD thesis, Eindhoven University, 1977),
the present paper is based on a much improved second generation of proofcheckers.
Nevertheless, one would hope that the systems become still more userfriendly, notably by
having a higher level language in which the proofs can be expressed even closer to our
mathematical intuition.

1 Preliminaries

We shall not attempt to define formally the syntax of Gallina in this paper. First, we
claim that this language is close enough to the standard mathematical notation that
the meaning of definitions and statements ought to be obvious, once a few basic

* This research was partially supported by ESPRIT Basic Research Action 'TYPES'.

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

372 Gerard Huet

conventions are understood. For instance, the sentence (n : n a t) (gt n 0) +
<nat>n = 0 corresponds to the universal quantification

VneN «

It would be easy to ' beautify' our mathematics by replacing the actual Gallina code
by corresponding TgX math-mode code. We have, however, refrained from such
doctoring in this document, where the Gallina development is given verbatim. An
introduction to Gallina may be found in another case study (Huet, 19926).

An important feature of Gallina is the definition of inductive structures and
inductive predicates. To every inductive type is associated an elimination operator,
corresponding to an induction principle for propositions and a recursion principle for
sets. Recursive definitions are currently handled in a primitive recursion style which
is not very readable. We shall generally prefer to present these definitions first in a
more usual functional programming style, a la ML. It is to be expected that future
versions of Gallina will accept a more liberal and intuitive syntax.

Let us now turn to the subject matter. We shall assume a certain familiarity with
the elementary notions of pure X-calculus, such as a-conversion and p-reduction, and
we expect the reader to be familiar with the Tait-Martin-L6f method of proving the
Church-Rosser property. The basic idea is to show the parallel-moves lemma, a
diamond-like elementary paving diagram, which states that if a term M reduces to
terms N and P, then N and P reduce in turn to a common term Q. Here reduction
means parallel reduction of possibly several redexes, since the reduction from say, M
to N may duplicate some redex used in the reduction from M to P into a set of
redexes, called its residuals. Furthermore, we may not restrict ourselves to parallel
reduction of mutually disjoint redexes, since the residuals of disjoint redexes may not
be disjoint. This is an essential difficulty of ^.-calculus, which makes the proof
significantly harder than say for first order rewriting of orthogonal systems.

The essential notion for this proof is that of residual. One of the contributions of
this paper is to propose a clear inductive definition of this notion, as a refinement of
one step of parallel reduction. It is more intuitive than the standard 'residual map'
on occurrences, and allows clear inductive proofs. One of the main new results is a
Commutation Theorem, which states that residuals commute with substitution. This
gives a nice algebraic structure to the inductive type representing sets of redexes, a
natural enrichment of A.-terms. The parallel-moves lemma generalizes on this
structure as Levy's Cube Lemma, presented here as a corollary to a simpler diagram
which we call the Prism Theorem.

2 Lambda terms

We represent our A.-terms with de Bruijn's indexes (de Bruijn, 1972). We need a
minimum of arithmetical properties, concerning addition, and the standard orderings
< , ^ and > on natural numbers. Two lemmas state the decidability of those
predictates:

Lemma t e s t : (n , m : n a t) { l e n m} + {gt n m}
Lemma compare : (n , m : n a t) { l t n m} + { < n a t > n = m} + {gt n m}

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 373

Here, as everywhere, in Gallina, the prefix (n : n a t) stands for universal
quantification Vnenat. The connective + is intuitionistic disjunction, with con-
structive contents. We may use the proofs of these lemmas as boolean conditionals
in further definitions.

Throughout this paper, we shall not provide the full formal proofs of the lemmas
we state. The basic idea is that the development is sliced into small enough pieces that
the logical structure of the mathematics is more or less obvious. Hints such as ' this
lemma is proved by induction on X' are occasionally provided. The reader interested
by proof details may consult the actual transcript files in the Coq distribution.

2.1 Abstract syntax

The abstract syntax of ^.-terms is defined as an inductive set with three constructors,
corresponding respectively to variable occurrences (represented as the reference depth
from their binding abstraction), lambda abstraction and application:

Inductive Set lambda=
Ref : nat ->• lambda

| Abs : lambda -> lambda
| App : lambda -»• lambda -> lambda.

2.2 Lifting

The first operation, an auxiliary notion necessary for substitution, is lifting, which
recomputes references to global variables across n levels of extra binders in term N.
The operation (l i f t n N) is itself defined as the base case (k = 0) of a more
general (l i f t_rec n N k) , where the operation l i f t_ rec is defined recursively
as follows:

Recursive Definition lift_rec n N k = Match N with

Ref(i) -+ if i<k then Ref(i)
else Ref(n+i)

| Abs(M) -+ Abs(lift_rec n M (k + 1))
| App(M,N) -»• App(lift_rec n M k, lift_rec n N k).

Note that the argument k is just a counter of the abstraction nodes traversed during
the recursion. Thus when we encounter a variable represented as a de Bruijn index
R e f (i) , this variable is local to the X-term N when i<k (in which case it is
untouched), and global otherwise (in which case it is relocated).

The above definition of l i f t _ r e c is not accepted in Gallina's current syntax
analyser, and we must write our recursive definitions in an equivalent but more
awkward primitive-recursive style as follows:

D e f i n i t i o n l i f t _ r e c : na t -»• lambda -*• na t -»• lambda =
[n: n a t] [N: lambda] (<nat-*lambda>Match N wi th

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

374 Gerard Huet

(* (Ref i) *) [i , k: na t] (<lambda>Match (t e s t k i) with
(* k < = i *) [H: (l e k i)] (Ref (plus n i))
(* k > i •) [H: (gt k i)] (Ref i))

(* (Abs M) *) [M: lambda) [f: nat-*lambda]
[k:nat](Abs (f (S k)))

(* (App M N)*) [M: lambda] [f: nat^lambda][N:lambda]
[g: nat->lambda]
[k:nat](App (f k) (g k))) .

Definition lift = [n:nat][N:lambda](lift_rec n N 0) .

We use the Automath notation for abstraction: [n: na t]n denotes the identity
function on type nat . We use the Lisp notation for application: (F x y) denotes
the application of function F to arguments x and y.

2.3 Substitution

We now define substitution. We again give first the intuitive recursive definition, then
the actual definition as currently accepted by Coq:

Recurs ive D e f i n i t i o n subst_rec N M k = Match M with
Ref (i) -> i f k < i then R e f (i - l)

i f k = i then l i f t k N
i f k > i then Ref (i)

| Abs(P) -• Abs(subst_rec N P (k + 1))
| App(P,Q) -> App(subst_rec N P k, subst_rec N Q k) .

