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Abstract

Let G be an algebraic real reductive group and Z a real spherical G-variety, that is, it

admits an open orbit for a minimal parabolic subgroup P . We prove a local structure

theorem for Z. In the simplest case where Z is homogeneous, the theorem provides an

isomorphism of the open P -orbit with a bundle Q×LS. Here Q is a parabolic subgroup

with Levi decomposition LnU , and S is a homogeneous space for a quotient D = L/Ln
of L, where Ln ⊆ L is normal, such that D is compact modulo center.

1. Introduction

Let GC be a complex reductive group and BC < GC a fixed Borel subgroup. We recall that

a normal GC-variety ZC is called spherical provided that BC admits an open orbit. The local

nature of a spherical variety is given in terms of the local structure theorem [BLV86, Kno94]. In

its simplest form, namely applied to a homogeneous space ZC = GC/HC for which BCHC is open,

it asserts that there is a parabolic subgroup QC > BC with Levi decomposition QC = LC n UC
such that the action of QC on ZC induces an isomorphism of (LC/LC ∩HC)× UC onto BCHC.

The purpose of this paper is to continue the geometric study of real spherical varieties begun

in [KS13]. We let G be an algebraic real reductive group and Z a normal real algebraic G-variety.

Then Z is called real spherical provided a minimal parabolic subgroup P < G has at least one

open orbit on Z. With this assumption on Z we prove a local structure theorem analogous to

the one above. In particular, when applied to a homogeneous real spherical space Z = G/H with

PH open, it yields a parabolic subgroup Q > P with Levi decomposition Q = Ln U such that

Ln < Q ∩H < L.

Here Ln /L denotes the product of all non-compact non-abelian normal factors of L.

Furthermore, the action of Q induces a diffeomorphism of (L/L ∩H)× U onto PH.

Our proof of the real local structure theorem is based on the symplectic approach of [Kno94].

Our investigations also show the number of G-orbits on a real spherical variety is finite. Combined

with the main result of [KS13], it implies that the number of P -orbits on a real spherical variety

is finite.
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2. Homogeneous spherical spaces

Lie groups in this paper will be denoted by upper-case Latin letters, A, B . . . , and their associated
Lie algebras with the corresponding lower- case Gothic letter a, b, . . . .

For a Lie group G we denote by G0 its connected component containing the identity, by
Z(G) the center of G and by [G,G] the commutator subgroup.

On a real reductive Lie algebra g we fix a non-degenerate invariant bilinear form κ(· , ·), for
example the Cartan–Killing form if g is semisimple.

A Lie group G will be called real reductive provided that:

– the Lie algebra g is reductive;

– there exists a maximal compact subgroup K < G such that we have a homeomorphism
(polar decomposition)

K × s → G, (k,X) 7→ k exp(X)

where s := k⊥κ .

Observe that for a real reductive group the bilinear form κ can (and will) be chosen K-
invariant. A real reductive group is called algebraic if it is isomorphic to an open subgroup of
the group of real points GC(R) where GC is a reductive algebraic group which is defined over R.

Now let G be a real reductive group, and let P be a minimal parabolic subgroup. The
unipotent part of P is denoted N . If a maximal compact subgroup K as above has been
chosen, with associated Cartan involution θ of G, a maximal abelian subspace a ⊂ s can also be
chosen. These choices then induce an Iwasawa decomposition G = KAN of G and a Langlands
decomposition P = MAN of P . Here M = ZK(a). However, at present we do not fix K and a.

Let H be a closed subgroup of G such that H/H0 is finite. Recall that Z = G/H is said to
be real spherical if the minimal parabolic subgroup P admits an open orbit on Z. Furthermore,
in this case H is called a spherical subgroup. Note that H is not necessarily reductive.

Remark 2.1. Here a remark on terminology is in order. Historically, spherical subgroups were
first introduced by M. Krämer in the context of compact Lie groups; see [Krä79]. However, as
our focus is to investigate non-compact homogeneous spaces we allow a discrepancy between the
original definition and the current one. In fact with our definition every closed subgroup of G is
spherical if G is compact.

We denote by z0 ∈ Z the origin of the homogeneous space Z = G/H.

2.1 Semi-invariant functions and the local structure theorem
Let G be a real reductive Lie group.

Definition 2.2. Let Z = G/H with H ⊆ G a closed subgroup.
(1) A finite-dimensional real representation (π, V ) of G is called H-semispherical provided

there is a cyclic vector vH ∈ V and a character γ : H → R× such that

π(h)vH = γ(h)vH , ∀h ∈ H.

(2) The homogeneous space Z is called almost algebraic if there exists an H-semispherical
representation (π, V ) such that the map

Z → P(V ), g · z0 7→ [π(g)vH ]

is injective.
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According to a theorem of Chevalley (see [Bor91, Theorem 5.1]), Z =G/H is almost algebraic
if G and H are algebraic. In the following we always assume that Z = G/H is almost algebraic.

For a reductive Lie algebra g we write gn for the direct sum of the non-compact non-abelian
ideals in [g, g]. If g is the Lie algebra of G, then Gn denotes the corresponding connected normal
subgroup of [G,G].

