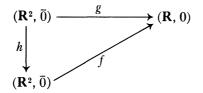
SUFFICIENCY OF WEIERSTRASS JETS

MARC KIRSCHENBAUM AND YUNG-CHEN LU

1. Introduction. Let $C^{(r+1)}(2, 1)$ be the set of all (r + 1)-time continuously differentiable mappings $f: \mathbb{R}^2 \to \mathbb{R}$ with $f(\overline{0}) = 0$. Two maps f and $g \in C^{(r+1)}(2, 1)$ are said to be equivalent of order r at $\overline{0}$, if at $\overline{0}$, their Taylor expansions up to and including the terms of degree $\leq r$ are identical. An r-jet, denoted $j^{(r)}(f)$, is the equivalence class of f with f being called a realization of $j^{(r)}(f)$. The set of all r-jets is denoted $J^r(2, 1)$.

Definition. An r-jet $Z \in J^r(2, 1)$ is called C^0 -sufficient (in $C^{(r+1)}(2, 1)$), if for any two $C^{(r+1)}(2, 1)$ functions f, g which realize Z, there exists a local homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$, for which f(h(x, y)) = g(x, y) in a neighborhood of $\overline{0}$. I.e., the following diagram commutes.



This definition is also valid if we replace 2 by n, where n is any positive integer.

The degree of C^0 -sufficiency is a useful tool for approximating functions near a singularity. Suppose we would like to approximate a function $f: \mathbf{R}^n \to \mathbf{R}$ with $f(\overline{0}) = 0$ near $\overline{0}$, an isolated singularity for f. The degree of C^0 -sufficiency tells us where to truncate the Taylor series for f so that this polynomial has the same topological type as f.

In this paper we shall improve Kuo's constructive method of determining the degree of C^0 -sufficiency for functions of two real variables. Due to the results of Lu [3], we can restrict our attention to functions of the form:

$$f(x, y) = x^{k} + H_{k+1}(x, y) + \ldots + H_{\tau}(x, y) + \ldots,$$

where H_i is a homogeneous *i*-form having no terms involving x^i for $i \ge k - 1$. We shall say that those functions are in Weierstrass form. Applying Puiseux's Theorem [6] to f(x, y), we will show in Remark 1

Received November 26, 1981 and in revised form June 10, 1982.

in the appendix that:

$$f(x, y) = \prod_{i=1}^{k} (x - B_i(y)), f_x(x, y) = k \prod_{j=1}^{k-1} (x - p_j(y)) \text{ and}$$
$$f_y(x, y) = a(y)h(x, y) \prod_{\alpha=1}^{k} (x - q_\alpha(y))$$

where p_j and q_{α} are fractional power series in y with order greater than 1, h(x, y) consists of roots of order less than or equal to 1, and a(y) is a function of y alone.

Let $U_j(y)$, $W_{\alpha}(y)$ denote the real part of p_j , q_{α} respectively. Define

$$m_j = \min \left[O(f_x(U_j(y), y)), O(f_y(U_g(y), y)) \right]$$

$$n_\alpha = \min \left[O(f_x(W_\alpha(y), y)), O(f_y(W_\alpha(y), y)) \right]$$

and let l be the smallest integer such that

 $l > \sup \{m_1, m_2, \ldots, m_{k-1}, n_1, n_2, \ldots, n_s\}.$

Kuo's Theorem [1] asserts that this l is the degree of C^0 -sufficiency of f. We improve this result by showing the following:

THEOREM. For a function f(x, y) in Weierstrass form,

Sup $\{m_1, m_2, \ldots, m_{k-1}, n_1, \ldots, n_s\} =$ Sup $\{m_1, \ldots, m_{k-1}\}.$

It is worth noticing that in finding the Puiseux roots term by term, one has to solve, in each step, a polynomial equality in a complex variable. It can happen that the roots $Z_x = 0$ can be determined completely while those of $Z_y = 0$ cannot. Then there is a question as to how many terms are necessary in W_{α} to find out what $O(Z_x(W_{\alpha}, y))$ and $O(Z_y(W_{\alpha}, y))$ are. In this case, our method is definitely superior to Kuo's. Here are three illustrative examples.

