SUFFICIENGY OF WEIERSTRASS JETS

MARC KIRSCHENBAUM AND YUNG-CHEN LU

1. Introduction. Let $C^{(r+1)}(2,1)$ be the set of all $(r+1)$-time continuously differentiable mappings $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $f(\overline{0})=0$. Two maps f and $g \in C^{(r+1)}(2,1)$ are said to be equivalent of order r at $\overline{0}$, if at $\overline{0}$, their Taylor expansions up to and including the terms of degree $\leqq r$ are identical. An r-jet, denoted $j^{(r)}(f)$, is the equivalence class of f with f being called a realization of $j^{(r)}(f)$. The set of all r-jets is denoted $J^{r}(2,1)$.

Definition. An r-jet $Z \in J^{r}(2,1)$ is called C^{0}-sufficient (in $C^{(r+1)}(2,1)$), if for any two $C^{(r+1)}(2,1)$ functions f, g which realize Z, there exists a local homeomorphism $h: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, for which $f(h(x, y))=g(x, y)$ in a neighborhood of $\overline{0}$. I.e., the following diagram commutes.

This definition is also valid if we replace 2 by n, where n is any positive integer.

The degree of C^{0}-sufficiency is a useful tool for approximating functions near a singularity. Suppose we would like to approximate a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with $f(\overline{0})=0$ near $\overline{0}$, an isolated singularity for f. The degree of C^{0}-sufficiency tells us where to truncate the Taylor series for f so that this polynomial has the same topological type as f.

In this paper we shall improve Kuo's constructive method of determining the degree of C^{0}-sufficiency for functions of two real variables. Due to the results of $\mathrm{Lu}[3]$, we can restrict our attention to functions of the form:

$$
f(x, y)=x^{k}+H_{k+1}(x, y)+\ldots+H_{r}(x, y)+\ldots,
$$

where H_{i} is a homogeneous i-form having no terms involving x^{i} for $i \geqq k-1$. We shall say that those functions are in Weierstrass form. Applying Puiseux's Theorem [6] to $f(x, y)$, we will show in Remark 1
in the appendix that:

$$
\begin{aligned}
& f(x, y)=\prod_{i=1}^{k}\left(x-B_{i}(y)\right), f_{x}(x, y)=k \prod_{j=1}^{k-1}\left(x-p_{j}(y)\right) \quad \text { and } \\
& f_{y}(x, y)=a(y) h(x, y) \prod_{\alpha=1}^{s}\left(x-q_{\alpha}(y)\right)
\end{aligned}
$$

where p_{j} and q_{α} are fractional power series in y with order greater than 1 , $h(x, y)$ consists of roots of order less than or equal to 1 , and $a(y)$ is a function of y alone.

Let $U_{j}(y), W_{\alpha}(y)$ denote the real part of p_{j}, q_{α} respectively. Define

$$
\begin{aligned}
& m_{j}=\min \left[O\left(f_{x}\left(U_{j}(y), y\right)\right), O\left(f_{y}\left(U_{o}(y), y\right)\right)\right] \\
& n_{\alpha}=\min \left[O\left(f_{x}\left(W_{\alpha}(y), y\right)\right), O\left(f_{y}\left(W_{\alpha}(y), y\right)\right)\right]
\end{aligned}
$$

and let l be the smallest integer such that

$$
l>\operatorname{Sup}\left\{m_{1}, m_{2}, \ldots, m_{k-1}, n_{1}, n_{2}, \ldots, n_{s}\right\}
$$

Kuo's Theorem [$\mathbf{1}$] asserts that this l is the degree of C^{0}-sufficiency of f. We improve this result by showing the following:

Theorem. For a function $f(x, y)$ in Weierstrass form,

$$
\operatorname{Sup}\left\{m_{1}, m_{2}, \ldots, m_{k-1}, n_{1}, \ldots, n_{s}\right\}=\operatorname{Sup}\left\{m_{1}, \ldots, m_{k-1}\right\}
$$

It is worth noticing that in finding the Puiseux roots term by term, one has to solve, in each step, a polynomial equality in a complex variable. It can happen that the roots $Z_{x}=0$ can be determined completely while those of $Z_{y}=0$ cannot. Then there is a question as to how many terms are necessary in W_{α} to find out what $O\left(Z_{x}\left(W_{\alpha}, y\right)\right)$ and $O\left(Z_{y}\left(W_{\alpha}, y\right)\right)$ are. In this case, our method is definitely superior to Kuo's. Here are three illustrative examples.

