POPULATION AND EVOLUTION OF PULSATING A-F STARS

JIANG SHIYANG & LIU YANYING Beijing Astronomical Observatory, Beijing, 100080, China

Pulsating A-F variables include all the stellar types listed in teh Table, as well as the pulsating white dwarfs. Stars near the zero-age-mainsequence have faster rotation velocity, which slows as expected with age (Villata 1992) and a smaller amplitude of light variation, so we suggest that rotation velocity be considered in Population classifications. Also, in the Galaxy, the galactic rotation constant A is related to stellar age T by: $A(kms^{-1}kpc^{-1}) = (-2.4\pm0.8)T(10^9yr) + (32\pm2)$ (Kharchenko 1992). The linear rotation velocity is also a function of the Z coordinate of the object inside the Galaxy: the mean Z-gradient is $-10kms^{-1}kpc^{-1}$ (Malakhova & Petrovskaya, 1992). Thus the population is strongly correlated with the rotation velocity and the evolutionary age.

type of variables	< Vsini >	percent	age (yr)	$\Delta V(mag)$	Pop
normal A stars	118 ± 70	53	10 ⁷	0	I
δ Scuti stars	84 ± 48	25 - 30	10 ⁷ -10 ⁹	≤ 0.3	I
Am stars	44 ± 28	11	10 ⁹	<u>≤</u> 0.01	Ι
Ap stars	42 ± 37	6	10 ⁹	≤0.1	Ι
δ Del	30 ± 20	3	10 ⁹	≤0.3	I
SX Phe	≤ 20	≤ 0.1	$\geq 10^{9}$	≥0.3	II
δ Cepheid	17 ± 5	≤ 0.1	$\geq 10^7$	≥0.1	Ι
W Vir	≤ 20	≤ 0.1	$\geq 10^{8}$	≥0.1	II
RR Lyr		≤ 0.1	$\geq 10^{9}$	≥0.1	Π

References

Villata M., 1992, MNRAS 258, 107 Kharchenko N.V., 1992, Kinematics Phys. Celest. Bodies, 8, 61 Malakhova Yu. N. and Petrovskaya I.V., 1992, Kinematics Phys. Celest. Bodies, 8, 90