1) Let

 $z = x^3 - 3xy^7$

then

$$z_x = 3(x - y^{7/2})(x + y^{7/2})$$
 and $z_y = -21xy^6$
 $m_1 = m_2 = 19/2.$

The degree of C^0 -sufficiency is 10.

2) Let

$$z = \frac{x^{7}}{7} - \frac{x^{5}}{5} (y^{3} + y^{4} + y^{5}) + \frac{x^{3}}{3} (y^{7} + y^{8} + y^{9}) - xy^{12}$$

then

$$\begin{aligned} z_x &= (x + y^{3/2})(x - y^{3/2})(x + y^2)(x - y^2)(x + y^{5/2})(x - y^{5/2}), \\ z_y &= \frac{-x^5}{5}(3y^2 + 4y^3 + 5y^4) + \frac{x^3}{3}(7y^6 + 8y^7 + 9y^8) - 12xy^{11}, \\ U_1 &= -y^{3/2}, \\ U_2 &= y^{3/2}, \\ U_3 &= -y^2, \\ U_4 &= y^2, \\ U_5 &= -y^{5/2}, \\ U_6 &= y^{5/2}, \\ m_1 &= m_2 = 19/2, m_3 = m_4 = 12, m_5 = m_6 = 27/2. \end{aligned}$$

The degree of C^0 -sufficiency is 14.

3) Let

$$z = x^{9} + \frac{9x^{7}}{7} (y^{4} + y^{6} + y^{8} + y^{10})$$

+ $\frac{9x^{5}}{5} (y^{10} + y^{12} + 2y^{14} + y^{16} + y^{18})$
+ $5x^{3}(y^{18} + y^{20} + y^{22} + y^{24}) + 9xy^{28} + y^{100}$
 $z_{x} = (x + iy^{2}) (x - iy^{2}) (x + iy^{3}) (x - iy^{3}) (x + iy^{4}) (x - iy^{4})$
 $\times (x + iy^{5}) (x - iy^{5}).$

Therefore

$$U_l \equiv 0$$
 for all l ,

implying

$$m_{l} = \min [O(z_{x}(0, y)), O(z_{y}(0, y))] = \min [28, 39] = 28$$

The degree of C^0 -sufficiency is 29.

2. Proof of the theorem. It will suffice to show for each α ($1 \leq \alpha \leq s$),

 $n_{\alpha} \leq \max\{m_1, m_2, \ldots, m_k\}.$

Equivalently, it suffices to show for each α there exists a j_0 such that $m_{j_0} \ge n_{\alpha}$.

We will first prove the theorem for $\alpha = 1$ by showing there exists an integer j_0 such that:

- (1) $O(z_x(W_1(y), y)) \leq O(z_x(U_{j_0}(y), y))$
- (2) $O(z_y(W_1(y), y)) \leq O(z_y(U_{j_0}(y), y)).$

Let j_0 be such that

$$\delta = O(W_1 - U_{j_0}) \ge O(W_1 - U_j)$$
 for all $j \ (1 \le j \le k - 1).$

This will be the required j_0 for n_1 . Also, let α_0 be an integer such that

$$O(W_1 - q_{\alpha_0}) \ge O(W_1 - q_i) \quad \text{for all } t \quad (1 \le t \le s).$$

Remark 2 in the appendix shows

(3)
$$O(W_1 - U_j) \ge O(W_1 - p_j)$$
 for all j .