Theorem 2.3 (Local structure theorem, homogeneous case). Let Z = G/H be an almost
algebraic real spherical space, and let P ⊆ G be a minimal parabolic subgroup such that PH is
open. Then there is a parabolic subgroup Q ⊇ P with Levi decomposition Q = LU such that:

(i) the map

Q×L (L/L ∩H) → Z, [q, l(L ∩H)] 7→ ql · z0
is a Q-equivariant diffeomorphism onto Q · z0 ⊆ Z;

(ii) Q ∩H ⊆ L;

(iii) Ln ⊆ H;

(iv) (L ∩ P )(L ∩H) = L;

(v) QH = PH.

Proof. The proof consists of an iterative procedure in which we construct a strictly decreasing
sequence of parabolic subgroups

Q0 ⊃ Q1 ⊃ · · · ⊃ P
and corresponding Levi subgroups L0 ⊃ L1 ⊃ . . . , all satisfying (i). Note that (ii) is an immediate
consequence of (i). After a finite number of steps a parabolic subgroup is reached which also
satisfies (iii)–(v).

Let Q0 = G. It clearly satisfies (i). If Gn ⊆ H then PH = G since P contains both the center
of G and every compact normal subgroup of [G,G]. Hence in this case Q = Q0 solves (i)–(v).
Note also that since L ∩ P is a minimal parabolic subgroup of L, the argument just given, but
applied to L, shows that (iv) and (v) are consequences of (iii).

Assume now that Gn 6⊆ H. By our general assumption on Z there is a finite-dimensional
representation (π, V ) of G and a vector vH ∈ V satisfying all the properties of Definition 2.2.
The assumption on Gn implies that π(g)vH /∈ RvH for some g ∈ Gn, hence π does not restrict
to a multiple of the trivial representation of Gn.

Choose a Cartan involution for G and a maximal abelian subspace a ⊂ s, but note that these
choices may be valid only for the current step of the iteration. Let v∗ ∈ V ∗\{0} be an extremal
weight vector so that the line Rv∗ is fixed by AN , say π∗(g)v∗ = χ(g)v∗ for g ∈ AN and some
character χ : AN → R×. Now we need the following lemma.

Lemma 2.4. Let G be a connected semisimple Lie group without compact factors, and with
minimal parabolic P = MAN ⊆ G. Let V be a non-trivial finite-dimensional irreducible real
representation of G. Then V AN = {0}.

Proof. Let N̄ = θ(N) be the unipotent part of the parabolic subgroup θ(P ) opposite to P . It
follows from the representation theory of sl(2,R) that vectors in V AN are also fixed by N̄ . Since
G has no compact factors it is generated by N̄ and AN , hence V AN = V G = {0}. 2

By this lemma and what we have just seen, we can choose v∗ such that χ is non-trivial on
Gn ∩A. The matrix coefficient

f(g) := v∗(π(g)vH) (g ∈ G)
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satisfies f(angh) = χ(a)−1γ(h)f(g) for all g ∈ G, an ∈ AN and h ∈ H. As vH is cyclic and v∗

non-zero, and as PH is open, f is not identically zero on M .
We construct a new function:

F (g) :=

∫
M
f(mg)2 dm (g ∈ G).

This function is smooth, G-finite, non-negative, and satisfies

F (mangh) = χ(a)−2γ2(h)F (g) (2.1)

for all g ∈ G, man ∈ P and h ∈ H. Furthermore, F (e) > 0.
It follows from the G-finiteness, together with (2.1), that F is a matrix coefficient

F (g) = w∗(ρ(g)wH)

of a finite-dimensional representation (ρ,W ) of G, with non-zero vectors wH ∈W and w∗ ∈W ∗
such that

ρ(h)wH = γ(h)2wH , ρ∗(man)w∗ = χ(a)2w∗

for all h ∈ H and man ∈ P = MAN . Here, W ∗ can be chosen to be the span of all left translates
of F . Since F is a highest weight vector, W ∗ and hence W are irreducible. Define ν ∈ a∗ by

eν(X) = χ(expX)2.

Then ν is the highest a-weight of ρ∗, and it is dominant with respect to the set Σ(a, n) of a-roots
in n.

Now define a subgroup Q1 = Q ⊆ G to be the stabilizer of Rw∗,

Q = {g ∈ G | ρ∗(g)w∗ ∈ Rw∗},
and define a character ψ : Q → R× by

ρ∗(g)w∗ = ψ(g)w∗.

In particular, we see that Q is a parabolic subgroup that contains P . Moreover, ψ : Q → R
extends χ2 : AN → R+. Let U ⊆ Q be the unipotent radical of Q; its Lie algebra is spanned by
the root spaces of the roots α ∈ Σ(a, n) for which 〈α, ν〉 > 0.

Note that since wH is cyclic, ρ∗(g)w∗ = cw∗ if and only if F (g−1x) = cF (x) for all x ∈ G.
Hence

Q = {g ∈ G | F (g ·) is a multiple of F}
and F (q ·) = ψ(q)F for all q ∈ Q. (We use the symbol F (g ·) for the function x 7→ F (gx) on G.)

We note that Q∩Gn is a proper subgroup of Gn, for otherwise ρ∗ would be one-dimensional
spanned by w∗, and this would contradict the non-triviality of its highest weight eν = χ2 on
Gn ∩A.

