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On largest Hausdorff compactification

for convergence spaces

C.J.M. Rao

In this note we obtain a characterization of the class of

convergence spaces for which Richardson's compactification is the

largest Hausdorff compactification and a characterization of the

class of convergence spaces which possess largest Hausdorff

compactifications.

It is known that every Hausdorff convergence space [3] and, in

particular, every limit space [/] has a Hausdorff compactification. In [5]

Richardson obtained a compactification (which he called a Stone-Cech

compactification for convergence spaces) for a convergence space 5 which

has the property that every continuous function from S into a regular

(regular we mean including Hausdorff) compact convergence space has a

unique continuous extension to this compactification. In general,

Richardson's compactification is not regular, and therefore need not be the

largest regular compactification of S . At the same time the regularity

requirement on the range space (for extension of continuous functions) can

not be in general relaxed, and hence it also fails to be the largest

Hausdorff compactification of S . Under these circumstances it is natural

to ask when is Richardson's compactification the Stone-Cech regular

compactification on one hand and when is it Stone-Cech Hausdorff

compactification on the other. Recently Gazik [2] has solved the first

problem, where he has obtained a characterization of the class of
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convergence spaces for which Richardson's compactification is regular, and

hence is the largest regular compactification. In Section 1 of this note

we solve the second problem and obtain a characterization of the class of

convergence spaces for which Richardson's compactification is the largest

Hausdorff compactification.

Though every Hausdorff convergence space has a Hausdorff

compactification, it has been pointed out in [6] that the number of

distinct maximal Hausdorff compactifications can be quite large. There-

fore, it is of interest to know which convergence spaces have largest

Hausdorff compactifications. In Section 2 of this note we obtain a

characterization of this class. Interestingly, this class appears to be

larger than the class for which Richardson's compactification is largest

Hausdorff compactification, and smaller than the class possessing smallest

Hausdorff compactifications. We would like to point out that, with the

result in this section together with those in [4] and [6], we complete the

investigations in extremal regular compactifications and extremal Hausdorff

compactifications of convergence spaces.

For basic definitions about convergence spaces used in this note, we

refer to [3]. A convergence space (S, q) , where q is the convergence

structure, will be denoted simply by S , and ^-convergence points will be

referred to as 5-convergence points. For two convergence spaces 5 , and

S' , S > S' will mean the convergence structure of S is finer than the

convergence structure of S' . The same notation 2 will.be used to

compare two filters on a set, and two compactifications of a given space,

in the usual sense. A subset 5 of a convergence space X is said to be

JT-open if 5 belongs to every filter on X which X-converges to a point

in 5 . A convergence space S is called locally compact if it is open in

each of its Hausdorff compactifications. A Hausdorff one point

compactification (T, j) for a Hausdorff convergence space S was

constructed in [4] and it was shown that S has a smallest Hausdorff

compactification if and only if S is locally compact. For details of

this we refer to [4].

We mention two lemmas, the proof of the first lemma is simple and

therefore omitted, and the second lemma was proved implicitly in [4].

LEMMA 1. If f and g are two continuous functions from a
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convergence space X to a Hausdorff convergence space Y such that f

and g agree on a dense subset S of X , then f = g .

LEMMA 2. If f is a continuous function from a Hausdorff

convergence space X onto an arbitrary convergence space such that f

restricted to a dense subset S of X is isomorphism, then

f(X-S) n f(S) = 0 .

Before stating our main theorems we recall some of the notations used

in [5]. Let S be a Hausdorff convergence space. Let X be the set

consisting of all x for x in 5 and all non convergent ultrafilters

on S . Let i he the mapping from 5 to X, defined as i[x) = x .

Let F be a filter on S ; then F is the filter on X whose base is

{F I F € F} , where F = {H € X \ F € H} . A convergence structure is

defined on the set X (and the resulting space is denoted by X. ) as

follows; let <(> € F{X-.) , then

<(> AT -converges to x if and only if (j> 5 F for some F

^-converging to x ,

$ ^-converges to v if and only if f ? d , where v is a non

convergent ultrafilter on S .

The space [x , i) is the Richardson's compactification of 5 . For

details we refer to [5].

1.

In this section we obtain a necessary and sufficient condition so that
Richardson's compactification i?(5) of a Hausdorff convergence space 5
be the largest Hausdorff compactification.