We now have

(4)
$$\delta = O(W_1 - U_{j_0}) \ge O(W_1 - U_j) \ge O(W_1 - p_j)$$
 for all *j*.
Proof of (1).

$$O(z_{x}(U_{j_{0}}(y), y)) = \sum_{j=1}^{k-1} O(U_{j_{0}} - p_{j}) = \sum_{j=1}^{k-1} O(U_{j_{0}} - W_{1} + W_{1} - p_{j})$$

$$\geq \sum_{j=1}^{k-1} \min \{O(U_{j_{0}} - W_{1}), O(W_{1} - p_{j})\}$$

$$= \sum_{j=1}^{k-1} O(W_{1} - p_{j}) \text{ by } (4)$$

$$= O(z_{x}(W_{1}(y), y)).$$

Proof of (2). Recall

$$z_{y}(x, y) = a(y)h(x, y) \prod_{\alpha=1}^{s} (x - q_{\alpha}(y)).$$

Case i). $\delta = O(W_{1} - U_{j_{0}}) \ge O(W_{1} - q_{\alpha_{0}}).$
 $O(z_{y}(U_{j_{0}}(y), y)) = O(a(y)) + O(h(U_{j_{0}}(y), y)) + \sum_{\alpha=1}^{s} O(U_{j_{0}} - q_{\alpha})$
 $\ge O(a(y)) + O(h(U_{j_{0}}(y), y))$
 $+ \sum_{\alpha=1}^{s} \min \{O(U_{j_{0}} - W_{1}), O(W_{1} - q_{\alpha})\}$
 $= O(a(y)) + O(h(W_{1}(y), y)) + \sum_{\alpha=1}^{s} O(W_{1} - q_{\alpha})$

(see remark 3 in the appendix)

$$= O(z_y(W_1(y), y)).$$

Case ii). $\delta = O(W_1 - U_{j_0}) < O(W_1 - q_{\alpha_0})$. Let $\overline{W}_1(y)$ be a generic perturbation of $W_1(y)$ of order δ , i.e., $\overline{W}_1 = W_1 + cy^{\delta}$ where c is picked so that

(5) $O(\overline{W}_1 - p_j) = O(W_1 - p_j)$ for all j and $O(\overline{W}_1 - q_\alpha) \leq \delta$ for all α .

By this choice of *c* we have:

(6)
$$O(Z_x(\bar{W}_1(y), y)) = \sum_{j=1}^{k-1} O(\bar{W}_1 - p_j)$$

= $\sum_{j=1}^{k-1} O(W_1 - p_j) = O(Z_x(W_1(y), y))$

and

$$O(U_{j_0} - q_{\alpha}) \ge \min \{ O(U_{j_0} - \bar{W}_1), O(W_1 - q_{\alpha}) \} = O(\bar{W}_1 - q_{\alpha})$$

or

(7)
$$O(U_{j_0} - q_{\alpha}) \ge O(\overline{W}_1 - q_{\alpha}).$$

7 and remark 3 in the appendix yield

(8)
$$O(z_{y}(U_{j_{0}}(y), y)) = O(a(y)) + O(h(U_{j_{0}}(y), y)) + \sum_{\alpha=1}^{s} O(U_{j_{0}} - q_{\alpha})$$
$$\geq O(a(y)) + O(h(\bar{W}_{1}(y), y)) + \sum_{\alpha=1}^{s} O(\bar{W}_{1} - q_{\alpha})$$
$$= O(z_{y}(\bar{W}_{1}(y), y)).$$

If we have

(9)
$$O(z_y(\bar{W}_1(y), y)) > O(z_x(\bar{W}_1(y), y))$$

then 6, 8 and 9 prove case ii.

LEMMA. In the setting of this theorem, given any fractional power series $\lambda(y) = \sum_{i=1}^{\infty} c_i y^{\delta_i}$ with $\delta_1 > 1$ if there exists an α_0 such that for all j

$$O(\lambda(y) - q_{\alpha_0}(y)) \ge O(\lambda(y) - p_j(y))$$

then

$$O(z_y(\lambda(y), y)) > O(z_x(\lambda(y), y)).$$

Geometrically, this says if the degree of contact of λ with some q_{α} is greater than or equal to that of λ with all the p_j 's, then λ has more contact with z_y than with z_x .

Being in case ii and using 4 and 5 we obtain

$$O(\bar{W}_1 - q_{\alpha}) \ge \min \{ O(\bar{W}_1 - W_1), O(W_1 - q_{\alpha}) \}$$

= $\delta > O(\bar{W}_1 - p_j)$

or

(10)
$$O(\overline{W}_1 - q_{\alpha_0}) \ge O(\overline{W}_1 - p_j)$$
 for all j .