Set Z0 := QH ⊆ Z. Then Z0 is open since qPH is open for each q ∈ Q. Following [Kno94,
Theorem 2.3], we define a moment-type map

µ : Z0 → g∗, µ(z)(X) :=
dF (q)(X)

F (q)
=

d

dt

∣∣∣
t=0

F (exp(tX)q)

F (q)

for q ∈ Q such that z = qH ∈ Z0 and X ∈ g. Note that this map is well defined: F (q) 6= 0 for
q ∈ Q, and if q · z0 = q′ · z0 then q = q′h for some h ∈ H.

We let G act on g∗ via the co-adjoint action and record the following result.
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Lemma 2.5. The map µ is Q-equivariant.

Proof. Let z ∈ Z0, q ∈ Q and Y ∈ g. Then

µ(qz)(Y ) =
d
dt

∣∣
t=0

F (exp(tY )qz)

F (qz)
=

d
dt

∣∣
t=0

F (qq−1 exp(tY )qz)

ψ(q)F (z)

=
d
dt

∣∣
t=0

F (exp(tAd(q−1)Y )z)

F (z)
= (Ad∗(q)µ(z))(Y ). 2

Note that
µ(z)(X) = dψ(X), (X ∈ q) (2.2)

for all z ∈ Z0. In particular, µ(z1) − µ(z2) ∈ q⊥ ⊆ g∗ for z1, z2 ∈ Z0. Moreover, µ(z)(X + Y ) =
−ν(X) for X ∈ a and Y ∈ m + n.

We now identify g∗ with g via the invariant non-degenerate form κ(· , ·). Then q⊥ is identified
with u, and (m + n)⊥ with a + n. Let

X0 = µ(z0) ∈ a + n.

Then X0 /∈ n since ν 6= 0 and hence X0 is a semisimple element. Write Xs for the a-part of X0.
Then the eigenvalues of ad(X0) on n are the α(Xs) where α ∈ Σ(a, n). By the identification of
g∗ with g, these are the inner products 〈−ν, α〉; in particular, they are all non-positive and on u
they are negative.

We conclude from the above that imµ ⊆ X0 + u. We claim equality:

imµ = X0 + u. (2.3)

As µ is Q-equivariant, we have imµ = Ad(Q)X0. The lemma below (with X = −ad(X0)) implies
Ad(U)X0 = X0 + u, and then (2.3) follows.

Lemma 2.6. Let u be a nilpotent Lie algebra and X : u → u a derivation which is diagonalizable
with non-negative eigenvalues. Then in the solvable Lie algebra g := RXnu the following identity
holds:

ead uX = X + [X, u]. (2.4)

Proof. Note that [X, u] = u if all eigenvalues are positive. The inclusion ⊆ in (2.4) is easy. The
proof of the opposite inclusion is by induction on dim u, and the case dim u = 0 is trivial. Assume
dim u > 0 and let u =

∑
λ>0 u(X,λ) be the eigenspace decomposition of the operator X : u → u.

Let λ1 > 0 be the smallest eigenvalue and set u1 := u(X,λ1) and u2 :=
∑

λ>λ1
u(X,λ). Note that

u2 is an ideal in u, and u = u1+ u2 as vector spaces.
By induction we have ead u2X =X + u2. If λ1 = 0 then [X, u] = u2, and we are done. Otherwise

[u1, u1] ⊆ u2 and hence

eadUX ∈ X + λ1U + u2

for U ∈ u1. Note that ead u is a group as u is nilpotent. It follows that

ead uX ⊇ ead u1ead u2X = ead u1(X + u2)

=
⋃
U∈u1

eadU (X + u2) =
⋃
U∈u1

(eadUX + u2)

=
⋃
U∈u1

(X + λ1U + u2) = X + u. 2
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Continuing with the proof of Theorem 2.3, we conclude that the stabilizer L ⊆ Q of X0 ∈ q
is a reductive Levi subgroup. Let

S := µ−1(X0) = {z ∈ Z0 | µ(z) = X0}.
Then for q ∈ Q we have

qz0 ∈ S ⇔ µ(qz0) = X0 ⇔ qX0 = X0 ⇔ q ∈ L. (2.5)

Hence L acts transitively on S. As µ is submersive, S is a submanifold of Z0 and we obtain with

Q×L S → Z0 (2.6)

a Q-equivariant diffeomorphism. As an L-homogeneous space, S is isomorphic to L/L∩H. Hence
(i) is valid.

Note that (2.5) implies that (L ∩ P )H = S ∩ (PH), which is open in S. Thus L/L ∩H is a
real spherical space.

If (iii) is valid, we are done. Otherwise we let Q1 = Q and consider the real spherical space
Z1 = L1/L1∩H for L1 = L. Iterating the procedure of before yields a proper parabolic subgroup
R of L1 containing L1 ∩ P and with a Levi subgroup L2 ⊆ L1 such that

(R ∩N)× L2/(L2 ∩H) → R · z0 (2.7)

is a diffeomorphism. We let Q2 = RP = RU1, which is a subgroup since R normalizes U1. Note
that (2.7), together with the property (i) for Q1, implies that this property is valid also for Q2.
We continue iterations until H contains the non-compact semisimple part of some Li. This will
happen eventually since the non-compact semisimple part of a Levi subgroup of P is trivial. 2

2.2 Z-adapted parabolics
Definition 2.7. Let Z = G/H be a real spherical space. A parabolic subgroup Q < G will be
called Z-adapted provided that:

(i) there is a minimal parabolic subgroup P ⊆ Q with PH open;

(ii) there is a Levi decomposition Q = LU such that Q ∩H ⊆ L.