1) Let

$$
z=x^{3}-3 x y^{7}
$$

then

$$
\begin{aligned}
& z_{x}=3\left(x-y^{7 / 2}\right)\left(x+y^{7 / 2}\right) \quad \text { and } \quad z_{y}=-21 x y^{6} \\
& m_{1}=m_{2}=19 / 2
\end{aligned}
$$

The degree of C^{0}-sufficiency is 10 .
2) Let

$$
z=\frac{x^{7}}{7}-\frac{x^{5}}{5}\left(y^{3}+y^{4}+y^{5}\right)+\frac{x^{3}}{3}\left(y^{7}+y^{8}+y^{9}\right)-x y^{12}
$$

then

$$
\begin{aligned}
& z_{x}=\left(x+y^{3 / 2}\right)\left(x-y^{3 / 2}\right)\left(x+y^{2}\right)\left(x-y^{2}\right)\left(x+y^{5 / 2}\right)\left(x-y^{5 / 2}\right) \\
& z_{y}=\frac{-x^{5}}{5}\left(3 y^{2}+4 y^{3}+5 y^{4}\right)+\frac{x^{3}}{3}\left(7 y^{6}+8 y^{7}+9 y^{8}\right)-12 x y^{11} \\
& U_{1}=-y^{3 / 2} \\
& U_{2}=y^{3 / 2} \\
& U_{3}=-y^{2} \\
& U_{4}=y^{2} \\
& U_{5}=-y^{5 / 2} \\
& U_{6}=y^{5 / 2} \\
& m_{1}=m_{2}=19 / 2, m_{3}=m_{4}=12, m_{5}=m_{6}=27 / 2
\end{aligned}
$$

The degree of C^{0}-sufficiency is 14 .
3) Let

$$
\begin{aligned}
z= & x^{9}+\frac{9 x^{7}}{7}\left(y^{4}+y^{6}+y^{8}+y^{10}\right) \\
& +\frac{9 x^{5}}{5}\left(y^{10}+y^{12}+2 y^{14}+y^{16}+y^{18}\right)
\end{aligned} \quad \begin{aligned}
& +5 x^{3}\left(y^{18}+y^{20}+y^{22}+y^{24}\right)+9 x y^{28}+y^{100} \\
z_{x}= & \left(x+i y^{2}\right)\left(x-i y^{2}\right)\left(x+i y^{3}\right)\left(x-i y^{3}\right)\left(x+i y^{4}\right)\left(x-i y^{4}\right) \\
& \quad \times\left(x+i y^{5}\right)\left(x-i y^{5}\right)
\end{aligned}
$$

Therefore

$$
U_{l} \equiv 0 \text { for all } l
$$

implying

$$
m_{\imath}=\min \left[O\left(z_{x}(0, y)\right), O\left(z_{y}(0, y)\right)\right]=\min [28,39]=28
$$

The degree of C^{0}-sufficiency is 29 .
2. Proof of the theorem. It will suffice to show for each $\alpha(1 \leqq \alpha \leqq s)$,

$$
n_{\alpha} \leqq \max \left\{m_{1}, m_{2}, \ldots, m_{k}\right\}
$$

Equivalently, it suffices to show for each α there exists a j_{0} such that $m_{j_{0}} \geqq n_{\alpha}$.

We will first prove the theorem for $\alpha=1$ by showing there exists an integer j_{0} such that:
(1) $\quad O\left(z_{x}\left(W_{1}(y), y\right)\right) \leqq O\left(z_{x}\left(U_{j_{0}}(y), y\right)\right)$
(2) $\quad O\left(z_{y}\left(W_{1}(y), y\right)\right) \leqq O\left(z_{y}\left(U_{j 0}(y), y\right)\right)$.