10 and the lemma prove 9.

Proof of the lemma. We have

$$O(\lambda(y) - q_{\alpha_0}(y)) \ge O(\lambda(y) - p_j(y))$$
 for all j.

Let j_0 be such that

$$O(\lambda(y) - p_{j_0}(y)) = \max_{1 \le t \le k-1} O(\lambda(y) - p_t(y)).$$

If $\lambda(y) = B_i(y)$ (a root for f) then

$$0 \equiv \frac{d}{dy} \left(z(\lambda(y), y) \right) = z_x(\lambda(y), y) \lambda'(y) + z_y(\lambda(y), y)$$

implying

$$O(z_y(\lambda(y), y)) = O(z_x(\lambda(y), y)) + O(\lambda'(y)) > O(z_x(\lambda(y), y)).$$

Therefore without loss of generality we will assume $\lambda(y) \neq B_i(y)$ for all *i*. Using the technique found in Lemma 3.3 in [2] we let

$$X = x - \lambda(y) \quad Y = y$$

then

$$z(x, y) = z(x + \lambda(Y), Y) \equiv \overline{Z}(X, Y).$$

Since

$$z(x, y) = \prod_{i=1}^{k} (X - B_i(y)) \text{ where } O(B_i(y)) \ge 1,$$
$$Z(X, Y) = \prod_{i=1}^{k} (X - \overline{B}_i(Y)) \text{ where } \overline{B}_i(Y) = B_i(Y) - \lambda(Y)$$

 $\lambda(y) \neq B_i(y)$ for all *i* implies $\overline{B}_i(Y) \neq 0$ for all *i*. So X does not divide $\overline{Z}(X, Y)$ and $\overline{\alpha}_0 \neq \infty$ (see the appendix). We have

 $\bar{Z}_x(X, Y) = z_x(x, y)$

and

$$\overline{Z}_Y(X, Y) = z_x(x, y)\lambda'(y) + z_y(x, y).$$

This says

$$\bar{Z}_{x}(X, Y) = \prod_{i=1}^{k-1} (X - \bar{p}_{i}(Y)) \text{ where } \bar{p}_{i}(Y) = p_{i}(Y) - \lambda(Y)$$

implying

$$O(\bar{p}_j(Y)) \ge \min \{O(p_j(Y)), O(\lambda(Y))\} > 1.$$

Case a. $\max_{1 \leq i \leq k} O(\bar{B}_i) \geq \max_{1 \leq j \leq k-1} O(\bar{p}_j) > 1.$

Lemma 3.2 in [2] shows the point $(1, \bar{\alpha}_1)$ lies on the Newton Polygon for \overline{Z} . Therefore

$$O(\bar{Z}(0, Y)) - O(\bar{Z}_{x}(0, Y)) = \bar{\alpha}_{0} - \bar{\alpha}_{1} = \max_{1 \le i \le k} O(\bar{B}_{i}) > 1$$

or

$$O(\bar{Z}_{Y}(0, Y)) + 1 = O(\bar{Z}(0, Y)) > O(\bar{Z}_{x}(0, Y)) + 1$$

or

$$O[z_x(\lambda(y), y)\lambda'(y) + z_y(\lambda(y), y)] > O(z_x(\lambda(y), y)).$$

Since $O(\lambda'(y)) > 0$ we have

 $O(z_y(\lambda(y), y)) > O(z_x(\lambda(y), y)).$

Case b. $\max_{1 \leq i \leq k} O(\bar{B}_i) < \max_{1 \leq j \leq k-1} O(\bar{p}_j)$.