(iii) ln ⊆ h.

A parabolic subalgebra q of g is called Z-adapted if it is the Lie algebra of a Z-adapted parabolic
subgroup Q.

Theorem 2.8. Let Z = G/H be an almost algebraic real spherical space and P a minimal
parabolic subgroup such that PH is open. Then there exists a unique parabolic subgroup Q ⊇ P
with unipotent radical U such that u is complementary to n ∩ h in n. Moreover, this parabolic
subgroup Q is Z-adapted, and it is the unique parabolic subgroup above P with that property.

Proof. Note first that if Q ⊇ P and Q = LU is a Levi decomposition then n = (n ∩ l) ⊕ u.
Assuming in addition (ii) and (iii) above, then n ∩ h = n ∩ l, and hence n ∩ h is complementary
to u. Hence every Z-adapted parabolic subgroup Q ⊇ P has this property of complementarity.
In particular, this holds then for the parabolic subgroup Q constructed with Theorem 2.3.

It remains to prove that if Q′ ⊇ P is another parabolic for which the unipotent radical u′ is
complementary to n ∩ h, then Q′ = Q. Since ln ⊂ h we find

u′ ∩ l ⊆ u′ ∩ h = {0}.
The lemma below now implies u ⊇ u′. But then u = u′ since both spaces are complementary to
n ∩ h, and hence Q = Q′. 2
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Lemma 2.9. Let p be a minimal parabolic subalgebra, and let q, q′ ⊇ p be parabolic subalgebras

with unipotent radicals u, u′. If there exists a Levi decomposition q = l+u such that l ∩ u′ = {0},
then q ⊆ q′.

Proof. This follows easily from the standard description of the parabolic subalgebras containing

p by sets of simple roots. 2

2.3 The real rank of Z

Let Q be Z-adapted, with Levi decomposition Q = LU as in Definition 2.7. From the local

structure theorem we obtain an isomorphism

Q×L L/L ∩H → Q · z0 = P · z0.

Recall that ln ⊆ h. We decompose

l = z(l)⊕ [l, l] = z(l)⊕ lc ⊕ ln, (2.8)

where lc denotes the sum of all compact simple ideals in l. Note that D = L/Ln is a Lie group

with the Lie algebra d = z(l) + lc, which is compact, and that

l ∩ h = c⊕ ln

with c = d ∩ h. Let C = (L ∩H)/Ln ⊆ D; then L/L ∩H = D/C, and

U ×D/C → P · z0 (2.9)

is an isomorphism.

Consider the refined version of (2.8),

l = z(l)np ⊕ z(l)cp ⊕ lc ⊕ ln, (2.10)

in which z(l)np and z(l)cp denote the non-compact and compact parts of z(l). Let L = KLAL
(L∩N) be an Iwasawa decomposition of L, and let G = KAN be an Iwasawa decomposition of

G which is compatible, that is, K ⊇ KL and A = AL. Then a = z(l)np ⊕ (a ∩ ln).

Let ah ⊂ z(l)np be the image of c under the projection l → z(l)np along (2.10), and let aZ be

a subspace of z(l)np, complementary to ah. Then

a = aZ ⊕ ah ⊕ (a ∩ ln). (2.11)

The number dim aZ will be called the real rank of Z in § 3, where we show (under an additional

hypothesis) that it is an invariant of Z (it is independent of the choices of P and L). See

Remark 3.5.

2.4 HP -factorizations of a semisimple group

Let Z = G/H be real spherical. In general G/P admits several H-orbits. Here we investigate the

simplest case where there is just one orbit.

Proposition 2.10. Let G be semisimple. Assume that Z = G/H is real spherical and that h

contains no non-zero ideal of g. Then HP = G if and only if H is compact.
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Proof. Assume that HP = G. Note that then HgP = G for every g ∈ G and hence

h + Ad(g)(p) = g

for every g ∈ G.
We first reduce to the case where H is reductive in G. Otherwise there exists a non-zero ideal

hu in h which acts unipotently on g. By conjugating P if necessary, we may assume that hu ⊆ n.
It then follows from G = PH that Ad(g)(hu) ⊆ n for all g ∈ G, which is absurd.

Assume now that H is reductive and let H = KHAHNH be an Iwasawa decomposition. Let
X ∈ aH be regular dominant with respect to nH , and let q be the parabolic subalgebra of g
which is spanned by the non-negative eigenspaces of adX. It follows that q ∩ h is a minimal
parabolic subalgebra of h, and that nH is contained in the unipotent part u of q. As Q contains
a conjugate of P we have g = h+ q and hence dim(h/(q∩ h)) = dim(g/q), from which we deduce
that nH = u. From nH = u and g = h+ q we deduce that g = h+ l. Let hn be the subalgebra of h
generated by nH and its opposite n̄H with respect to the Cartan involution of H associated with
H = KHAHNH . Then hn is l-invariant and an ideal in h. With g = h + l we now infer that hn
is an ideal in g, and hence it is zero. It follows that H = KHAH , where AH is central in H. We
may assume KH ⊆ K and AH ⊆ A. Then G = HP implies K = KHM , and hence K centralizes
AH . This is impossible unless AH = {1} and then H is compact.

