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Vortex shedding behind porous flat plates normal
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This work examines the influence of body porosity on the wake past nominally
two-dimensional rectangular plates of fixed width D in the moderate range of Reynolds
numbers Re = UD/ν (with U the incoming velocity and ν the kinematic viscosity)
between 15 000 and 70 000. With porosity β defined as the ratio of open to total area of the
plate, it is well established that as porosity increases, the wake shifts from the periodic von
Kármán shedding behaviour to a regime where this vortex shedding is absent. This change
impacts the fluid forces acting on the plate, especially the drag, which is significantly lower
for a wake without vortex shedding. We analyse experimentally the transition between
these two regimes using hot-wire anemometry, particle-image velocimetry and force
measurements. Coherence and phase measurements are used to determine the existence of
regular, periodic vortex shedding based on the velocity fluctuations in the two main shear
layers on either side of the wake. Results show that, independent of Re, the wake exhibits
the classical Kármán vortex shedding pattern for β < 0.2 but this is absent for β > 0.3. In
the intermediate range, 0.2 < β < 0.3, there is a transitional regime that has not previously
been identified; it is characterised by intermittent shedding. The flow alternates randomly
between a vortex shedding and a non-shedding pattern and the total proportion of time
during which vortex shedding is observed (the intermittency) decreases with increasing
porosity.

Key words: vortex shedding, vortex streets

1. Introduction

Fluid flow past porous bodies has received much attention, due to its numerous
applications in both industrial and environmental contexts. For example, the wind and
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Figure 1. Compilation of data for the mean drag of a porous plate (illustrated on the left) against porosity β,
including new measurements. The red symbols refer to cases in which a splitter plate was used to prevent the
formation of vortex shedding. The dashed line divides the regions where periodic vortex shedding happens
(low β) and does not happen (higher β), according to the suggestion by Castro (1971).

tidal energy industries apply porous media models to simulate the flow past their complex
geometries, both for a single turbine or an array of turbines (Hansen 2008; Ayati et al.
2019). In civil engineering, porous media models are sometimes used to characterise
the flow past buildings (Kim et al. 2015; Velickovic, Zech & Soares-Frazão 2017). In
agricultural engineering, porous wind breaks have been used for hundreds if not thousands
of years to reduce wind velocities near the ground and modify the turbulence; for two
typical wind tunnel studies and a very recent numerical study, see Perera (1981), Judd,
Raupach & Finnigan (1996) and Wu et al. (2022), respectively.

The flow past two-dimensional porous plates can be interpreted either as a generalisation
of the classical problem of the flow past bluff bodies or as a model for many solid
bodies interfering with each other. It has been studied experimentally (Castro 1971;
Graham 1976; Steiros, Bempedelis & Cicolin 2022), computationally (Inoue 1985; Singh
& Narasimhamurthy 2022) and theoretically (Taylor & Davies 1944; Koo & James 1973;
Steiros & Hultmark 2018). The fundamental parameter determining the nature of the
flow behind the plate is the absolute porosity, defined as the ratio between the open area
exposed to the flow and the total area of the body – β = Aopen/AT . The flow can change
substantially depending on the level of porosity β. Clearly, if β ≈ 1 there is practically
no resistance to the flow whereas, for β ≈ 0, the body is essentially solid. It is thus not
a surprise that the mean drag force decreases as the porosity increases (see figure 1).
However, modelling the flow behaviour for an arbitrary β can be challenging. Many
models predict well the drag force for high porosity cases but underestimate the loads
at low porosity levels (Koo & James 1973; Cumberbatch 1981; Steiros & Hultmark 2018).