D e f i n i t i o n subs t_rec : lambda ->• lambda -> nat -*• lambda =
[N, M: lambda] (<nat->-lambda>Match M with

(• (Ref i) •) [i , k: na t] (< lambda > Match (compare k i)
with

[C:{(gt i k)} + { < n a t > k = i }] (<lambda>Match C with
(* k < i •) [H: (gt i k)](Ref (pred i))
(* k = i *) [H: < n a t > k = i] (l i f t k N))
(* k > i *) [H: (g t k i)] (Ref i))

(* (Abs M) •) [M: lambda] [f: nat-s-lambda]
[k:nat](Abs (f (S k)))

(* (App M N) •)
[M: lambda] [f: nat-*lambda] [N: lambda] [g: nat-^lambda]
[k:nat](App (f k) (g k))).

Definition subst = [N,M:lambda](subst_rec N M 0)

Let us give a few examples. The concrete X-expression usually written Xz • z, for
which we shall prefer the Automath syntax [z] z , is represented abstractly as the
term (Abs (Ref 0)) : lambda . This representation is canonical, in that it is
invariant by renaming of the variables (usually called ot-conversion). Thus we do not

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 375

have to burden ourselves from the start with an awkward quotient structure.
Similarly, X-expression [y] (y x) is represented as (Abs (App (Ref 0) (Ref
(S 0)))) . Here we assume that the free variable x is bound by the immediately
enclosing abstraction, like in the redex ([x , y] (y x) [z] z) . Reducing this redex
will produce the computation of term (s u b s t (Abs (Ref 0)) (Abs (App
(Ref 0) (Ref (S 0))))) , which computes to the normal-form term
(Abs (App (Ref 0) (Abs (Ref 0)))) , i.e. to the expected X-expression

[y] (y [z] z) -
Similar ly , the r e d u c t i o n of t he redex in t he expres s ion : [u] ([x] [y] (x u)

[z] u) will c o m p u t e t he t e r m (A b s (s u b s t (A b s (R e f (S 0))) (A b s

(A p p (R e f (S 0)) (R e f (S (S 0))))))) , w i th n o r m a l - f o r m (A b s (A b s

(A p p (A b s (R e f (S (S 0)))) (R e f (S 0))))) , r ep resen t ing , for e x a m p l e ,

[x , y] ([z] x x) .

3 Reduct ion

3.1 One-step ^-reduction

We may now axiomatize one step of P-reduction as the congruence closure of rule
beta , which reduces redex (App (Abs M) N) to the result of the substitution of
term N in term M, i.e. to the term (subs t N M). We thus obtain naturally r e d l as
an inductively defined relation with four constructors, corresponding to the usual
structured operational semantics rules:

Inductive Definition redl : lambda -> lambda -> Prop =
beta : (M,N:lambda)(redl (App (Abs M) N) (subst N M))

| abs_red : (M, N: lambda) (redl M N) -+ (redl (Abs M)
(Abs N))

| app_red_l : (Ml, Nl: lambda) (redl Ml Nl) -+ (M2: lambda) (redl
(App Ml M2)
(App Nl M2))

| app_red_r : (M2,N2:lambda)(redl M2 N2) -+ (Ml: lambda) (redl
(App Ml M2)
(App Ml N2)) .

Note that the above definition corresponds exactly to stating the usual inference
rules

beta

abs-red

([x]M N) -»-! M{N\x}

M ->, N
[x]M ->t [x]N

app_red_l :

app..red_r :

(Mj. M2) - ^ (Nx M2)

M2 ^ x N2

(M, M2) -* l (M, N 8)

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

376 Gerard Huet

3.2 ^-reduction

We now define ^-reduction r ed as the transitive closure of r e d l :

Inductive Definition red : lambda -> lambda -> Prop =

one_step_red : (M, N: lambda) (redl M N) -> (red M N)

| refl_red : (M: lambda)(red M M)
| trans_red : (M, N, P: lambda) (red M N) ->• (red N P) -•

(red M P).

Here are a few typical lemmas, easy to prove by the induction principle naturally
associated with the inductive definition r e d :

Lemma red_abs : (M, M': lambda) (red. M M') -»• (red (Abs M)

(Abs M')).

Lemma red_appl : (M, M': lambda) (red M M') -> (N:lambda)(red

(App M N) (App M' N)).

Lemma red_appr : (M, M': lambda) (red M M') -*• (N: lambda) (red
(App N M) (App HT M')).

Using the transitivity of red, we now show that red is closed by P-reduction:

Lemma red_app : (M, M', N, N': lambda)(red M M') -> (red N N') -*•

(red (App M N) (App M' N')) .

Lemma red_beta :
(M, M',N, N': lambda)(red M M') -> (red N N') ->
(red (App (Abs M) N) (subst N' M')).

3.3 ^-conversion

Similarly, P-conversion conv may be defined as the equivalence closure of r e d l .
Actually, it is more convenient to first define one step of conversion as one step of
reduction or anti-reduction, to take its reflexive-transitive closure, and to prove
symmetry:

Inductive Definition convl : lambda -> lambda -> Prop =
redl_conv : (M,N : lambda) (redl M N) -> (convl M N)

| expl_conv : (M, N : lambda) (redl N M) -> (convl M N).

Inductive Definition conv : lambda -»• lambda -»• Prop =
one_step_conv : (M,N : lambda) (convl M N) -> (conv M N)

| refl_conv : (M: lambda) (conv M M)
| trans_conv : (M, N, P: lambda) (conv M N)-> (conv N P)

->• (conv M P).

Lemma sym_conv : (M,N : lambda)(conv M W)

-»- (conv N M).

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 377

3.4 Parallel ^-reduction

We similarly define one step of parallel (3-reduction, with the usual bottom-up
inductive definition:

Inductive Definition par_redl : lambda -»• lambda -> Prop =
par_beta : (M, M': lambda) (par_redl M M') ->

(N,N': lambda) (par_redl N N') -» (par_redl
(App (Abs M) N) (subst N' M'))

| ref_par_red : (n: nat)(par_redl (Ref n) (Ref n))
| abs_par_red : (M, M': lambda) (par_redl M M') -> (par_redl

(Abs M) (Abs M'))
| app_par_red : (M,M' : lambda) (par redl M M') -»•

(N, N': lambda) (par_redl N N') -» (par_redl
(App M N) (App M' N')).

Again, this should be compared to

M => M' N => N'
par_beta :

([x] M N) => M'{N'\x}

ref-par_red :
X =>

M
[x]M

M =>

X

=>

=>

M'

M'
[x]M'

N =*• N'
app.par_red : (M N) ^ ^ ^

Let us give a few easy lemmas: p a r _ r e d l is reflexive and extends r e d l :

Lemma r e f l _ p a r _ r e d l : (M: l a m b d a) (p a r _ r e d l M M).