Conversely, if H is compact then the open H-orbit on G/P is closed, and since G/P is
connected it follows that HP = G. 2

3. Real spherical varieties

All complex varieties ZC in this section will be defined over R. Typically we denote by Z the set
of real points of ZC. If Z is Zariski dense in ZC, then we call Z a real (algebraic) variety.

We say that a subset U ⊂ Z is (quasi-)affine if there exists a (quasi-)affine subset UC ⊂ ZC
such that U = UC ∩ Z.

Remark 3.1. Even if ZC is irreducible it might happen that Z has several connected components
with respect to the Euclidean topology. However, by Whitney’s theorem, the number of connected
components is always finite. Take, for example, Z = GL(n,R) and ZC = GL(n,C). Here Z
breaks into two connected components GL(n,R)+ and GL(n,R)− characterized by the sign of
the determinant; certainly it would be meaningful to call GL(n,R)+ a real algebraic variety as
well.

Let Z1q . . .qZn be the decomposition of Z into connected components (with respect to the
Euclidean topology). A more general notion of real variety would be to allow arbitrary unions
of those Zj which are Zariski dense in ZC. In fact, all the statements derived in this section for
real varieties are valid in this more general setup.

In this section we let G be a real algebraic reductive group and GC ⊇ G its complexification.
Furthermore, P is a minimal parabolic subgroup of G and P = MAN a Langlands decomposition
of it.

By a real G-variety Z we understand a real variety Z endowed with a real algebraic G-action.
A real G-variety will be called linearizable provided there is a finite-dimensional real G-module
V such that Z is realized as real subvariety of P(V ).

An algebraic real reductive group G is called elementary if G ∼= M ×A with M compact and
A = (R+)l. This is equivalent to G = P . A real G-variety Z will then be called elementary if
G/J is elementary where J is the kernel of the action on Z.
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Definition 3.2. A linearizable real G-variety Z will be called real spherical provided that:

– ZC is irreducible,

– Z admits an open P -orbit.

Remark 3.3. (a) In the definition of a (complex) spherical variety one requires in particular that
the variety is normal. We now explain how this is related to our notion of real spherical.

Assume that ZC is normal. Then it follows from a theorem of Sumihiro [KKLV89, p. 64] that
every every point z ∈ ZC has a GC-invariant open neighborhood U which can be equivariantly
embedded into P(VC) where VC is a finite-dimensional representation of GC. It follows that if
z ∈ Z then U0 := (U ∩ U) ∩ Z is a linearizable open neighborhood of z. Observe that there is
always a normalization map ν : Z̃ → Z where Z̃ is a normal G-variety and ν is proper, finite to
one, and invertible over an open dense subset of Z.

(b) If Z is a real spherical variety, then the number of open P -orbits is finite: As ZC is
irreducible, there is exactly one open PC-orbit on ZC and the real points of this open PC-orbit
decompose into finitely many P -orbits. We conclude in particular that there are only finitely
many open G-orbits in Z. Let O ' G/H be one of them. Then G/H is a real spherical algebraic
homogeneous space which we considered before.

(c) Let Z be an elementary real spherical variety. If G = A, then Z consists of the real points
of a toric variety defined over R.

(d) Let G = M × A be an elementary algebraic real reductive group and Z = G/H a
homogeneous real spherical G-variety. Since there are no algebraic homomorphisms between a
split torus and a compact group, the group H splits as H = M0×A0 with M0 ⊆M and A0 ⊆ A.
Thus Z = M/M0 ×A/A0.

3.1 Some general facts about real G-varieties
Let Z be an irreducible real variety. We denote by C[Z] (respectively, C(Z)) the ring of regular
(respectively, rational) functions on Z, that is, C[Z] consists of the restrictions of the regular
functions on ZC to Z, and likewise for C(Z).

As Z is Zariski dense we observe that the restriction mapping Res : C(ZC) → C(Z) is
bijective. Next we note that both C(Z) and C[Z] are invariant under complex conjugation f 7→ f .
In particular with f ∈ C[Z] (respectively, C(Z)), we also have that Re f and Im f belong to C[Z]
(respectively, C(Z)).

If a compact real algebraic group M acts on Z, then the M -average

f 7→ fM ; fM (z) :=

∫
M
f(m · z) dm (z ∈ Z)

preserves C[Z]. This follows from the fact that the G-action on C[Z] is locally finite. Put together,
we conclude

f ∈ C[Z]⇒ (|f |2)M ∈ C[Z]M with f 6= 0⇒ (|f |2)M 6= 0. (3.1)

Let us denote by P̂ the set of real algebraic characters χ : P → R× such that MN ⊆ kerχ.
Note that the subgroup MN of P , and hence P̂ , is independent of the choice of a Langlands
decomposition of P . However, when that has been chosen, there is a natural identification of P̂
with a lattice Λ ⊆ a∗.