For nominally two-dimensional flow past a flat plate, Steiros & Hultmark (2018)
proposed a model based on potential flow, but adding a base suction term to best
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estimate the loads at low β. Figure 1 shows a compilation of experimental data (including
measurements taken in the current study with details in later sections) plotted together
with this model. It should be noted that there are various factors that could account for the
scatter in the data. The different experiments had various levels of blockage, defined as
the ratio of plate area and area of the wind tunnel (or flume) in which it is mounted;
no blockage corrections have been attempted for the data in the figure. Likewise, the
spanwise aspect ratio of the plate (i.e. its spanwise length divided by its width D) was
different for each experiment. Furthermore, Reynolds numbers, whose effects are small
but not negligible (see later), were also different for the different experiments. And,
finally, the particular geometry of holes providing the porosity varied from experiment to
experiment.

Drag prediction is seen to be reasonable at high porosities but fails to predict the values
found in experiments for low β. This is mostly due to the occurrence of the classical
Kármán vortex shedding that is present within the lower range of porosities. Since the
Steiros & Hultmark (2018) model is based on potential flow, it does not account for
the vortex shedding generated by the interaction of the two main shear layers springing
from the separation points at the two edges of the plate – an interaction helpfully
described by Gerrard (1966). If that Kármán shedding is prevented by the introduction
of a central splitter plate behind the plate, then the model provides reasonable agreement
with experimental results even at low β (the red symbols in the figure, e.g. Bearman &
Trueman 1972). The black symbols represent cases that allow vortex shedding (i.e. there is
no splitter plate) and, for low β, there is a significant additional drag contribution arising
from the shed vortices, represented by the grey region in figure 1.

The clear link between the drag and vortex shedding, illustrated by these results, has
been appreciated for a very long time. Over a century ago, von Kármán used a stability
analysis for a system of two idealised vortex sheets of opposite sign, separated by some
distance, to derive an expression for the drag coefficient of that system, which depends
on the lateral (a) and longitudinal (b) spacing of the vortex centres (see figure 2) and their
velocity relative to the free stream (von Kármán 1911). Von Kármán showed that the vortex
street system is neutrally stable to first-order disturbances only if a/b = 0.281, although
this result depends somewhat on the precise details of the analysis (Abernathy & Kronauer
1962). Note also that since the model is not structurally stable, this equilibrium solution is
not robust.

In the seminal work on flow past porous plates, Castro (1971) observed that whilst
vortex shedding – in the form of the classical von Kármán vortex street – is the dominant
feature of the flow for low values of β, it was suppressed if there is sufficient bleed air
passing through the plate, i.e. if β is large enough, perhaps around 22 %; the demarcation
is indicated by the dashed black line in figure 1. (Very similar behaviour had earlier been
reported by Bearman (1967), in the context of a blunt-based aerofoil with bleed air injected
into the wake through the base of the aerofoil.) A more precise characterisation of the
transition between the vortex shedding and non-vortex shedding regimes could not be
made because of the limited equipment available in that era and the number of plates at
hand. Subsequent works (e.g. Graham 1976; Steiros & Hultmark 2018) have confirmed that
there are indeed two main regimes, with and without vortex shedding, and the transition
occurs at some point between 0.2 and 0.35, or maybe over a range of β since it seems
inherently unlikely that shedding would suddenly ‘switch off’ at some specific value
of β.

In this paper we seek to improve the understanding of how the vortex shedding process
behind plates is affected by plate porosity, concentrating mainly on how the wake evolves
from the von Kármán vortex street regime to one without vortex shedding. We emphasise
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Figure 2. Representation of the wake past a porous plate for low values of porosity β (a), in which the periodic
vortex street is developed, and high values of β (b) for which periodic vortex shedding is absent: a and b are
the lateral and axial distances, respectively, between consecutive vortex centres.

at this point that we define vortex shedding as the classical von Kármán wake structure
originating from the interaction of two shear layers with oppositely signed vorticity leading
to a periodic arrangement of large vortices with opposite sign and a size proportional to
the width of the plate. This is illustrated in the top image of figure 2. The wake without
vortex shedding, illustrated by the cartoon at the bottom of figure 2, also contains vortices
but they are smaller and confined (at first) to the individual shear layers that are essentially
independent because of the bleed air between them, until a more classical wake develops
further downstream. Each shear layer is itself unstable, generating (initially) the usual
Kelvin–Helmholz structures as it develops through transition to a fully turbulent state.