Lemma r e d l _ p a r _ r e d l : (M , N : l a m b d a) (r e d l M N) ->
(p a r _ r e d l M N).

Both lemmas are immediate by induction on M. We now define parallel (3-
reduction p a r _ r e d as the transitive closure of p a r _ r e d l :

Inductive Definition par_red : lambda -> lambda ->• Prop =
one_step_par_red : (M, N: lambda)(par_redl M N) ->

(par_red M N)
| t r a n s _ p a r _ r e d : (M, N, P: l a m b d a) (p a r _ r e d M N) ->

(p a r _ r e d N P) -»• (p a r _ r e d M P) .

3.5 Equivalence between reduction and parallel reduction
Lemma r e d _ p a r _ r e d : (M, N: l a m b d a) (r e d M N) -> (p a r _ r e d M N) .

Lemma p a r _ r e d _ r e d : (M,N: l a m b d a) (p a r _ r e d M N) -*• (r e d M N) .

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

378 Gerard Huet

Again, lemma red_par_red is easily proved, by induction on the derivation of
(r ed M N). Similarly, lemma par_red_red is proved by induction on (par_
red M N). In Coq, such proofs are easy, since the system automatically synthesises
an induction principle for any inductively defined notion, and this principle is directly
invoked by the I n d u c t i o n proof tactic. For instance, the induction principle
associated with the inductive predicate red is a second-order construction red_ind,
with type

red_ind : (R: lambda -> lambda -*• Prop)

((M: lambda)(N:lambda)(redl M N) ->• (R M N)) ->

((M: lambda) (R M M)) -»
((M,N,P: lambda) (red M N) -• (R M N) -• (red N P) ->
(R N P) -> (R M P)) ->

(M, N: lambda) (red M N) -> (R M N).

3.6 Confluence and strip lemmas

We define confluence abstractly, with parameters A: Set and relation R: A -*•
A -> Prop. This definition is Gallina syntax for

confluence (R) = Vx,y,zeA-R(x,y)AR(x,z)=>3ueA-R(y,u)AR(z,u).

The particular order of quantification used below is best suited for the subsequent
induction proofs:

D e f i n i t i o n conf luence [A: Set] [R: A -»• A -*• Prop]
(x ,y :A) (E x y) -• (z:A)(R x z) -» <A>Ex([u:A] (R y u) / \

(R z u))

The next lemma is an easy consequence of the equivalence between reduction and
parallel reduction:

Lemma lemma 1 : (confluence lambda par_red) -»• (confluence
lambda red).

The next lemmas are classical 'strip lemmas', like in Barendregt (1984, 1992):

Defini t ion s t r i p = (x,y:lambda)(par_red x y) ->
(z: lambda) (par_redl x z) -»•

<lambda>Ex([u: lambda] (par_redl y u) / \ (par_red
z u))

Lemma strip_lemma_r : (confluence lambda par_redl) -»• strip.

In more usual notation, writing => for one step of parallel reduction, this lemma
says that if => is confluent, then Vx,y,z,x=>*y Ax=>z => 3uy=>uAz=>*u. In the
standard proof, this is an easy induction on n such that x=>"y. In Coq we do this by
a direct induction on the hypothesis (par_red x y) , there is no need to go
through an arithmetic coding. A second 'strip lemma' in the other direction

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 379

completes the equivalence between confluence of one step of parallel reduction and
its transitive closure:

Lemma strip_lemma_l : strip -*• (confluence lambda par_red).

lemma Iemma2 : (confluence lambda par_redl) -»• (confluence
lambda par_red).

4 Redexes

We represent sets of redex occurrences as terms with an extra Boolean mark to
application nodes. A redex occurrence (Ap b (Fun M) N) belongs to the set iff
b = t r ue .

4.1 Redexes as an enrichment of terms
Inductive Set redexes =

Var : nat -*• redexes
| Fun : redexes -»• redexes
| Ap : bool -> redexes -*• redexes -> redexes.

We define the translation from terms to (empty) sets of redexes, and the reverse
forgetful translation

Definition mark = [M: lambda] (<redexes>Match M with
(* Ref *) [n : nat](Var n)
(* Abs *) [M: lambda][U: redexes](Pun U)
(• App *) [M:lambda][U:redexes][N:lambda][V:redexes]

(Ap false U V)).

Definition unmark = [U: redexes] (<lambda>Match U with
(* Var *) [n : nat](Ref n)
(* Pun *) [U: redexes][M: lambda](Abs M)
(* Ap *) [b: bool][U: redexes][M:lambda][V:redexes]

[N:lambda](App M N)).

Lemma inverse : (M: lambda) <lambda>M= (unmark (mark M)).

4.2 The boolean algebra of sets of redexes

The structure of redexes is going to be used for two orthogonal purposes: as
representations of proofs of one step of parallel reduction, and as sets of redexes the
residuals of which we are interested in tracing. Sets of redexes have a natural structure
of boolean algebra, with ordering the subset relation sub, and join union, defined
inductively below:

Inductive Definition sub : redexes -»• redexes -> Prop =
Sub_Var : (n:nat)(sub (Var n) (Var n))

| Sub_Pun : (U, V: redexes) (sub U V) -»•

(sub (Pun U) (Pun V))
| Sub_Apl : (Ul, VI: redexes) (sub Ul VI) -»•

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

380 Gerard Huet

(U2, V2: r edexes) (sub U2 V2) -»•
(b: bool)(sub (Ap false Ul U2) (Ap b VI V2))

| Sub_Ap2 : (Ul, VI: redexes) (sub Ul VI) ->
(U2,V2: redexes) (sub U2 V2) -»-
(b: bool)(sub (Ap true Ul U2) (Ap true VI V2)).

Definition bool_max =
[b, b': bool] (<bool>Match b with true b').

Inductive Definition union : redexes -»• redexes -*•
redexes -> Prop =

Union_Var : (n: nat) (union (Var n) (Var n) (Var n))
| Union_Fun : (U, V, W : redexes) (union U V W) ->

(union (Tun U) (Fun V) (Fun W))
| Union_Ap : (U1,V1,W1 : redexes (union Ul VI Wl) -»

(U2,V2,W2 : redexes) (union U2 V2 W2) ->
(bl,b2:bool) (union (Ap bl Ul U2)
(Ap b2 VI V2) (Ap (bool_max bl b2) Wl W2)).

Lemma uniorul : (U, V, W: redexes) (union U V W) -»• (sub U W).

Lemma union_r : (U, V, W: redexes) (union U V W) -»• (sub V W).

Lemma union_sym : (U, V, W: redexes) (union U V W) ->
(union V U W).