For the rest of this subsection we let Z be a real G-variety. We denote by C(Z)(P ) the set of
P -semi-invariant functions, i.e. the rational functions f ∈ C(Z)\{0} for which there is a χ ∈ P̂
such that f(p−1z) = χ(p)f(z) for all p ∈ P , z ∈ Z for which both sides are defined. We denote
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by C(Z)P the set of P -invariants in C(Z). Likewise we define C[Z](P ) and C[Z]P . Further, we
denote by R(Z) and R[Z] the real-valued functions in C(Z) and C[Z].

Lemma 3.4. Let Z be a quasi-affine real G-variety. Then for all non-zero f ∈ R(Z)P there exist
f1, f2 ∈ R[Z](P ) such that f = f1/f2.

Proof. Let f ∈ R(Z)P . As Z is quasi-affine, we find regular functions h1, h2 ∈ C[Z], h2 6= 0 such
that f = h1/h2. Consider the ideal

I := {h ∈ C[Z] | hf ∈ C[Z]}.

Note that:

– I 6= {0} as h2 ∈ I;

– I = I as f is real;

– I is P -invariant as f is P -fixed.

The action of P on C[Z] is algebraic, hence locally finite, and thus we find an element 0 6= h ∈ I
which is an eigenvector for the solvable group AN . We use (3.1) to obtain with f2 = (|h|2)M a
non-zero element of I ∩ R[Z](P ). Now we put f1 = f2f ∈ R[Z](P ). 2

For χ ∈ P̂ = Λ we let

C[Z]χ := {f ∈ C[Z] | (∀p ∈ P, z ∈ Z) f(p−1z) = χ(p)f(z)},

and define C(Z)χ likewise. We define a sub-lattice of Λ by

ΛZ := {χ ∈ P̂ | C(Z)χ 6= {0}}.

With that we declare the real rank of Z by

rkR(Z) := dimQ(ΛZ ⊗Z Q). (3.2)

It is easily seen that rkR(Z) is independent of the choice of minimal parabolic subgroup P .

Remark 3.5. Let Z = G/H be homogeneous. Then rkR(Z) = dim aZ where aZ is defined by
(2.11). In fact, as a Q-variety, an open subset of Z is isomorphic to U×L/L∩H. Thus R(Z)(P ) =
R(L/L ∩H)(L∩P ). Since H contains Ln the variety L/L ∩H is elementary. By Remark 3.3(d),
we have R(L/L ∩H)(L∩P ) = R(A/A0)

(A) which implies the claim, as A/A0 ' aZ .

Lemma 3.6. Let Z be a linearizable irreducible real G-variety and Y ⊆ X a Zariski closed
G-invariant subvariety. Then there exists a P -stable affine open subset Z0 ⊆ Z which meets Y
and such that the restriction mapping

R[Z0]
(P )

→ R[Z0 ∩ Y ](P )

is onto.

Proof. If G is complex, then this is the real-points version of [Bri97, Proposition 1.1]. Further,
with P replaced by AN , one can literally copy the proof of [Bri97]. Finally, the additional
M -invariance when moving from AN to P is obtained from (3.1). 2

2154

https://doi.org/10.1112/S0010437X15007307 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007307


Real spherical varieties

Denote by Λ+ ⊆ Λ the semigroup of elements dominant with respect to P . For all λ ∈ Λ+

we set

m(λ) := dimCC[Z]λ.

If we identify Λ+ with a subset of the irreducible finite-dimensional representations of G, then
m(λ) is the multiplicity of the irreducible representation λ occurring in the locally finiteG-module
C[Z]. The following proposition is a real analogue of the Vinberg–Kimel’feld theorem [VK78].

Proposition 3.7. Let Z be a quasi-affine irreducible G-variety. Then the following assertions
are equivalent:

(i) Z is real spherical;

(ii) m(λ) 6 1 for all λ ∈ Λ+.

Proof. (i) ⇒ (ii) Let z ∈ Z such that P · z is open in Z. Then two P -semi-invariant functions
f1 and f2 with respect to the same character λ ∈ P̂ satisfy f1|P ·z = cf2|P ·z for some constant
c ∈ C. As ZC is irreducible we conclude that f1 = cf2.

(ii) ⇒ (i) We recall that there is an open P -orbit on Z if and only if C(Z)P = C1. This
follows from Rosenlicht’s theorem [Spr89, p. 23], applied to ZC. Now let f ∈ C(Z)P . According
to Lemma 3.4, there exist f1, f2 ∈ C[Z](P ) such that f = f1/f2. Clearly f1 and f2 correspond to
the same character λ ∈ P̂ . As m(λ) 6 1, we conclude that f1 is a multiple of f2. 2

Corollary 3.8. Let Z be a real spherical variety and Y ⊆ Z a closed G-invariant irreducible
subvariety. Then Y is real spherical.

Proof. If Z is quasi-affine, then this is immediate from the previous proposition as the restriction
mapping C[Z] → C[Y ] is onto. The more general case is reduced to that by considering the affine
cone over Z. Recall that Z ⊆ P(V ). The preimage of Z in V \{0} will be denoted by Ẑ. Note that
Ẑ is quasi-affine. Moreover, Z is real spherical if and only if Ẑ is real spherical for the enlarged
reductive group G1 = G× R×. 2

Corollary 3.9. Let Z be a real spherical variety. Then the number of G-orbits on Z is finite
and each G-orbit is spherical.