1.1. Objectives and paper structure
The paper is mainly based on data obtained in two distinct experimental campaigns
described in § 2. They focus on the flow past porous plates in the specific porosity range
0.1 < β < 0.35, in which the wake changes its regime due to the weakening and eventual
disappearance of the regular and periodic vortex street. The main objective is to determine
the range of porosity β associated with this change of regime, as well as to understand
how the flow evolves from one regime to another. However, in the absence of vortex
shedding, one might expect some similarities between the observed wake and well-studied
classical, steady, two-dimensional, self-similar wakes; this is also briefly explored. We
discuss preliminary results in § 3.1 before, in § 3.2, introducing the use of coherence data
to characterise vortex shedding. Section 3.3 presents the distribution of the vortex shedding
patterns for all the plates and in § 3.4 we comment on some features of the steady wake at
large β. Section 4 includes some further discussion and summarises the main findings.

2. Experimental details

Two independent experimental series were carried out, one in a wind tunnel and another in
a water flume, both at the Department of Aeronautics and Astronautics of the University
of Southampton. A total of 16 plates of different porosity values were tested, varying from
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Figure 3. Illustration of the plates, with the solid plate at (a) (β = 0) and a porous plate at (b) (β /= 0).
D = 66 mm, L = 704 mm and s = 8 mm are the same for every plate. Different values of β are obtained
by varying the size of the octagonal holes; lh is the length of each of the eight sides and d is the hole size,
measured by the distance across two parallel flats.

Plate i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi

β × 100 0 12 16 17 18 20 21 22 23 25 26 27 28 30 33 36
d (mm) 0 3.0 3.5 3.6 3.7 3.9 4.0 4.1 4.2 4.4 4.5 4.6 4.7 4.8 5.0 5.3

Table 1. Measured porosities of the plates and the corresponding hole sizes, d. The values of β are shown as
percentages. All plates were used in the wind tunnel experiments, and the cells in grey indicate plates used for
PIV experiments.

β = 0, the solid plate and reference case, to β = 0.36, for which the vortex shedding
regime is known to be absent. Figure 3 illustrates a typical plate with its distribution of
holes providing the porosity. All the models were laser cut from an acrylic sheet 6 mm
thick and had the same width D = 66 mm and length L = 710 mm. The arrangement for
the porosity consisted of a series of 9 × 88 octagonal-shaped holes equally spaced by a
distance s = 8 mm. Different levels of porosity were obtained by varying the holes’ size
lh. The dimension of each cell (s × s) was chosen to ensure that the local Re (based on
d, the distance between two parallel flats, see figure 3) was at least an order of magnitude
lower than the Re based on the plate width D, yet large enough to ensure that the local flow
through each hole would be in the turbulent regime for all plates. Plates having nominal
porosities in the range 0 ≤ β ≤ 0.36 were used. After manufacture, the porosity of each
plate was measured in three different ways: (1) using a micrometre across a large selection
of the holes; (2) using digital imaging with a backlight to isolate the numbers of light and
dark pixels (that represent holes and solid) in the image and taking the ratio of the areas
occupied by light and dark regions; and (3) by measuring the masses of the plates. These
measurements indicated some minor manufacturing issues, but the final porosities deemed
to be the most accurate for each plate (based on consistency across all three methods) are
displayed in table 1, along with the corresponding values of the hole sizes, d.