The compatibility relation in this lattice is the equivalence comp, with
(comp U V) if and only if (unmark U) = (unmark V) :

Inductive Definition comp : redexes -> redexes -> Prop =
Comp_Var : (n: nat)(comp (Var n) (Var n))

| Comp_Pun : (U,V :redexes)(comp U V) ~> (comp (Fun U)
(Fun V))

| Comp_Ap : (U1.V1 : redexes) (comp Ul VI) -»•
(U2,V2 : redexes) (comp U2 V2) -»-
(bl,b2:bool) (comp (Ap bl Ul U2)
(Ap b2 VI V2)).

Lemma comp_refl : (U:redexes)(comp U U).

Lemma comp_sym : (U,V:redexes) (comp U V) -> (comp V U).

Lemma comp_trans : (U,V:redexes)(comp U V) ->
(W: redexes) (comp V W) -> (comp U W).

Lemma union_def ined : (U, V: redexes) (comp U V) ->•
<redexes>Ex([W: redexes] (union U V W)).

Lemma comp_unmark_eq : (U, V: redexes)(comp U V) ->
<lambda> (unmark U) = (unmark V).

We do not state the converse of this last lemma, which is not needed in the
following.

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 381

4.3 Regularity

An element of type redexes is said to be r e g u l a r if its true marks label only
redexes. We want to forbid non-regular values of this type such as (Ap t r u e
(Var 0) (Var 0)) , which are meaningless for the representation of sets of
redexes. We define this predicate recursively, first informally, then formally.

Recursive Definition regular U = Match U with
Var(n) -> True

| Fun(V) -> regular(V)
| Ap(true,V,W) -> (Match V with Fun(_) -»-

regular(V) /\ regular(W)
| _ -• False)

| Ap(false, V, W) -• regular(V) /\ regular(W).

Definition regular = [U: redexes] (<Prop>Match U with
(* Var *) [n:nat]True
(* Fun *) [Ul: redexes][P:Prop]P
(* Ap *) [b: bool][V: redexes][P: Prop][W: redexes][Q: Prop]

(<Prop>Match b with (* true *) (<Prop>Match V
with

(* Var *) [n:nat]False
(* Fun •) [Ul: redexes][R:Prop](P /\ Q)
(• Ap *) [V: bool] [V: redexes] [P': Prop] [W: redexes]

[Q':Prop]False)
(* false *) (P /\ Q)))-

Lemma union_preserve_regular :
(U,V,W: redexes) (union U V W) -+ (regular U) -»•
(regular V) -> (regular W).

5 Substitution of redexes inside redexes

We develop the theory of substitution for the structure redexes, similarly to what
we did for the terms. We first give a number of tedious technical lemmas concerning
the extension of substitution to redexes. Corresponding lemmas for terms could be
obtained by forgetting the Boolean marks. We advise the reader to skip the following
two sections, unless interested in the theory of de Bruijn indexes managing, and to
look directly at lemma s u b s t i t u t i o n below.

5.1 Lifting

We just copy the above definition of l i f t_rec , just enriching the application node
with its boolean mark:

Definition lift_rec_r : nat -> redexes -»• nat -*• redexes =
[n: nat] [P: redexes] (<nat->redexes>Match P with

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

382 Gerard Huet

(* (Var i) *) [i , k: nat] (Var (<nat>Match (test k i)
with

(* k < = i •) [H: (le k i)] (plus n i)
(• k > i *) [H: (gt k i)] i))

(* (Fun M) *) [M: redexes][f: nat->redexes]
[k:nat](Pun (f (S k)))

(• (Ap b M N) *) [b: bool] [M: redexes] [f: nat->-redexes]
[N: redexes] [g: nat->redexes]
[k:nat] (Ap b (f k) (g k))) .

Lemma l i f t_ le : (n, i , k: nat) (le k i) ->
<redexes> (l if t_rec_r n (Var i) k) =
(Var (plus n i)) .

Lemma l i f t_gt : (n, i , k: nat) (gt k i) ->
<redexes> (l if t_rec_r n (Var i) k) = (Var i) .

Lemma l i f t l : (U: redexes) (j , i , k: na t) <redexes>
(lift_rec_r k (l if t_rec_r j U i) (plus j i)) =
(lift_rec_r (plus j k) U i) .

Lemma l i f t_ l i f t_ rec : (U: redexes) (k, p, n, i: nat) (le i n) -»•
<redexes>
(lift_rec_r k (l if t_rec_r p U i) (plus p n)) =
(lift_rec_r p (l if t_rec_r k U n) i) .

Definition l i f t _ r = [n: nat] [U: redexes] (lift_rec_r n U 0).

Lemma l i f t _ l i f t : (U: redexes) (k, p, n: nat) <redexes>
(lift_rec_r k (l i f t_ r p U) (plus p n)) = (l i f t_r p
(lift_rec_r k U n)) .

Lemma liftrecO :
(U: redexes) (n: nat) <redexes> (lift_rec_r 0 U n) = U.

Lemma liftO : (U: redexes) <redexes> (l i f t_r 0 U) = U.

Lemma l i f t_rec_l i f t_rec : (U: redexes) (n, p, k, i: nat)
(le k (plus i n)) -*• (le i k) -> <redexes>
(lift_rec_r p (l i f t_rec_r n U i) k) = (lift_rec_r
(plus p n) U i) .

Lemma l i f t_ rec_ l i f t : (U: redexes) (n ,p ,k , i :na t) (le k n) ->•
<redexes)
(lift_rec_r p (l i f t_ r n U) k) = (l i f t_r (plus p n) U),

5.2 Substitution
Definition subst_rec_r : redexes -»- redexes -> nat -»•

redexes =
[N, M: redexes] (<nat->redexes>Match M with

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 383

(* (Var i) •) [i , k: n a t] (<redexes>Match (compare k i)
with

[C:{(gt i k)} + { < n a t > k = i}] (<redexes>Match C with
(* k < i •) [H: (gt i k)] (Var (pred i))
(• k = i *) [H: < n a t > k = i] (l i f t _ r k N))
(* k > i *) [H: (gt k i)] (Var i))

(* (Pun M) •) [M:redexes][f: nat -»• redexes]
[k :na t] (Pun (f (S k)))

(* (Ap b M N) *) [b: bool) [M: redexes] [f: nat -»• redexes]
[N: redexes] [g: nat -»• redexes]
[k:nat](Ap b (f k) (g k))).

Lemma subst_eq : (U: redexes) (n: nat) <redexes>
(subst_rec_r U (Var n) n) = (lift_r n U).

Lemma subst_gt : (U: redexes) (n, p: na t) (gt n p) -»• < redexes>
(subst_rec_r U (Var n) p) = (Var (pred n)) .

Lemma subs t_ l t : (U: redexes) (n, p: na t) (gt p n) -*• < redexes>
(subst_rec_r U (Var n) p) = (Var n) .