Proof. In view of the preceding corollary we only need to show that there are finitely many
G-orbits. Suppose that there are infinitely many G-orbits. We let Y ⊆ Z be a closed irreducible
G-subvariety of minimal dimension which admits infinitely many G-orbits. By Corollary 3.8,
Y is spherical. In particular, Y admits open G-orbits. After deleting the finitely many open
G-orbits from Y , we obtain a G-invariant subvariety Y1 ⊆ Y with infinitely many G-orbits. As
dimY1 < dimY we reach a contradiction. 2

The main result of [KS13] was that every homogeneous real spherical space admits only
finitely many P -orbits. With Corollary 3.9 we then deduce the following result.

Theorem 3.10. Let Z be a real spherical variety. Then the number of P -orbits on Z is finite.

3.2 The local structure theorem
Let Z be a real spherical variety and Y ⊆ Z a G-invariant closed subvariety. Our goal is to find a
P -invariant coordinate chart Z0 for Z which meets Y . For that we may assume that Z is Zariski
closed in P(V ), where V is a finite-dimensional G-module. Moreover, we may assume that Y ⊆ Z
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is a closed G-orbit. In particular, Y is real spherical by Corollary 3.9, and we let QY < G be a
Y -adapted parabolic.

Under these assumption on Y and Z there is the following immediate generalization of
Lemma 3.6.

Lemma 3.11. Let Z be real spherical variety, closed in P(V ), and Y ⊆ Z a closed G-orbit. Then
there exists a QY -stable affine open subset Z0 ⊆ Z which meets Y and such that the restriction
mapping

R[Z0]
(QY )

→ R[Z0 ∩ Y ](QY )

is onto.

Proof. The proof is analogous to that of Lemma 3.6. We obtain that Z0 is the non-vanishing
locus of a QY -semi-invariant homogeneous polynomial function on V . 2

Corollary 3.12. Let Z ⊂ P(V ) be a closed real spherical variety and Y an elementary closed
subvariety. Then there exists a G-stable affine open subset Z0 ⊂ Z such that Z0 ∩ Y 6= ∅.

Proof. One has QY = G. 2

We now start with the construction of Z0. If Y is elementary, Z0 is given by Corollary 3.12.
So let us assume that Y is not elementary, i.e. Gn does not act trivially on Y . Let P̄ = MAN̄
be opposite to P . As Y ⊆ P(V ) is closed, we can find a vector y0 ∈ V such that [y0] ∈ Y is
AN̄ -fixed, and such that A acts by a non-trivial character on y0. This can be seen as follows.
Assume for simplicity that V is irreducible. Then Y contains a vector y of which the A-weight
decomposition has a non-trivial component y0 in the lowest weight space of V . Compression of
y by A+ then exhibits a non-zero multiple of y0 as a limit of elements from Y .

Next we choose v∗0 ∈ V ∗ such that [v∗0] is AN -fixed and v∗0(y0) = 1. Let χ : A → R+ be the
character defined by a · v∗0 = χ(a)v∗0.

Consider the function

F : V → R, v 7→
∫
M
v∗0(m · v)2 dm

and note that
F (man · v) = ψ(a)F (v)

for all man ∈ MAN and v ∈ V , where ψ = χ−2. Further, F is real algebraic and homogeneous
of degree 2. Thus {[v] ∈ P(V ) | F (v) 6= 0} defines an affine open set in P(V ) and the intersection
with Z yields an affine open set Z0. Note that F is not constant and hence Z0 is a proper
subvariety. We define Q ⊇ P to be the parabolic subgroup which fixes the line RF |Z0 , that is,
Q = {g ∈ G | gZ0 = Z0}.

As before, we define on Z0 a moment-type map

µ : Z0 → g∗, µ(z)(X) :=
dF (v)(X)

F (v)

for z = [v] ∈ Z ⊆ P(V ). This map is algebraic and Q-equivariant. Let U < Q be the unipotent
radical.

We claim that imµ is a Q-orbit. In fact for X ∈ q we have µ(z)(X) = dψ(X) for all z ∈ Z,
and after identifying g with g∗ we obtain, as in the previous section, that

imµ = Ad(Q)X0 = X0 + u
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with X0 = µ([y0]). The stabilizer of X0 determines a Levi subgroup L < Q. Then S := µ−1(X0)
is an L-stable affine subvariety of Z0 and we obtain an algebraic isomorphism

Q×L S → Z0.

The affine L-variety S is real spherical and meets Y . We continue the procedure with (L, S, S ∩ Y )
instead of (G,Z, Y ). The procedure will stop at the moment when S ∩ Y is fixed under Ln. We
have thus shown the following result.

Theorem 3.13 (Local structure theorem, general case). Let Z be a real spherical variety and
Y ⊆ Z a closed G-invariant subvariety. Then there is parabolic subgroup Q ⊇ P with Levi
decomposition Q = LU with the properties that there is a Q-invariant affine open piece Z0 ⊆ Z
meeting Y and an L-invariant closed spherical subvariety S ⊆ Z0 such that:

(i) there is a Q-equivariant isomorphism

Q×L S → Z0;

(ii) S ∩ Y is an elementary spherical L-variety.