The first series of experiments was carried out in the flume and focused on planar
particle-image velocimetry (PIV) measurements. Figure 4(a) shows the arrangement of
the optical system and models in the flume. Brackets fixed at the flume floor allowed
the models to be moved upstream, making it possible to acquire a wake region further
downstream, up to x/D = 20. The flow speed varied from 0.23 ≤ U∞ ≤ 0.53 m s−1, so
that Re varied from 15 000 to 35 000, and the water depth was 700 mm so that the spanwise
aspect ratio of the plates was around 11. The work of Singh & Narasimhamurthy (2021)
suggests that an aspect ratio of six is large enough to ensure good spanwise homogeneity,
at least over the central section of the plate. Surface waves generated by the plate were
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Figure 4. Experimental set-up in (a) the water flume and (b) the wind tunnel. Panels (b,d) show the PIV
fields of view (FoV) in the flume and the hot-wire locations in the tunnel (shaded regions), respectively, with
coordinate systems included.

negligible at the flow speeds used. A double-pulse laser system was used (LaVision
Bernoulli), operated at a frequency varying from 5 Hz to 15 Hz, depending on the flow
speed. The time interval between the two pulses (�t) was also adjusted according to the
flow speed, from 1.0 to 5.0 ms. For all measurements, the acquisition frequency was at
least eight times higher than the vortex shedding frequency for the solid plate and a total
of 3000 images were obtained, yielding total sampling times of at least 200 s that even
at the lowest U∞ is equivalent to about 100 vortex shedding periods. All the images
were acquired, pre-processed and processed using the commercial software DaVis 10.
For pre-processing, a Gaussian filter was initially applied to the raw images followed by
the subtraction of the mean local intensity at a square of side 5 px. Every pixel then had
its intensity confined between a minimum of 0 and a maximum of 1000 counts. These
processes were carried out to smooth the image, mitigate the interference of the image
background and prevent vector contamination by high-intensity peaks. Flow fields were
calculated using a standard multi-pass cross-correlation method. The second and final
pass had a 50 % window overlap and a 16 px interrogation window for all cases. The
spatial resolution �x = 5.4 px mm−1 was constant for all cases too. For post-processing,
a universal outlier detector filter (Westerweel & Scarano 2005) with size 5 × 5 px was
applied to remove spurious vectors. The number of replaced vectors was lower than 1 %
of the total in every case. Drag force was acquired with a load cell mounted on top of the
model and assumed to measure half of the total force.
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The series carried out in the wind tunnel used load cells to measure instantaneous
forces and hot-wire anemometry to determine velocity fluctuations. Two load cells were
connected to the model at each extremity of the plate, as illustrated in figure 4(c). Note
that because the length of the plate (710 mm) was a little less than the height of the
working section, a false floor (acting as an end plate) was inserted at the bottom. The
plate’s spanwise aspect ratio was thus identical to that in the flume, as was the blockage
ratio (5.5 %). The force transducer at the top was the model ATI Gamma IP65, which
provided forces and moments in six degrees of freedom with a resolution of 0.01N and
an relative error lower than 1 %. At the bottom, a unidirectional load cell was connected
to the body, providing drag measurements with a resolution of 0.01 N and an error lower
than 2 %. The total drag force could be measured as the sum of the components of the
two transducers; these were marginally different because of the slightly different end
conditions, but we do not consider them to be sufficiently different as to cause significant
spanwise inhomegeneities in the wake flow. The open symbols in figure 1 refer to the drag
measurements deduced (by assumption) as twice the force measured by the top load cell,
as done for the flume data. This assumption (used also for the flume data), although made
with caution because of the slightly different end conditions, is justified a posteriori by
the consistency of the results with the extant data in the literature.