Lemma l i f t_ rec_subs t_ rec :
(U, V: redexes) (k, p, n: na t) < redexes>
(l i f t _ r e c _ r k (subst_rec_r U V p) (plus p n)) =
(subst_rec_r (l i f t _ r e c _ r k U n)
(l i f t _ r e c _ r k V (S (plus p n))) p) .

5.3 The substitution lemma
Definition subst_r = [V, U: redexes](subst_rec_r V U 0).

Lemma l i f t_subst : (U, V: redexes) (k, n: nat) <redexes>
(l if t_rec_r k (subst_r U V) n) =
(subst_r (l i f t_rec_r k U n) (l i f t_rec_r k V (S n))) .

Lemma subst_rec_lift_recl : (U, V: redexes) (n, p, k: nat)
(le k n) ->• <redexes>

(subst_rec_r V (l if t_rec_r p U k) (plus p n)) =

(l i f t_rec_r p (subst_rec_r V U n) k).

Lemma subs t_ l i f t l : (U,V:redexes)(n,p:nat)<redexes>
(subst_rec_r V (l i f t_ r p U) (plus p n) = (l i f t _ r p
(subst_rec_r V U n)) .

Lemma subst_rec_lift_rec : (U, V: redexes) (p, q, n: nat)
(le q /£plus p n)) -» (le n q) -»• <redexes>
(sub^t_rec_r V (l if t_rec_r (S p) U n) q) =
(l if t_rec_r p U n) .

Lemma subst_rec_lift : (U, V: redexes) (p, q: nat)
(le q p) -*• <redexes>
(subst_rec_r V (l i f t_ r (S p) U) q) = (l i f t _ r p U).

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

384 Gerard Huet

Lemma subs t_ rec_subs t_ rec : (U, V, W:redexes) (n ,p : na t) < r e d e x e s >
(subs t_ rec_r W (subst_rec_r U V p) (p lus p n)) =
(subs t_ rec_r (subs t_rec_r W U n) (subs t_rec_r W V (S
(p lus p n))) p) .

After this painful technical development, we finally get the important Substitution
Lemma, which says (roughly)

Lemma s u b s t i t u t i o n : (W, U, V, : redexes) (n: n a t) < r e d e x e s >
(subs t_ rec_r V (subst_r W U) n) =
(subs t_ r (subs t_rec_r V W n) (subs t_rec_r V U (S n)))

The argument n 4-1 in the right-hand side accounts for the asymmetry in
(s u b s t N M), which corresponds to reducing a redex (f x] M N): a global variable
referenced by index n in N is referenced by index n +1 in M, since there is the extra
binder for the substituted variable x to account for.

5.4 Preservation lemmas

We now show that substitution preserves compatibility and regularity

Lemma lift_rec_preserve_comp : (Ul, VI: redexes)
(comp Ul VI) ->

(n, m: nat) (comp (lift_rec_r n Ul m)
(lift_rec_r n VI m)).

Lemma subst_rec_preserve_comp :

(Ul, VI, U2,V2: redexes) (comp Ul VI) -»•
(comp U2 V2) -• (n:nat)(comp (subst_rec_r Ul U2) n)
(subst_rec_r VI V2 n)).

Lemma subst_preserve_comp :
(U1,V1,U2,V2: redexes) (comp Ul VI) -»- (comp U2 V2) -»•
(comp (subst_r U2 Ul) (subst_r V2 VI)).

Lemma lift_rec_preserve_regular :

(U: redexes) (regular U) -*• (n, m: nat) (regular
(lift_rec_r n U m)).

Lemma subst_rec_preserve_regular :

(U, V: redexes) (regular U) -*• (regular V) -»•
(n: nat) (regular (subst_rec_r U V n)).

Lemma subst_preserve_regular :
(U, V: redexes) (regular U) -*• (regular V) -> (regular
(subst_r U V)).

6 Residuals

We develop a strengthening of parallel p-reduction, with residual tracing. Here
(r e s i d u a l s U V W) means redexes W are residuals of redexes U by one step of
parallel reduction of all redexes V. Note how this definition follows naturally the

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 385

structure of the definition of parallel reduction above, instead of the usual rather
arbitrary looking definition of the residual map between positions in the terms:

Inductive Definition residuals : redexes -> redexes -*•
redexes -»• Prop =

Res_Var : (n:nat)(residuals (Var n) (Var n) (Var n))
| Res_Fun : (U, V, W: redexes) (residuals U V W) ->

(residuals (Fun U) (Fun V) (Fun W))
| Res_Ap : (Ul,VI,Wl:redexes) (residuals Ul VI Wl) -*

(U2,V2,W2:redexes)(residuals U2 V2 W2) -»•
(b:bool) (residuals (Ap b Ul U2) (Ap false VI
V2) (Ap b Wl W2))

| Res_redex : (Ul,VI,Wl:redexes)(residuals Ul VI Wl) ->
(U2,V2,W2: redexes) (residuals U2 V2 W2) -»-

(b: bool)(residuals (Ap b (Fun Ul) U2) (Ap true
(Fun VI) V2) (subst_r W2 Wl)).

The relation res iduals defines a partial function
Lemma residuals_function : (U,V,W:redexes)

(residuals U V W) -> (W: redexes)
(residuals U V W') -* <redexes>W' = W.

6.1 The commutation theorem

We now prove the crucial commutation theorem. First, a few lemmas

Lemma residuals_lift_rec : (Ul, U2, U3: redexes)
(residuals Ul U2 U3) -> (k, n:nat)
(residuals (lift_rec_r k Ul n) (lift_rec_r k U2 n)
(lift_rec_r k U3 n)).

Lemma residuals_lift : (Ul, U2, U3:redexes)
(residuals Ul U2 U3) -» (k:nat)
(residuals (lift.r k Ul) (lift_r k U2) (lift_r k U3)).

Lemma residuals_subst_rec : (Ul, U2, U3, VI, V2, V3: redexes)
(residuals Ul U2 U3) -> (residuals VI V2 V3) -»• (k:nat)
(residuals (subst_rec_r VI Ul k) (subst_rec_r V2 U2 k)
(subst_rec_r V3 U3 k)).

Thus, we get the commutation theorem, which states that residuals commute with
substitution

Theorem commutation : (Ul,U2,U3,VI,V2,V3:redexes)
(residuals Ul U2 U3) -+ (redexes VI V2 V3) ->
(residuals (subst_r VI Ul) (subst_r V2 U2)
(subst.r V3 U3)).

Using V/U for the substitution of V in U and U\V for the residuals of U by V,
unique when they exist, we would write this result, using the standard mathematical
conventions for partial operations,

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

386 Gerard Huet

Commutation theorem If U1 and Vr (resp. U2 and V2) are compatible sets of redexes

To our knowledge, this theorem appeared first in Huet (1988). Note that, despite
its easy formulation, this theorem is not so intuitive. It is simple to say that residuals
commute with substitution, but it is another matter to draw a diagram illustrating the
general situation.