4. The normalizer of a spherical subalgebra

As in the preceding section, we assume that G is algebraic and let h be the Lie algebra of a
spherical subgroup H < G. We denote by h̃ := ng(h) the normalizer of h in g and by H̃ the
normalizer in G. Note that h / h̃ is an ideal. Let p be a minimal parabolic subalgebra such that
p + h = g and let q denote the unique parabolic subalgebra above p, which is Z-adapted. Let
Z̃ = G/H̃.

Lemma 4.1. The parabolic subalgebra q is also Z̃-adapted.

Proof. We write q̃ for the unique Z̃-adapted parabolic above p and ũ for its unipotent radical.
Then

n = (n ∩ h)⊕ u = (n ∩ h̃)⊕ ũ.

It follows that ũ ⊆ u and q ⊆ q̃. To obtain a contradiction we assume that q ( q̃. Then ũ ( u
and n ∩ h ( n ∩ h̃. In particular, the Lie algebra h̃/h cannot be compact.

To conclude the proof we now show that h̃/h is compact. Suppose first that Z is quasi-affine
and let C[Z] =

⊕
π∈ĜC[Z]π be the decomposition of the G-module C[Z] into G-isotypical

components. For each π we choose a model space Vπ and let Mπ := HomG(Vπ,C[Z]) be the
corresponding multiplicity space. Note that Mπ is finite dimensional as there is a natural
identification of Mπ with the space of H-fixed elements in V ∗π .

Let C := H̃/H. Note that C acts from the right on C[Z] and preserves each C[Z]π, thus
inducing an action onMπ. Since Z is quasi-affine we can choose finitely many π1, . . . , πk so that
we obtain a faithful representation of C on the sum M :=

⊕k
j=1Mπj .

Let B < GC be a Borel subgroup contained in PC. For every π we let vπ be a B-highest
weight vector in Vπ. To every η ∈Mπ we associate the function fη(g) = η(π(g−1)vπ) and define
an inner product on Mπ by

〈η, η〉π := (|fη|2)M (z0)

with the notation of (3.1). As (|fη|2)M is a matrix coefficient of a representation in Λ, and as
multiplicities for these are at most one by Proposition 3.7, we obtain that there is a real character
χπ : C → R× such that

〈h · η, h · η〉π = χπ(h)〈η, η〉π.
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The group C1 :=
⋂k
j=1 kerχπj acts unitarily and faithfully on M, hence is compact. By

definition C/C1 < (R×)k, hence the Lie algebra of C is compact.
Finally, we reduce to the quasi-affine case using the affine cone over P(V ) as before; see the

proof of Corollary 3.8. 2

Let Q = LU be a Levi decomposition as in Definition 2.7 and recall the decomposition (2.10).

Proposition 4.2. The normalizer h̃ of h is of the form

h̃ = h⊕ c̃ (4.1)

with c̃ a subalgebra of the form c̃ = ã⊕ m̃ where ã < z(l)np and m̃ < z(l)cp + lc.

Proof. From Lemma 4.1 we conclude that h̃ = h + h̃ ∩ l, and we obtain (4.1) with a subspace c̃
of z(l) + lc. It is a subalgebra because z(l) + lc is reductive and h is an ideal in h̃.

Write ã for the orthogonal projection of c̃ to z(l)np and m̃ for the orthogonal projection of c̃
to z(l)cp + lc. Then c̃ ⊆ ã + m̃, and it remains to show equality. This will follow if we can show
that both ã and m̃ normalize h. For that we decompose X ∈ c̃ as X = Xa +Xm with Xa ∈ ã and
Xm ∈ m̃. Observe that adXa commutes with adXm. Both operators are diagonalizable with real
(respectively, imaginary) spectrum. As adX preserves h we therefore conclude that adXa and
adXm preserve h as well. 2

Corollary 4.3. Let H ⊆ G be real spherical. Then NG(H)/H is an elementary group.

Corollary 4.4. The normalizer h̃ is its own normalizer: ˜̃h = h̃.

Proof. It suffices to show that the normalizer ˜̃h of h̃ normalizes h as well. Let H̃ = NG(h). Observe
that H̃/H is an elementary real algebraic group; in particular, it is reductive. Thus, h̃u = hu

for the nilpotent radicals. This implies that ˜̃h normalizes hu and that H̃/Hu is a reductive real
algebraic group. A connected group, which acts by algebraic automorphisms on a reductive Lie
group, acts by inner automorphisms, hence fixes every ideal. Thus h/hu ⊆ h̃/hu is normalized by
˜̃h as well. 2

Remark 4.5. On the group level, the statement is wrong. For example, let G = GL(2,R) and H =(∗ 0
0 1

)
. Then NG(H) = T =

(∗ 0
0 ∗
)
. Thus NG(NG(H)) = NG(T ) is strictly larger than NG(H) = T .
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VK78 E. Vinberg and B. Kimel’feld, Homogeneous domains on flag manifolds and spherical subsets
of semisimple Lie groups, Funktsional. Anal. i Prilozhen. 12 (1978), 12–19.

Friedrich Knop friedrich.knop@fau.de

FAU Erlangen-Nürnberg, Department Mathematik, Cauerstraße 11,
D-91058 Erlangen, Germany
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