Let j_{0} be such that

$$
\delta=O\left(W_{1}-U_{j 0}\right) \geqq O\left(W_{1}-U_{j}\right) \quad \text { for all } j \quad(1 \leqq j \leqq k-1)
$$

This will be the required j_{0} for n_{1}. Also, let α_{0} be an integer such that

$$
O\left(W_{1}-q_{\alpha_{0}}\right) \geqq O\left(W_{1}-q_{t}\right) \quad \text { for all } t \quad(1 \leqq t \leqq s) .
$$

Remark 2 in the appendix shows
(3) $\quad O\left(W_{1}-U_{j}\right) \geqq O\left(W_{1}-p_{j}\right) \quad$ for all j.

We now have
(4) $\delta=O\left(W_{1}-U_{j_{0}}\right) \geqq O\left(W_{1}-U_{j}\right) \geqq O\left(W_{1}-p_{j}\right) \quad$ for all j.

Proof of (1).

$$
\begin{aligned}
O\left(z_{x}\left(U_{j_{0}}(y), y\right)\right) & =\sum_{j=1}^{k-1} O\left(U_{j_{0}}-p_{j}\right)=\sum_{j=1}^{k-1} O\left(U_{j_{0}}-W_{1}+W_{1}-p_{j}\right) \\
& \geqq \sum_{j=1}^{k-1} \min \left\{O\left(U_{j 0}-W_{1}\right), O\left(W_{1}-p_{j}\right)\right\} \\
& =\sum_{j=1}^{k-1} O\left(W_{1}-p_{j}\right) \quad \text { by }(4) \\
& =O\left(z_{x}\left(W_{1}(y), y\right)\right) .
\end{aligned}
$$

Proof of (2). Recall

$$
\begin{aligned}
& z_{y}(x, y)=a(y) h(x, y) \prod_{\alpha=1}^{s}\left(x-q_{\alpha}(y)\right) . \\
& \text { Case i). } \delta=O\left(W_{1}-U_{j_{0}}\right) \geqq O\left(W_{1}-q_{\alpha_{0}}\right) . \\
& O\left(z_{y}\left(U_{j 0}(y), y\right)\right)=O(a(y))+O\left(h\left(U_{j_{0}}(y), y\right)\right)+\sum_{\alpha=1}^{s} O\left(U_{j 0}-q_{\alpha}\right) \\
& \geqq O(a(y))+O\left(h\left(U_{j_{0}}(y), y\right)\right) \\
& +\sum_{\alpha=1}^{s} \min \left\{O\left(U_{j_{0}}-W_{1}\right), O\left(W_{1}-q_{\alpha}\right)\right\} \\
& =O(a(y))+O\left(h\left(W_{1}(y), y\right)\right)+\sum_{\alpha=1}^{s} O\left(W_{1}-q_{\alpha}\right)
\end{aligned}
$$

(see remark 3 in the appendix)

$$
=O\left(z_{y}\left(W_{1}(y), y\right)\right)
$$

Case ii). $\delta=O\left(W_{1}-U_{j_{0}}\right)<O\left(W_{1}-q_{\alpha_{0}}\right)$.
Let $\bar{W}_{1}(y)$ be a generic perturbation of $W_{1}(y)$ of order δ, i.e., $\bar{W}_{1}=W_{1}$ $+c y^{\delta}$ where c is picked so that
(5) $\quad O\left(\bar{W}_{1}-p_{j}\right)=O\left(W_{1}-p_{j}\right)$ for all j and

$$
O\left(\bar{W}_{1}-q_{\alpha}\right) \leqq \delta \quad \text { for all } \alpha .
$$

By this choice of c we have:

$$
\begin{align*}
& O\left(Z_{x}\left(\bar{W}_{1}(y), y\right)\right)=\sum_{j=1}^{k-1} O\left(\bar{W}_{1}-p_{j}\right) \tag{6}\\
&=\sum_{j=1}^{k-1} O\left(W_{1}-p_{j}\right)=O\left(Z_{x}\left(W_{1}(y), y\right)\right)
\end{align*}
$$

and

$$
O\left(U_{j_{0}}-q_{\alpha}\right) \geqq \min \left\{O\left(U_{j 0}-\bar{W}_{1}\right), O\left(W_{1}-q_{\alpha}\right)\right\}=O\left(\bar{W}_{1}-q_{\alpha}\right)
$$

or

$$
\begin{equation*}
O\left(U_{j_{0}}-q_{\alpha}\right) \geqq O\left(\bar{W}_{1}-q_{\alpha}\right) . \tag{7}
\end{equation*}
$$