6.2 Residuals, compatibility and regularity

We first show two lemmas relating residuals and compatibility;

Lemma residuals_comp : (U, V, W: redexes) (residuals U V W) ->
(comp U V).

Lemma residuals_preserve_comp : (U, V: redexes) (comp U V) -*•
(W,UW,VW:redexes)(residuals U W UW) -» (residuals V W
VW) -> (comp UW VW).

We take residuals only by regular redexes. Conversely, residuals by compatible
regular redexes always exist (and are unique by the r e s i dua l s_ func t i on lemma
above). Finally, residuals preserve regularity

Lemma residuals_regular
-*• (regular V).

(U,V,W:redexes) (residuals U V W)

Lemma residuals_intro : (U, V: redexes) (comp U V) -» (regular
V) -><redexes>Ex([W: redexes] (residuals U V W)).

Lemma residuals_preserve_regular :
(U,V,W:redexes)(residuals U V W)
(regular W).

(regular U)

6.3 The prism theorem

We arrive at the main result of this paper.

The Prism Theorem For every compatible sets of redexes U, V and W

V<=[/=> W\U = (W\V)\(U\V)

The name 'prism theorem' comes from the shape of the picture it evokes, in the
same way that Levy's (1978) cube lemma corresponds to the picture of a cube:

UW

w\u

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 387

In our relational formalization, this theorem is expressed as the conjunction of
prisml and prism2:

Lemma pr isml : (U, V, W: redexes) (sub V U) -»•
(UV:redexes)(res iduals U V UV) ->
(WV: redexes) (r e s idua l s W V WV) ->•
(WU: r e d e x e s) (r e s i d u a l s W U WU) -> (r e s i d u a l s WV UV WU),

Lemma pr i sm2 : (U, V, W: r e d e x e s) (sub V U) -> (r e g u l a r U) -»•
(U V : r e d e x e s) (r e s i d u a l s U V UV) -*
(W V : r e d e x e s) (r e s i d u a l s W V WV) ->
(WU: r e d e x e s) (r e s i d u a l s WV UV WU) -> (r e s i d u a l s W U WU)

The proof of p r i s m l is by simultaneous structural induction on U, Fand W. The
key case corresponds to when U, V and W are redexes, with V marked, and the result
follows then directly from the commutation theorem. We then obtain pr i sm2 by the
r e s i d u a l s _ f u n c t i o n lemma. We now put the two lemmas together as one
theorem:

Theorem p r i sm : (U, V, W: r e d e x e s) (sub V U) -»•
(U V : r e d e x e s) (r e s i d u a l s U V UV) ->
(WV: r e d e x e s) (r e s i d u a l s W V WV) ->
((WU: r e d e x e s) (r e s i d u a l s W U WU) <->
(r e g u l a r U) / \ (r e s i d u a l s WV UV WU))

The careful reader may wonder about the slight asymmetry between the two sides
of the equivalence. This is due to the fact that (r e s i d u a l s U V W) insures only
that V is regular (this is lemma residuals_regular above), not U or W. In the informal
statement of the theorem, we said 'for every compatible sets of redexes U, Fand W\
which insures the regularity of U, as compatible with regular V. Of course, here we
do not care about non-regular structures, which do not code sets of redexes, but in
the formal proof of prism2 the regularity of C/ is indeed needed to get the theorem in
its full generality.

Pictorially, we obtain a cube by 'glueing together' two prisms, and the cube lemma
below is indeed a direct corollary of the prism theorem.

6.4 The cube lemma

The Cube Lemma For every compatible sets of redexes U, V and W

(W\V)\(U\V) = (W\U)\(V\U)

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

388 Gerard Huet

We first need an auxiliary lemma, showing that for any compatible sets of redexes
I/and V

U\V={U U V)\V

Lemma preservation :
(U,V,W,UV: redexes) (union U V W) -»•
(residuals U V UV) ->
(residuals W V UV).

Lemma cube :
(U,V,UV,VU: redexes) (residuals U V UV) ->
(residuals V U VU) ->
(W,WU,WV,WUV: redexes) (r e s i d u a l s W U WU) ->
(r e s i d u a l s WU VU WUV) ->
(r e s i d u a l s W V WV) -> (r e s idua l s WV UV WUV).

The proof of the cube lemma uses pr i sml , prism2, and the auxiliary lemma
prese rva t ion .

Combining the cube lemma with the re s idua l s_ in t ro property above, we get
a general 3-dimensional paving diagram, an essential technical tool for the theory of
(parallel) derivations:

Lemma paving :
(U,V,W,WU,WV: redexes) (residuals W U WU) ->
(residuals W V WV) ->•
<redexes>Ex([UV: redexes] <redexes>Ex([VU: redexes]
<redexes>Ex([WUV: redexes]
((residuals WU VU WUV) /\ (residuals WV UV
WUV))))).

In more usual notation:

The Paving Lemma For every compatible sets of redexes U, V and W, there exist sets
of redexes UV and VU such that

{W\U)\VU = (W\V)\UV

This paving diagram is the categorical essence of the diamond property expressed
in the next section as the parallel moves lemma. That is, the confluence property of
P-reduction expresses much more than a syntactic coincidence of the common
endpoints of the two derivations; it states a categorical diagram, saying that the two
derivations preserve any remaining computation (expressed by the argument W).

The natural continuation of this theory would be to define the structure of (multi-
step parallel derivations, and to define by induction the residual A\B of a derivation
A by a coinitial derivation B. We could then define the permutation equivalence (Levy,
1978), consider the category whose objects are terms and whose maps are derivations
quotiented by permutation, and show that it admits pushouts. We shall not do it here,
and rather turn to the application of the paving lemma to confluence results. This is
obtained by simply forgetting the marks.

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 389

7 Confluence

7.1 From residuals to reduction

Here we relate redexes and terms, showing that unmarking projects operations on
redexes to the corresponding operations on terms:

Lemma mark_lift : (M: lambda) (n: nat) <redexes> (lift_r n

(mark M)) = (mark (lift n M)).

Lemma mark_subst : (M, N: lambda) <redexes> (subst_r (mark M)

(mark N)) = (mark (subst M N)).

Lemma unmark_lift : (U: redexes)(n:nat)
<lambda> (lift n (unmark U)) = (unmark (lift_r n U)).

Lemma unmark_subst : (U, V: redexes)

<lambda> (subst (unmark U) (unmark V)) = (unmark
(subst_r U V)).

We now define reduction of a X-term by a set of redexes

Definition reduction = [M: lambda] [U: redexes] [N: lambda]
(r e s i d u a l s (mark M) U (markN)) .