THEOREM. If S is a Hausdorff convergence space, then Richardson's
compactification (Z., i) of S is the largest Hausdorff compactification

of S if and only if the following two conditions are satisfied:

(i) S is a locally compact convergence space;

(ii) v = i(v) * v , for every non convergent ultrafilter v on S .
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Proof. Let us suppose that (X , i>) i s the largest Hausdorff

compactification of S . Let (T, J) denote the one point Hausdorff

compactification of S constructed in [4 ] ; then (X. , i) > (T, j) . Now

using Lemma 2 we find 5 i s X-open. Since ( X , i) i s l a rges t , another

application of Lemma 2 implies S i s open in each of i t s Hausdorff

compactifications, and hence S i s local ly compact. I t should be noted

tha t condition d) implies that a f i l t e r <j> on X.. wil l X.-converge to

x i f and only i f i-(S) € (j> and i~ (<j>) S-converges to a; . Let us

define a new convergence structure on the set X (and denote the new

space by Xg ) as follows; l e t <s> f ^ x j , then

(f> X -converges to x i f and only i f $ X.-converges to x ,

<j> X -converges to V i f and only i f <j> - ty A v , where I/J i s

an u l t r a f i l t e r on X which X -converges to v .

I t i s easy t o verify that the space \X' , i) i s a Hausdorff

compactification of S and [X , i) > (X^, i) . Hence by assumption and

Lemma 1, we have (X. , i) = (X , i) and thereby X = X? . This in turn

implies 0 > iji A y for every non convergent u l t r a f i l t e r v on S , where

^ i s an u l t r a f i l t e r on X which X -converges to v . Since i (v) > 0

and i (u) t v , we have i(v) = \p , implying 0 > i(v) A v . But as also

V > 0 and i (u ) > 0 , we have 0 = i (y ) A y .

To prove that the two conditions are also suff ic ient , l e t (X, k) be

a Hausdorff compactification of S . Let us define a map / from X̂. to

/ as follows: f(x) = k(x) and f(v) = limfe(y) . I t i s easy to see that

/ i s a well defined, onto function and f ° i = k . We wil l prove that /

i s continuous, then uniqueness of / wi l l follow from Lemma 1. Let

(j) € F[xA and <|> X -converge to x ; then condition (i) implies that

i{S) belongs to <f> and i (<j>) 5-converges to x , and hence f(.<$>)

^-converges t o k(x) = / ( x ) . Let <f> X -converge to V ; then (j> > 0 and

hence, by condition (ii), <f> > i{v) A y , and therefore
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/(<(>) > k(v) A f(i>) , which impl ies f(<t>) Y-converges t o f(v) .

2 .

In this section we obtain a necessary and sufficient condition so that

a Hausdorff convergence space S may have the largest Hausdorff

compactification.

THEOREM. A Bausdorff convergence space S has the largest Hauedorff
compactification if and only if S has at most finitely many non
convergent ultra filters.

Proof. Let 5 have only finitely many non convergent ultrafilters.

Let us denote by Y the set of all a; for x in S and all non

convergent ultrafilters on S . Let k be a function from S to Y

defined as k(x) = x . Let us define a convergence structure on Y (and

denote the new space by Y ) as follows: let <$> € F{Y) , then

<j> Y-converges to x if and only if k{S) € <|> and k (<|>)

5-converges to x ;

4> Y-converges to v if and only if (j> 2 k(v) A y , for non

convergent ultrafilter v on S .

Now it is easy to verify that (Y, k) is the largest Hausdorff

compactification of S .

Conversely, let {X, f) be the largest Hausdorff compactification of

S . Firstly, this implies 5 is locally compact. Let [x, i) be the

Richardson's compactification of S . Let h be the continuous function

from X onto X. such that h ° f = i . Let us define a map g from X^

to X as follows: g{x) = f(x) and g(v) = limf(v) for non convergent

ultrafilters V on S . Then g is a well defined onto function. Now it

is easy to verify that g ° h = identity on X and

h ° g = identity on X and hence g is also one to one. Therefore we

identify X and X as sets and take / from S to X as f{x) = x .

Now let us define a new convergence structure on X (and denote the new

space by X' ) as follows: let <f> € P(X) , then

<(> X -converges to x if and only if 4* /-converges to x ;
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<j> X'-converges to v if and only if <j> 5 v A ^ , where i|> is
an ul traf i l ter on X which X-converges to V .

Then (X1, f) is a Hausdorff compactification of S and
{X', f) > (X, f) . And hence by assumption (X1, f) = (X, f) and thereby
X' = X . Next, let V be a non convergent ultrafil ter on S and the
ul t raf i l ter f{v) on X be ^-converging to v' in X - f{S) . Then
h o f(v) X-converges to h(v') , that is i{v) X-converges to v' and

therefore v' = v . This implies f(v) ?: \p h v for some ultrafi l ter ty
on X which X-converges to V . Since f(v) # V , we have /(u) = ^ .
Wow, let (j) be an ul t raf i l ter on X containing X - /(S) and let i t
X-converge to V in X - /(S) . Then (j) > /(y) A U , since (f> ^ f(u) ,
(j> = U . Hence each ul t raf i l ter on X - /(S) is a point ultrafi l ter and
hence X - f(S) is f inite. Therefore S hat. at most finitely many non
convergent u l t ra f i l te rs .

The following result is mentioned for i t s deviation from the
topological case.

COROLLARY. If a Hausdorff convergence space has a largest Hausdorff
compactification then it also has a smallest Hausdorff compactification.
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