7 and remark 3 in the appendix yield

$$
\begin{align*}
& O\left(z_{y}\left(U_{j 0}(y), y\right)\right)=O(a(y))+O\left(h\left(U_{j 0}(y), y\right)\right)+\sum_{\alpha=1}^{s} O\left(U_{j_{0}}-q_{\alpha}\right) \tag{8}\\
& \geqq O(a(y))+O\left(h\left(\bar{W}_{1}(y), y\right)\right)+\sum_{\alpha=1}^{s} O\left(\bar{W}_{1}-q_{\alpha}\right) \\
&=O\left(z_{y}\left(\bar{W}_{1}(y), y\right)\right) .
\end{align*}
$$

If we have

$$
\begin{equation*}
O\left(z_{y}\left(\bar{W}_{1}(y), y\right)\right)>O\left(z_{x}\left(\bar{W}_{1}(y), y\right)\right) \tag{9}
\end{equation*}
$$

then 6,8 and 9 prove case ii.
Lemma. In the setting of this theorem, given any fractional power series $\lambda(y)=\sum_{i=1}^{\infty} c_{i} y^{\delta_{i}}$ with $\delta_{1}>1$ if there exists an α_{0} such that for all j

$$
O\left(\lambda(y)-q_{\alpha_{0}}(y)\right) \geqq O\left(\lambda(y)-p_{j}(y)\right)
$$

then

$$
O\left(z_{y}(\lambda(y), y)\right)>O\left(z_{x}(\lambda(y), y)\right) .
$$

Geometrically, this says if the degree of contact of λ with some q_{α} is greater than or equal to that of λ with all the p_{j} 's, then λ has more contact with z_{y} than with z_{x}.

Being in case ii and using 4 and 5 we obtain

$$
\begin{aligned}
O\left(\bar{W}_{1}-q_{\alpha}\right) \geqq \min \left\{O\left(\bar{W}_{1}-W_{1}\right), O\left(W_{1}-q_{\alpha}\right)\right\} & \\
& =\delta>O\left(\bar{W}_{1}-p_{g}\right)
\end{aligned}
$$

or
(10) $O\left(\bar{W}_{1}-q_{\alpha_{0}}\right) \geqq O\left(\bar{W}_{1}-p_{j}\right)$ for all j.

10 and the lemma prove 9 .
Proof of the lemma. We have

$$
O\left(\lambda(y)-q_{\alpha_{0}}(y)\right) \geqq O\left(\lambda(y)-p_{j}(y)\right) \quad \text { for all } j .
$$

Let j_{0} be such that

$$
O\left(\lambda(y)-p_{j_{0}}(y)\right)=\max _{1 \leqq t}{ }_{i \leq k-1} O\left(\lambda(y)-p_{t}(y)\right) .
$$

If $\lambda(y)=B_{i}(y)(\mathrm{a}$ root for $f)$ then

$$
0 \equiv \frac{d}{d y}(z(\lambda(y), y))=z_{x}(\lambda(y), y) \lambda^{\prime}(y)+z_{y}(\lambda(y), y)
$$

implying

$$
O\left(z_{y}(\lambda(y), y)\right)=O\left(z_{x}(\lambda(y), y)\right)+O\left(\lambda^{\prime}(y)\right)>O\left(z_{x}(\lambda(y), y)\right) .
$$

Therefore without loss of generality we will assume $\lambda(y) \neq B_{i}(y)$ for all i.
Using the technique found in Lemma 3.3 in [2] we let

$$
X=x-\lambda(y) \quad Y=y
$$

then

$$
z(x, y)=z(x+\lambda(Y), Y) \equiv \bar{Z}(X, Y)
$$

Since

$$
\begin{aligned}
& z(x, y)=\prod_{i=1}^{k}\left(X-B_{i}(y)\right) \quad \text { where } O\left(B_{i}(y)\right) \geqq 1 \\
& Z(X, Y)=\prod_{i=1}^{k}\left(X-\bar{B}_{i}(Y)\right) \quad \text { where } \bar{B}_{i}(Y)=B_{i}(Y)-\lambda(Y)
\end{aligned}
$$