Hot-wire anemometry measurements were acquired with a DANTEC Streamline
system. Two probes were mounted at opposite locations in the wake, as shown in
figure 4(d). The working section flow speed, measured using a standard Pitot-static probe,
varied between about U∞ = 6 m s−1 and 16 m s−1 at 18 ◦C, which gives a Re based on
D from 25 000 to 70 000. The acquisition frequency was 6 kHz for all measurements,
which is over 150 times higher than the vortex shedding frequency at the highest flow
speed for the solid plate. Total sampling times were usually 240 s, corresponding to a
minimum (i.e. at the lowest Re) of about 3000 vortex shedding cycles. The position of
the probes, shown in figure 4(d), was chosen to obtain a fluctuation signal within each
shear layer simultaneously. The horizontal position was a little way downstream of the
end of the recirculation zone in each case, as estimated from the experiments of Castro
(1971) and the model of Steiros, Bempedelis & Ding (2021), and also confirmed by our
PIV measurements in figure 7. Measurements just after the recirculation zone determine
the interaction of the shear layers at the beginning of the vortex street formation. For
the quantities shown in this paper, no difference was observed when varying the probe
position, x/D, from 4 to 7; only results for x/D = 6.2 are presented here for the sake of
brevity.

3. Results and discussion

3.1. Preliminary results and identifying vortex shedding
Mean drag force data are presented in figure 1. The open symbols are the present results
obtained at Re = 65 000 (in the wind tunnel) and Re = 25 000 (in the flume). Given
differences in the various parameters mentioned above, agreement with data from the
literature is acceptable. As the porosity β increases, the mean drag falls and in the region
where no vortex shedding is expected the theoretical model of Steiros & Hultmark (2018)
provides a reasonable fit to the data, given the lack of any attempt to correct for blockage.
However, it is not clear from these data when vortex shedding might begin to disappear or
over what range of β this transition between shedding and no shedding occurs.

In order to explore the transition region, it is necessary to identify the occurrence of
shedding in an accurate way. For a solid bluff body, vortex shedding is the dominant
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Figure 5. (a) Power spectral density (PSD) of the axial velocity within one of the shear layers, for three
different values of β. (b) Strouhal number for all plates and for four different Reynolds numbers. The data
are from the wind tunnel and are scattered in the grey region, because of the absence of a clear spectral peak.

flow structure and the spectral energy associated with it is usually at least one order
of magnitude larger than the energy in other frequency components in the spectrum.
Identifying vortex shedding in such a case is thus somewhat trivial and possible to do
in a number of ways. Perhaps the most common approach is to use hot-wire anemometry,
positioning a probe in or near one of the separated shear layers once they have begun to
interact (or even outside the wake further downstream as Castro 1971, did). Figure 5(a)
shows spectra of the axial velocity obtained in this way, for three typical β values (0.12,
0.27 and 0.36). Clear shedding peaks (with frequency fs) are apparent for β = 0.12 and
even 0.27, from which it is straightforward to deduce the Strouhal number, defined in
the usual way as St = fsD/U∞. The results are shown in figure 5(b) for four Reynolds
numbers. There is an obvious fall in St with increasing Re, as one might expect, because
transition in the separated shear layers presumably moves closer to the separation points
as Re increases, leading to somewhat thicker shear layers in the vortex formation region
(and, thus, lower maximum vorticity there). The fall in St with Re (which was also noted
by Castro 1971) is relatively small however, and does not hide the clear trend with β. This
shows an initial rise in St up to β = 0.12, although details below this β are not known
because no plates of intermediate porosity were available. Beyond β = 0.12, there is a
steady fall in St until it became more difficult to identify any obvious main peak in the
spectrum. For β = 0.27, the presence of a peak is unequivocal (see figure 5a) but it is
clear that the peak is both much weaker and also broader. Beyond about β = 0.28 clear
peaks were much more uncertain, so St values shown in that range are subject to significant
uncertainty. Again, the results are broadly in line with those of Castro (1971).