By remark 4 in the appendix, every root $r_s(Y)$ for $Z_Y(X, Y)$ satisfies the following:

$$O(r_s(Y)) \leq \max_{1 \leq i \leq k} O(\bar{B}_i) < \max_{1 \leq j \leq k-1} O(\bar{p}_j) \leq O(\bar{q}_{\alpha_0}).$$

We have

(12)
$$O(\bar{Z}_Y(0, Y)) = O(\bar{Z}_Y(\bar{q}_{\alpha_0}(Y), Y)) = O(\bar{Z}_x(q_{\alpha_0}(y), y)\lambda'(y))$$

= $O(\bar{Z}_x(\bar{q}_{\alpha_0}(Y), Y)\lambda'(Y)).$

Using $O(\bar{q}_{\alpha_0}) \ge O(\bar{p}_j)$ for all j we get

(13)
$$O(\overline{Z}_x(\overline{q}_{\alpha_0}(Y), Y)) \ge O(\overline{Z}_x(0, Y))$$

Putting 12 and 13 together we obtain

(14)
$$O(\overline{Z}_Y(0, Y)) \ge O(\overline{Z}_x(0, Y)\lambda'(Y))$$

or

$$O[z_x(\lambda(y), y)\lambda'(y) + z_y(\lambda(y), y)] \ge O(z_x(\lambda(y), y)\lambda'(y)).$$

So

$$O(z_y(\lambda(y), y)) \ge O(z_x(\lambda(y), y)\lambda'(y)) > O(z_x(\lambda(y), y))$$

finishing the proof of the lemma.

The same argument can be repeated for each of the α . We replace W_1 with W_{α} and pick j_0 and α_0 accordingly. Therefore for each α there exists a j_{α} such that $n_{\alpha} \leq m_{j\alpha}$.

Appendix. We will be using the notation found in [6]. Given any fractional power series

$$\lambda(y) = \sum_{i=1}^{\infty} c_i y^{\delta_i}, \quad c_1 \neq 0,$$

the order of $\lambda(y)$, denoted $O(\lambda(y))$, equals δ_1 . If we write

$$f(x, y) = a_m(y)x^m + \ldots + a_1(y)x + a_0(y),$$

then $O(a_i(y)) \equiv \alpha_i$. In the case $a_1(y) \equiv 0$, α_i is set equal to ∞ . Notice:

$$O(f(0, y)) = \alpha_0, \quad O(f_x(0, y)) = \alpha_1,$$

and if $\alpha_0 \neq \infty$,

$$O(f_{y}(0, y)) = \alpha_0 - 1.$$

Remark 1. Let f(x, y) be in Weierstrass form. Then

$$f_x(x, y) = k(x - p_1(y)) \dots (x - p_{k-1}(y))$$

where $O(p_j(y)) > 1$ for all *j* and

$$f_y(x, y) = a(y)h(x, y)(x - q_1(y)) \dots (x - q_s(y))$$

where $O(q_{\alpha}(y)) > 1$ for all α , h(x, y) contains those roots with order ≤ 1 , and a(y) is a function of y alone.

Proof. Using Puiseaux's Theorem (see Theorem 3.1 in [6]), we can write

$$f(x, y) = \prod_{i=1}^{k} (x - B_i(y)), \quad f_x(x, y) = k \prod_{j=1}^{k-1} (x - p_j(y)) \text{ and}$$
$$f_y(x, y) = a(y)h(x, y) \prod_{\alpha=1}^{s} (x - q_\alpha(y))$$

where $B_i(y)$, $p_j(y)$ and $q_\alpha(y)$ are fractional power series. It remains to show $O(p_j(y)) > 1$ for all *j*. Since

$$f(x, y) = x^{k} + a_{k-2}(y)x^{k-2} + \ldots + a_{1}(y)x + a_{0}(y)$$

and

$$f(x, y) = x^{k} + H_{k+1}(x, y) + \ldots + H_{r}(x, y)$$

we have

$$O(a_l(y)) + l \ge k + 1$$
 for $0 \le l \le k - 2$ and
 $f_x(x, y) = kx^{k-1} + (k - 2)a_{k-2}(y)x^{k-3} + \ldots + a_1(y).$

 $f_x(p_j(y), y) = 0$ implies

$$(k-1)O(p_j(y)) \ge \min_{1 \le l \le k-2} \{O(a_l(y)) + (l-1)O(p_j(y))\}$$

for some *l*. Therefore

$$(k-1)O(p_j(y)) \ge (k-l+1) + (l-1)O(p_j(y))$$

or

$$(k-l)O(p_j(y)) \ge k-l+1$$

implying

$$O(p_j(y)) \ge \frac{k-l+1}{k-l} > 1.$$

The same type of argument shows us that $O(B_i(y)) > 1$ for all *i*.