$\lambda(y) \neq B_{i}(y)$ for all i implies $\bar{B}_{i}(Y) \not \equiv 0$ for all i. So X does not divide $\bar{Z}(X, Y)$ and $\bar{\alpha}_{0} \neq \infty$ (see the appendix). We have

$$
\bar{Z}_{x}(X, Y)=z_{x}(x, y)
$$

and

$$
\bar{Z}_{Y}(X, Y)=z_{x}(x, y) \lambda^{\prime}(y)+z_{y}(x, y) .
$$

This says

$$
\bar{Z}_{x}(X, Y)=\prod_{i=1}^{k-1}\left(X-\bar{p}_{j}(Y)\right) \quad \text { where } \bar{p}_{j}(Y)=p_{j}(Y)-\lambda(Y)
$$

implying

$$
O\left(\bar{p}_{j}(Y)\right) \geqq \min \left\{O\left(p_{j}(Y)\right), O(\lambda(Y))\right\}>1 .
$$

Case a. $\max _{1 \leqq i \leq k} O\left(\bar{B}_{i}\right) \geqq \max _{1 \leqq j \leqq k-1} O\left(\bar{p}_{j}\right)>1$.
Lemma 3.2 in [$\mathbf{2}$] shows the point ($1, \bar{\alpha}_{1}$) lies on the Newton Polygon for \bar{Z}. Therefore

$$
O(\bar{Z}(0, Y))-O\left(\bar{Z}_{x}(0, Y)\right)=\bar{\alpha}_{0}-\bar{\alpha}_{1}=\max _{1 \leq i \leq k} O\left(\bar{B}_{i}\right)>1
$$

or

$$
O\left(\bar{Z}_{Y}(0, Y)\right)+1=O(\bar{Z}(0, Y))>O\left(\bar{Z}_{x}(0, Y)\right)+1
$$

or

$$
O\left[z_{x}(\lambda(y), y) \lambda^{\prime}(y)+z_{y}(\lambda(y), y)\right]>O\left(z_{x}(\lambda(y), y)\right)
$$

Since $O\left(\lambda^{\prime}(y)\right)>0$ we have

$$
O\left(z_{y}(\lambda(y), y)\right)>O\left(z_{x}(\lambda(y), y)\right)
$$

Case b. $\max _{1 \leqq i \leqq k} O\left(\bar{B}_{i}\right)<\max _{1 \leqq j \leqq k-1} O\left(\bar{p}_{j}\right)$.
By remark 4 in the appendix, every root $r_{s}(Y)$ for $Z_{Y}(X, Y)$ satisfies the following:

$$
O\left(r_{s}(Y)\right) \leqq \max _{1 \leqq i \leqq k} O\left(\bar{B}_{i}\right)<\max _{1 \leqq j \leqq k-1} O\left(\bar{p}_{j}\right) \leqq O\left(\bar{q}_{\alpha_{0}}\right)
$$

We have

$$
\begin{align*}
O\left(\bar{Z}_{Y}(0, Y)\right)=O\left(\bar{Z}_{Y}\left(\bar{q}_{\alpha_{0}}(Y), Y\right)\right)=O(& \left(\bar{Z}_{x}\left(q_{\alpha_{0}}(y), y\right) \lambda^{\prime}(y)\right) \tag{12}\\
& =O\left(\bar{Z}_{x}\left(\bar{q}_{\alpha_{0}}(Y), Y\right) \lambda^{\prime}(Y)\right)
\end{align*}
$$

Using $O\left(\bar{q}_{\alpha_{0}}\right) \geqq O\left(\bar{p}_{j}\right)$ for all j we get
(13) $O\left(\bar{Z}_{x}\left(\bar{q}_{\alpha_{0}}(Y), Y\right)\right) \geqq O\left(\bar{Z}_{x}(0, Y)\right)$.

Putting 12 and 13 together we obtain

$$
\begin{equation*}
O\left(\bar{Z}_{Y}(0, Y)\right) \geqq O\left(\bar{Z}_{x}(0, Y) \lambda^{\prime}(Y)\right) \tag{14}
\end{equation*}
$$

or

$$
O\left[z_{x}(\lambda(y), y) \lambda^{\prime}(y)+z_{y}(\lambda(y), y)\right] \geqq O\left(z_{x}(\lambda(y), y) \lambda^{\prime}(y)\right)
$$

So

$$
O\left(z_{y}(\lambda(y), y)\right) \geqq O\left(z_{x}(\lambda(y), y) \lambda^{\prime}(y)\right)>O\left(z_{x}(\lambda(y), y)\right)
$$

finishing the proof of the lemma.
The same argument can be repeated for each of the α. We replace W_{1} with W_{α} and pick j_{0} and α_{0} accordingly. Therefore for each α there exists a j_{α} such that $n_{\alpha} \leqq m_{j \alpha}$.