An alternative means of deducing shedding frequency is to examine the time series
of the drag force. For β = 0, the drag signal spectrum shows a clear oscillating pattern
associated with vortex shedding, reflected in a well-defined peak in the drag spectrum,
as shown in figure 6. The peak frequency is twice the Strouhal frequency, because two
vortices are shed per cycle, one from each side of the plate. The lift force often also
provides a direct measure of the vortex shedding frequency for bluff bodies but in this
case the plates are very thin, so they produce negligible lift forces when compared with
drag. It is interesting that when β /= 0, the drag spectra show little evidence of a shedding
peak even in the range of β where Kármán shedding definitely occurs (as evidenced not
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Figure 6. (a) Power spectral density of the drag force measured on porous plates in the flume for different
values of β. The only visible peak occurs for the solid plate (β = 0). (b) Mean streamlines for the plates β = 0
and 0.16. Re = 25 000. Red lines emphasise the streamlines surrounding the recirculation bubbles.

least by the velocity spectra discussed above). Recall that a Kármán vortex street can only
form once the two separated shear layers can interact. For a solid plate, this happens
around the end of the mean flow recirculating ‘bubble’ behind the plate. Incidentally, it
is recognised that no drag peak would be evident if the shedding were oblique. However,
such shedding usually occurs at very low Reynolds numbers (in laminar conditions) and
for bodies where the separation points are not fixed by the geometry – e.g. in the classic
case of a circular cylinder. Such oblique shedding has never (to our knowledge) been
observed from sharp-edged bodies at high Reynolds numbers so, although we did not
obtain spanwise correlation data, we are confident that oblique shedding does not occur in
the present cases.

Figure 6(b) shows the mean streamlines behind the plate, deduced from the PIV data,
for β = 0 and 0.16. In the latter case, the mean flow bubble has moved downstream, with
its closure occurring nearly twice as far from the plate as it does for β = 0. It seems
that once there is a significant mass flux through the plate, the region where the Kármán
vortices are formed is sufficiently farther downstream such that the fluctuating pressure
signal associated with their formation is relatively weak at the plate location. Perhaps this
weakening is also partly a result of the flow fields generated by the numerous individual,
small-scale jets of fluid resulting from the porosity. These may reduce the possibility that
the pressure fluctuations generated by the vortex formation process can be transmitted to
the back of the plate in the way that they are when β = 0, not least perhaps because of a
feedback interference between the instantaneous pressure at the back of the plate and the
flow through the holes. (Note again that no tests were done for 0 < β < 0.12; it seems very
likely that shedding peaks would occur in the fluctuating drag signal over some lower part
of that range.) It should also be mentioned that, as noted above, vortex shedding becomes
increasingly weaker as β increases, because the shear layers are significantly thicker by
the time they can interact, so that the maximum mean velocity gradient and, thus, vorticity
within them is smaller.

Mean streamlines are shown in figure 7 for Re = 25 000 and six values of β. It is clear
that the recirculation bubble moves further downstream as the porosity increases, reducing
its size monotonically for β ≥ 0.16 until it fades away somewhere between β = 0.28 and
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Figure 7. Mean streamlines for different values of β. Background colour plots indicate the streamwise
component u (parallel to U∞) with blue and red positive and negative values, respectively; white arrows indicate
the streamlines and yellow lines emphasise those bounding the recirculation bubbles. Re = 25 000. Results are
shown for (a) β = 0, (b) β = 0.12, (c) β = 0.16, (d) β = 0.21, (e) β = 0.28, ( f ) β = 0.33.

0.33. The bubble height (h) and length for the solid plate agree with the values observed
in the literature (e.g. Roshko 1954; Castro 1971). For β /= 0, the figures also confirm
the trends for the vertical distance between the shear layers (H) found by Steiros et al.
(2021). As the porosity increases, both h and H decrease up to the point where the bubble
disappears beyond β ≈ 0.28.