Lemma reduc t ion_func t ion :
(M,N, P: lambda)(U: r e d e x e s) (r e d u c t i o n M U N) ->
(r educ t i on M U P) -> <lambda>N = P.

We then show that r e s i d u a l s properly simulates pa r_red l

Lemma simulation :

(M,M': lambda) (par_redl M M') -»•
<redexes>Ex([V: redexes] (reduction M V M')).

Lemma completeness :
(U, V, W: redexes) (residuals U V W) -J-
(par_redl (unmark U) (unmark W)).

7.2 Parallel moves and confluence

We may now get confluence of one-step parallel reduction as a corollary of the paving
lemma. Confluence of parallel reduction follows from lemma 2 above. Confluence of
P-reduction follows then from lemma 1:

Lemma parallel_moves : (confluence lambda par_redl).

Lemma confluence_parallel_reduction :

(confluence lambda par_red).

Theorem confluence_beta_reduction : (confluence lambda red).

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

390 Gerard Huet

7.3 The Church-Rosser theorem

Lastly, we give as corollary the Church-Rosser theorem:

Theorem Church_Rosser : (M,N: lambda)(conv M N) ->
<lambda>Ex([P: lainbda] (red M P) / \ (red N P)) .

It is proved by an easy induction on (conv M N), using the confluence theorem
above and the reflexivity and transitivity of reduction.

8 Analysis of this development

We shall briefly analyse this mathematical development, to assess the suitability of the
Gallina specification language for this type of mathematical theory, and of Coq as a
Proof Assistant.

8.1 Resources requirements

An analysis of the suitability of Coq as a Proof Assistant is actually beyond the scope
of this paper, since it would require a fuller description of the proof scripts. We limit
ourselves here to a sketchy description of the amount of resources which are necessary
for working out such a development.

The most crucial resource by far is human time of the proof engineer. The proof
engineer must have good familiarity with the relevant mathematical theory, and be
well trained in using Coq. Developing the formal proof of a lemma is currently one
order of magnitude more complicated than writing the functional program which
underlies the proof. In our case, we factored the difficulty by first developing a pre-
formal axiomatization of the same material, using the programming language ML
(Huet, 1992 a). This pre-formal axiomatization followed itself an initial development
of the main notions in informal mathematics.

We then proceeded with the complete development of this example in Coq. We used
a mixture of top-down development, using axioms to delay proving technical lemmas,
and bottom-up proofs of these. Some of the technical lemmas turned out to be much
more complex than anticipated. It took us about one month to get the theory of
substitution right, and a couple of weeks to find the right combination of structural
induction on redexes and induction on residuals derivation to crack the proof of the
prism theorem. The amount of time it takes to get all the arithmetical lemmas and
other technical details out of the way, in order to get rid of ALL axioms, is always
underestimated. Finally, polishing and restructuring the final development to get an
honourable-looking piece of mathematics is also a time-consuming task, but a
conceptually interesting one. All in all, this was done over a 3-month-period as a kind
of background activity interleaved with many other distracting tasks, whose constant
interruptions were detrimental to the proper concentration required to manage a
large proof. A better estimate would be one full-time monk-month.

In a way, this means that such completely formal mathematical developments are
still very costly. On the other hand, it shows that they are indeed feasible.

Let us give briefly what computing resources are involved. The full transcript takes

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in "k-calculus 391

14' to be verified on a modern Sparc2 workstation, and we are very far from any
intrinsic limitation of Coq. Indeed, this transcript may be executed on a portable
Macintosh microcomputer with only 2 Megabytes of memory for the Coq application.
We conclude that modern computing resources are sufficient for developing
substantial formal mathematics, and that the real bottleneck is human time.

8.2 Comparison with other formalizations of similar material

The first formal development of the Church-Rosser theorem in .̂-calculus was done
by N. Shankar on the Boyer-Moore prover (Shankar, 1985). In Shankar's work,
(BUMP X N) corresponds to our (l i f t _ r e c 1 X N), and his (SUBST X Y N)
corresponds to our (subs t_rec Y X N). His WALK is basically our par_red
relation.

Our version of substitution for de Bruijn's indexes is slightly different from
Shankar's: when we substitute Y inside a lambda we do not BUMP Y, we lift it only
when we encounter the variable to substitute, keeping a counter of the lambdas
encountered. Thus we traverse once Y for every occurrence of the substituted variable,
where Shankar traverses Y for every abstraction in the term into which he substitutes.
The price we pay for this optimization is that our substitution lemma is harder to
prove, since it involves properties of addition. Retrospectively, it is probably a
mistake to complicate definitions for computational considerations. The rational for
this axiomatization was to try and follow as faithfully as possible the prior pre-formal
development done in (Huet (1992 a).

Shankar's development was transposed to the Calculus of Constructions by A.
Narayana (1991). Other variants of ^.-calculus formalizations have been developed by
S. Berardi (1991), C. Coquand (1992) and T. Altenkirch (1993).

Many variations are possible for representing free variables. Here we fix their
relative depth. Thus (Re f 1) has more information than just a free variable x l ,
since it tells you that it is x l in a context of the form ... [x l] [xO]. A still more precise
representation would tell the full length n ^ 2 of the context. A still more explicit
representation would define lambda as a dependent type on a na t argument,
denoting the length of the current context. Thus, for instance, we would get
parameterized families of constructors such as Abs: (n: n a t) (lambda (S n))
-> (lambda n). This parameterization seems to complicate matters without
definite improvement, though.

All these variations rely on de Bruijn's indexes. A notable exception, using an
abstract type of variables, is the recent formalization of PTS by McKinna and Pollack
(1993). Recently, F. Pfenning (1992) developed a proof of the Church-Rosser
theorem in Elf using higher-order abstract syntax for its formalization.

8.3 Remarks on the contribution to "k-calculus theory

This type of combinatorial mathematics is well-suited to inductive specifications
languages. We claim that the development presented in this paper is rather elegant,
without arbitrary codings, and indeed, more pleasant aesthetically than the classical

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

392 Gerard Huet

informal textbook treatment, despite the heavy de Bruijn references machinery and
the awkward syntax for recursion. However, we warn the reader that we weeded out
of the development a few intermediate notions and lemmas, which were developed to
ease the job for the prover.

The commutation theorem is usually presented in the weaker following form,
where => stands for one step of parallel reduction. If M=>M' and N=>N', then
M[x<-N]=>M'[x<-N']. In the development above, we say more about the structure
of the resulting reduction. Indeed, by stating it on the structure redexes which is
used dually for parallel reduction steps and for tracing residuals, we obtain a stronger
result on residuals, and the theorem becomes a nice algebraic commutation property.