Appendix. We will be using the notation found in [6]. Given any fractional power series

$$
\lambda(y)=\sum_{i=1}^{\infty} c_{i} y^{\delta_{i}}, \quad c_{1} \not \equiv 0
$$

the order of $\lambda(y)$, denoted $O(\lambda(y))$, equals δ_{1}. If we write

$$
f(x, y)=a_{m}(y) x^{m}+\ldots+a_{1}(y) x+a_{0}(y)
$$

then $O\left(a_{i}(y)\right) \equiv \alpha_{i}$. In the case $a_{1}(y) \equiv 0, \alpha_{i}$ is set equal to ∞. Notice:

$$
O(f(0, y))=\alpha_{0}, \quad O\left(f_{x}(0, y)\right)=\alpha_{1}
$$

and if $\alpha_{0} \neq \infty$,

$$
O\left(f_{y}(0, y)\right)=\alpha_{0}-1
$$

Remark 1. Let $f(x, y)$ be in Weierstrass form. Then

$$
f_{x}(x, y)=k\left(x-p_{1}(y)\right) \ldots\left(x-p_{k-1}(y)\right)
$$

where $O\left(p_{j}(y)\right)>1$ for all j and

$$
f_{y}(x, y)=a(y) h(x, y)\left(x-q_{1}(y)\right) \ldots\left(x-q_{s}(y)\right)
$$

where $O\left(q_{\alpha}(y)\right)>1$ for all $\alpha, h(x, y)$ contains those roots with order $\leqq 1$, and $a(y)$ is a function of y alone.
Proof. Using Puiseaux's Theorem (see Theorem 3.1 in [6]), we can write

$$
\begin{aligned}
& f(x, y)=\prod_{i=1}^{k}\left(x-B_{i}(y)\right), \quad f_{x}(x, y)=k \prod_{j=1}^{k-1}\left(x-p_{j}(y)\right) \text { and } \\
& f_{y}(x, y)=a(y) h(x, y) \prod_{\alpha=1}^{s}\left(x-q_{\alpha}(y)\right)
\end{aligned}
$$

where $B_{i}(y), p_{j}(y)$ and $q_{\alpha}(y)$ are fractional power series. It remains to show $O\left(p_{j}(y)\right)>1$ for all j. Since

$$
f(x, y)=x^{k}+a_{k-2}(y) x^{k-2}+\ldots+a_{1}(y) x+a_{0}(y)
$$

and

$$
f(x, y)=x^{k}+H_{k+1}(x, y)+\ldots+H_{r}(x, y)
$$

we have

$$
\begin{aligned}
& O\left(a_{l}(y)\right)+l \geqq k+1 \quad \text { for } 0 \leqq l \leqq k-2 \text { and } \\
& f_{x}(x, y)=k x^{k-1}+(k-2) a_{k-2}(y) x^{k-3}+\ldots+a_{1}(y) . \\
& f_{x}\left(p_{j}(y), y\right)=0 \text { implies }
\end{aligned}
$$

$$
(k-1) O\left(p_{j}(y)\right) \geqq \min _{1 \leqq l \leqq k-2}\left\{O\left(a_{l}(y)\right)+(l-1) O\left(p_{j}(y)\right)\right\}
$$

for some l. Therefore

$$
(k-1) O\left(p_{j}(y)\right) \geqq(k-l+1)+(l-1) O\left(p_{j}(y)\right)
$$

or

$$
(k-l) O\left(p_{j}(y)\right) \geqq k-l+1
$$

implying

$$
O\left(p_{,}(y)\right) \geqq \frac{k-l+1}{k-l}>1 .
$$

The same type of argument shows us that $O\left(B_{i}(y)\right)>1$ for all i.
Remark 2. $O\left(W_{1}-U_{j}\right) \geqq O\left(W_{1}-p_{j}\right)$ for all j.
Proof.