It is classically argued (e.g. Bearman 1967; Leal & Acrivos 1969) that a recirculating
bubble is formed when the entrainment needs of the two separated shear layers can only
be met by some extra fluid that has to be provided from further downstream – hence, the
necessary ‘closure’ of the two separating mean streamlines, with some of the fluid between
the two shear layers thus having negative mean axial velocity, having been injected from
around the rear stagnation point. When there is sufficient bleed fluid through the porous
plate to provide the shear layers’ entrainment needs, there is no need for further fluid
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to be added to the near wake (from further downstream) so that a recirculating region
does not form. It seems likely that at that stage the shear layers are sufficiently diffuse to
prevent the usual interaction between them leading to Kármán shedding. But it is not really
clear if such shedding can still occur without the bubble or, indeed, whether shedding
always occurs if there is a bubble. More recent analyses, like that of Steiros et al. (2021),
generally assume the flow is steady, so make no direct link between the existence of a
bubble and the Kármán shedding process. In fact, there must be a specific porosity marking
the boundary between bubble and no-bubble appearance, whereas such a firm boundary
between shedding and no-shedding seems less likely. It is therefore important to study the
major unsteady features of the wake in more detail and this is addressed in § 3.2.

First, however, given that it is well known that the energy in the fluctuating motions
in the wake (particularly the cross-stream component) is largest in the region of the
vortex formation – around the mean streamline closure marking the end of the bubble
– we show in figure 8 the flow fluctuations on the wake centreline (y = 0). These data
are derived from the PIV measurements. Figures 8(a) to 8(e) show the spectra of the
fluctuating velocity (v′) along the x direction for different values of β, whilst figure 8( f )
shows the fluctuating energy level, measured as (u′2 + v′2)/U2∞, in the region up to about
x/D = 20. A dominant frequency is clear in most cases, with fD/U∞ ≈ 0.15, although
close inspection shows that this Strouhal number is not fixed but decreases a little with
increasing β, consistent with figure 5(b). Note that the first appearance of a clear peak
in the spectrum occurs at increasing x/D as β increases; even at β = 0.12 a peak does
not appear until around x/D = 1.0. This seems consistent with the fact that peaks in drag
spectra do not appear once β ≥ 0.12, for the possible reasons discussed above – i.e. the
shedding is not initiated until further downstream once β > 0 and the flows through the
holes in the plate might be expected to influence the fluctuating pressure field.

Roshko (1954) proposed a universal Strouhal number based on the maximum distance
between the separated shear layers (i.e. the wake width, H) and the velocity just outside
the shear layers at the separation points. The latter is related to the difference between the
free-stream velocity and the centreline values near the plate and clearly decreases with
increasing β. The wake width is related to the thickness of the shear layers (the ‘diffusion’
length, as argued by Gerrard 1966). Figure 7 shows that this wake width H also decreases
with β, so for a constant value for the universal Strouhal number (about 0.16 according
to Roshko 1954), only small changes in shedding frequency fs might be expected – again
consistent with the present data. The frequency signature for β = 0.33 suggests a much
broader spectral peak, making it difficult to identify any particular peak, as discussed
earlier in the context of the hot-wire data.

The centreline energy levels shown in figure 8( f ) have, at least for the lower values
of β, a clear peak around the location of the end of the bubble in each case (cf. figure 7),
consistent with that being the region of vortex formation, as observed for solid bluff bodies
(Szepessy & Bearman 1992). There is a relatively rapid fall in peak energy, particularly
beyond β ≈ 0.16, with more than an order of magnitude difference in the peak values at
β = 0 and 0.33. Based on these data one might speculate that Kármán shedding ceases
beyond about β = 0.2 but, again, details of any transition region are unclear so, in the
next section, we explore this further by using coherence and phase measurement within
the wake.

3.2. Using coherence data to diagnose vortex shedding
When regular vortex shedding occurs, a measurement of the coherence in the axial velocity
between two locations on opposite sides of the wake will yield near-unity coherence with
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Figure 8. (a–e) Spectra of the v′ component along the centreline (y/D = 0). The colour bar for the spectral
plots indicates PSD levels with an arbitrary scale, running from the highest (red) to the lowest (yellow/white)
level, for which the frequency resolution is �fD/U∞ ≈ 0.007. ( f ) Fluctuation energy along the centreline;
solid circles indicate the x/D location of the downstream end of the bubble, if it exists – see figure 7 –
and, likewise, these locations are shown by the vertical dashed lines in (a–e). All data are from the PIV
measurements. Results are shown for (a) β = 0.12, (b) β = 0.16, (c) β = 0.21, (d) β = 0.28, (e) β = 0.33.
( f ) Fluctuating energy on y = 0.