The prism theorem is not new, in that it is a direct consequence of the cube lemma.
What is new is to recognize its importance as the main result indeed. This is where
we get a reward from a fully formal development: we have to formulate the notions
in exactly the right algebraic way, and we have to find the most elegant composition
of arguments to get small proofs.

It is essential for the application of the cube lemma to a general theory of
derivations to close the diagram with U U V. If we were only interested in confluence,
we could take any upper bound of U and V, such as the set of all redexes in the
underlying term unmark{U) (this is the usual proof of confluence of 1-step parallel
reduction, closing the diagram with full reduction). The minimality of the paving
diagram is a key step towards proving that the category of derivations, quotiented
with the permutation equivalence, admits pushouts.

The regularity requirements are an obnoxious side-effect of our axiomatization of
sets redexes as marked terms. Finer-grain representation of ^.-calculus terms, for
instance as sharing graphs implemented with interaction nets, may be better adapted
to represent sets of redexes (sets of interactions) by labelling the arcs of the graph.
Here in this term representation we can label only vertices, and the regularity
requirement comes from the fact that instead of labelling an arc between an App node
and an Abs node, we have to label either the App or the Abs, opening the spurious
case of a non-regular labelling.

A further remark on this point is that we indeed have the choice of whether to label
the App or the Ats, and that Berendregt's underlining method (1992) is dual to ours,
in that he rather labels the Abs nodes of redexes. In a way this does not matter, but
in another it does. Since the argumentation follows the inductive structure of the
marked terms, labelling the (top) App tells us whether the current term is a redex or
not, without having to look at its first subterm by one further induction, leading to
extraneous inductive cases.

8.4 Comparison with other logical frameworks and systems

One of the most awkward features of the axiomatization above is the difficulty of
dealing with partial functions. We would really prefer to use a functional notation for
the residuals map, in order to get the prism theorem in one piece. Similarly, we would
like to use functional notation for union, which is defined only when its two
arguments are compatible. This drawback originates from Coq's standard viewpoint

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

Residual theory in X-calculus 393

towards logic axiomatizations, in contrast to 'free logic' treatments such as provided,
for instance, in the IMPS system (Farmer et al., 1991), which are closer to
mathematical practice with regards to partial operations.

We note that it is painful to duplicate all the definitions of lifting and substitution
when going from terms to redexes. Somehow this structure enrichment should
correspond to a notion of subtyping in the logical framework, in the spirit of object-
oriented programming: the boolean mark ought to be just an attribute to the term
values, and substitution of terms ought to be applicable when the attribute is present.
The notational difficulty is that we want to be able to specify which attributes are
copied, and which are initialized to a default value, when recursing over the structure.

Coq stands somewhere in the spectrum between the Mizar project and the
Boyer-Moore computational Logic system. It is certainly less advanced than Mizar
(Rudnicki, 1992) from the points of view of existence of tools to manipulate theories
written in a mathematical vernacular, with automatic synthesis of T£X abstracts, and
of coordination of a community of competent users contributing to add to a general
library of Formalized Mathematics. On the other hand, Coq is better adapted to the
definition of inductive notions, and more generally to constructive mathematics than
Mizar, based on a variant of classical set theory.

Compared to the Boyer-Moore system, Coq is far less advanced from the point of
view of automation of reasoning, but its specification language, based on type theory,
is definitely closer to mathematical practice.

It would be interesting to make detailed comparisons of similar developments in
the various proof assistants currently used for formal developments: HOL, Nuprl, B,
and more recently LEGO, Isabelle and ALF.

References

Altenkirch, T. (1993) A formalisation of the strong normalization proof for System F in
LEGO. Proceedings of the International Conference on Typed Lambda Calculi and
Applications, TLCA '93, Utrecht, Netherlands, March.

Berardi, S. (1991) Girard's normalization proof in LEGO. Unpublished draft note.
Barendregt, H. (1984) The Lambda-calculus: Its Syntax and Semantics. North-Holland.
Barendregt, H. (1992) Lambda-calculus with types. In: Handbook of Logic in Computer

Science, Vol. II, S. Abramsky, D. Gabbay and T. Maibaum (eds.), pp. 117-309. Oxford
University Press,

de Bruijn, N. G. (1972) Lambda-Calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem. Indag.
Math. 34 (5), 381-392.

Coquand, C. (1992) A proof of normalization for simply typed lambda calculus written in
ALF. Proceedings Workshop on Types for Proofs and Programs, B. Nordstrom, K. Petersson
and G. Plotkin (eds.). (Available by anonymous ftp from animal.cs.chalmers.se.)

Dowek, G., Felty, A., Herbelin, H., Huet, G., Paulin, C. and Werner, B. (1991) The Coq Proof
Assistant User's Guide Version 5.6. INRIA Technical Report 134, December.

Farmer, W. M., Guttman, J. D. and Thayer, F. J. (1991) IMPS: an Interactive Mathematical
Proof System. Technical Report M90-19, MITRE Corporation.

Huet, G. (1988) Initiation a la calculabilite. Notes de Cours, DEA Universite Paris 7, January.
Huet, G. (1992a) Constructive Computation Theory, Part I. Course Notes, DEA Informatique,

Mathematiques et Applications, Paris, October.

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

394 Gerard Huet

Huet, G. (1992 A) The Gallina specification language: A case study. Proceedings 12th FST/TCS
Conference, New Delhi, India. R. Shyamasundar (ed.), pp. 229-240. Springer-Verlag LNCS
652.

Levy, J. J. (1978) Reductions correctes et optimales dans le X-calcul. These d'Etat, U. Paris VII.
McKinna, J. and Pollack, R. (1993) Pure type systems formalized. Proceedings International

Conference on Typed Lambda Calculi and Applications, TLCA '93, Utrecht, Netherlands,
March.

Narayana, A. (1991) Proof of Church-Rosser Theorem in Calculus of Constructions. MS thesis,
IIT Kanpur, India, April.

Paulin-Mohring, C. (1993) Inductive definitions in the system Coq: Rules and properties. In:
M. Bezem and J. F. Groot (eds.), Proceedings International Conference on Typed Lambda
Calculi and Applications, pp. 328-345, Springer-Verlag LNCS 664, April.

Pfenning, F. (1992) A Proof of the Church-Rosser Theorem and its Representation in a Logical
Framework. Technical Report CMU-CS-92-186, Carnegie Mellon University, September.

Rudnicki, P. (1992) An overview of the MIZAR project. Proceedings Workshop on Types for
Proofs and Programs, B. Nordstrom, K. Petersson and G. Plotkin (eds.). (Available by
anonymous ftp from animal.cs.chalmers.se.)

Shankar, N. (1985) A Mechanical Proof of the Church-Rosser Theorem. Technical Report 45,
Institute for Computing Science, the University of Texas at Austin, March.

https://doi.org/10.1017/S0956796800001106 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001106