$$
O\left(W_{1}-p_{j}\right) \geqq \min \left\{O\left(W_{1}-U_{j}\right), O\left(-i V_{j}\right)\right\}
$$

(see page 89 in [6]). $W_{1}-U_{j}$ is real and $-i V_{j}$ is complex so it is impossible for any cancellation to occur between them. Therefore,

$$
O\left(W_{1}-p_{j}\right)=\min \left\{O\left(W_{1}-U_{j}\right), O\left(V_{j}\right)\right\}
$$

If $O\left(V_{j}\right)<O\left(W_{1}-U_{j}\right)$ then

$$
O\left(W_{1}-p_{j}\right)=O\left(V_{j}\right)<O\left(W_{1}-U_{j}\right)
$$

If $O\left(V_{j}\right) \geqq O\left(W_{1}-U_{j}\right)$ then

$$
O\left(W_{1}-p_{j}\right)=O\left(W_{1}-U_{j}\right)
$$

In either case

$$
O\left(W_{1}-U_{j}\right) \geqq O\left(W_{1}-p_{j}\right)
$$

Remark 3. If $h(x, y)=\prod_{i=1}^{t}\left(x-\delta_{i}(y)\right)$ with $O\left(\delta_{i}(y)\right) \leqq 1$ for all i, then for any fractional power series $\lambda(y)$ with $O(\lambda(y))>1$,

$$
O(h(\lambda(y), y))=O(h(0, y))
$$

Proof. $O\left(\lambda(y)-\delta_{i}(y)\right)=O\left(\delta_{i}(y)\right)$. This implies

$$
O(h(\lambda(y), y))=\prod_{i=1}^{t} O\left(\lambda(y)-\delta_{i}(y)\right)=\prod_{i=1}^{t} O\left(\delta_{i}(y)\right)=O(h(0, y))
$$

Remark 4. If

$$
\begin{aligned}
& f(x, y)=\prod_{i=1}^{k}\left(x-B_{i}(y)\right) \text { and } \\
& f_{y}(x, y)=a(y) h(x, y) \prod_{\alpha=1}^{s}\left(x-q_{\alpha}(y)\right)
\end{aligned}
$$

then

$$
\max _{1 \leqq \alpha \leqq s} O\left(q_{\alpha}\right) \leqq \max _{1 \leqq i \leqq k} O\left(B_{i}\right)
$$

Proof. If $\alpha_{0}=\infty$ then x divides f and f_{y}. This implies

$$
\max _{1 \leqq \alpha \leqq s} O\left(q_{\alpha}\right)=\infty=\max _{1 \leqq i \leqq k} O\left(B_{i}\right)
$$

If $\alpha_{0} \neq \infty$, let $\delta_{1} y^{b}, \delta_{2} x^{c} y^{d}$ make up the first line segment for the Newton polygon for f_{y}. Then $b=\alpha_{0}-1\left(\alpha_{0}\right.$ for $\left.f\right), O\left(q_{\alpha_{0}}\right)=(b-d) / c$, and $\delta_{1} y^{b+1} /(b+1)$ and $\delta_{2} x^{c} y^{d+1} /(d+1)$ belong to f. The equation for the first line segment for the Newton polygon for f is

$$
\nu=-O\left(B_{i_{0}}\right) u+\alpha_{0}
$$

This implies

$$
d+1 \geqq-O\left(B_{i_{0}}\right) c+\alpha_{0}=-O\left(B_{i_{0}}\right) c+b+1
$$

Therefore

$$
O\left(B_{i_{0}}\right) \geqq(b-d) / c=O\left(q_{\alpha_{0}}\right)
$$

References

1. T. C. Kuo, A complete determination of c°-sufficiency in $J^{r}(2,1)$, Invent. Math. 8 (1969), 226-235.
2. T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310.
3. Y. C. Lu, Sufficiency of jets in $J^{r}(2,1)$ via decomposition, Inv. Math. 10 (1970), 119-127.
4. - Singularity theory and an introduction to catastrophe theory (Springer-Verlag, N.Y., 1976).
5. Y. C. Yu and S. H. Chang, On c°-sufficiency of complex jets, Can. J. Math. 4 (1973), 874-880.
6. R. J. Walker, Algebraic curves (Dover, N.Y., 1950).

Ohio State University, Columbus, Ohio