Remark 2.
$$O(W_1 - U_j) \ge O(W_1 - p_j)$$
 for all j .

Proof.

$$O(W_1 - p_j) \ge \min \{O(W_1 - U_j), O(-iV_j)\}$$

(see page 89 in [6]). $W_1 - U_j$ is real and $-iV_j$ is complex so it is impossible for any cancellation to occur between them. Therefore,

$$O(W_{1} - p_{j}) = \min \{O(W_{1} - U_{j}), O(V_{j})\}.$$

If $O(V_{j}) < O(W_{1} - U_{j})$ then
 $O(W_{1} - p_{j}) = O(V_{j}) < O(W_{1} - U_{j}).$
If $O(V_{j}) \ge O(W_{1} - U_{j})$ then

$$O(W_1 - p_j) = O(W_1 - U_j).$$

In either case

$$O(W_1 - U_j) \ge O(W_1 - p_j).$$

Remark 3. If $h(x, y) = \prod_{i=1}^{t} (x - \delta_i(y))$ with $O(\delta_i(y)) \leq 1$ for all *i*, then for any fractional power series $\lambda(y)$ with $O(\lambda(y)) > 1$,

$$O(h(\lambda(y), y)) = O(h(0, y)).$$

Proof. $O(\lambda(y) - \delta_i(y)) = O(\delta_i(y)).$ This implies

$$O(h(\lambda(y), y)) = \prod_{i=1}^{t} O(\lambda(y) - \delta_i(y)) = \prod_{i=1}^{t} O(\delta_i(y)) = O(h(0, y)).$$

Remark 4. If

$$f(x, y) = \prod_{i=1}^{k} (x - B_i(y)) \text{ and}$$

$$f_y(x, y) = a(y)h(x, y) \prod_{\alpha=1}^{s} (x - q_\alpha(y))$$

then

$$\max_{1 \leq \alpha \leq s} O(q_{\alpha}) \leq \max_{1 \leq i \leq k} O(B_i).$$

Proof. If $\alpha_0 = \infty$ then x divides f and f_y . This implies

$$\max_{1 \leq \alpha \leq s} O(q_{\alpha}) = \infty = \max_{1 \leq i \leq k} O(B_i).$$

If $\alpha_0 \neq \infty$, let $\delta_1 y^b$, $\delta_2 x^c y^d$ make up the first line segment for the Newton polygon for f_y . Then $b = \alpha_0 - 1$ (α_0 for f), $O(q_{\alpha_0}) = (b - d)/c$, and $\delta_1 y^{b+1}/(b+1)$ and $\delta_2 x^c y^{d+1}/(d+1)$ belong to f. The equation for the first line segment for the Newton polygon for f is

$$\nu = -O(B_{i_0})u + \alpha_0.$$

This implies

$$d + 1 \ge -O(B_{i_0})c + \alpha_0 = -O(B_{i_0})c + b + 1.$$

Therefore

$$O(B_{i_0}) \geq (b-d)/c = O(q_{\alpha_0}).$$

References

- T. C. Kuo, A complete determination of c°-sufficiency in J^r(2, 1), Invent. Math. 8 (1969), 226-235.
- 2. T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310.
- **3.** Y. C. Lu, Sufficiency of jets in $J^r(2, 1)$ via decomposition, Inv. Math. 10 (1970), 119–127.
- Y. C. Yu and S. H. Chang, On c^o-sufficiency of complex jets, Can. J. Math. 4 (1973), 874–880.

6. R. J. Walker, Algebraic curves (Dover, N.Y., 1950).

Ohio State University, Columbus, Ohio