a 180◦ phase difference at the shedding frequency (because vortices are shed alternately
from each side). In the laminar flow regime (with a Reynolds number of, say, around
100) the vortex street continues regularly all the way downstream from its inception; there
must then also be a perfect coherence at twice the shedding frequency, but with zero
phase difference. Only the action of diffusion will eventually weaken the coherence at
the higher harmonics. In the present case of high Reynolds number, for which the flows
are always fully turbulent, these higher harmonic coherence peaks might be expected to
weaken considerably. Even at the shedding frequency, there will not be perfect coherence
because the background turbulence inevitably broadens the spectrum somewhat – there is
‘jitter’ in the signals.

Two hot-wire probes were used for the present measurements, each placed around the
centre of the two shear layers at the same distance downstream, as shown in figure 9. The
data presented below were obtained for an averaging period of 240 s (typically equivalent,
at Re = 26 000, to some 3200 shedding cycles in cases where Kármán shedding occurred),
with the probes located at x/D = 6.2 and y/D = ±0.8. It was found that changes in these
locations had little effect on the resulting data.
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Figure 9. Position of the probes for the wind tunnel experiments with respect to the recirculation bubbles for
several values of β. Black dots at x/D = 6.2 show the probe locations. The recirculation bubbles are indicated
by the bounding mean streamlines, as identified from the PIV data shown in figure 7.

We denote the coherence by Cu1u2 and the corresponding phase by φ, determined in the
usual way from the cross-spectra between the two signals u′

1 and u′
2. The plots in figure 10

show the results for four plates in the range 0.1 ≤ β ≤ 0.33. Coherence values close
to unity indicate a high level of synchronisation whereas lower values indicate weaker
synchronisation. For β = 0.1 and 0.19, there is strong coherence at fsD/U∞ ≈ 0.14, with a
phase shift of φ ≈ 180◦, indicating that the two signals are closely in anti-phase, consistent
with classical vortex shedding. For β = 0.24, a similar peak appears at about the same
frequency, with similar values of φ, also consistent with vortex shedding, but there is no
sign of a second peak at the frequency of the first harmonic. A second peak, the first
harmonic, does occur for β = 0.1 and β = 0.19 with a phase shift close to 0◦, indicating
the two signals are in-phase at this frequency, as expected. In both these cases there is
also a hint of the second harmonic, at three times the shedding frequency. For all the
other frequencies, the coherence value is near zero and the phase shift shows scattered
values, indicating a lack of coherence, caused entirely by the turbulence fluctuations at
each location. For β = 0.33, figure 10(d), there is no sign of any peak.

To provide further insight, we have evaluated spectral proper orthogonal decompositions
(SPODs) from the PIV fields acquired in the second field of view (FoV) (figure 4b), from
5.5 < x/D < 13. Details about SPOD and the algorithm used can be found in Towne,
Schmidt & Colonius (2018). Each data set had 3000 fields, comprising a time scale
equivalent to at least 200 periods of vortex shedding. Eight SPOD modes have been
computed for each plate. Figures 11(a) and 11(c) show the SPOD energy levels of each
mode versus frequency for two cases, β = 0.16 and 0.21. Only the first four modes are
shown because the energy contents of the other four are negligible. In both cases the first
mode is more energetic and contains the only peaks observable. Interestingly, the energy
level plots for the first mode have similarities to the coherence plots, suggesting that they
are related to the same physical mechanism in the flow. The first peak is clearly associated
with vortex shedding, as the mode shapes in figures 11(b) and 11(d) illustrate. The pair of
lobes with alternate velocity fluctuation levels are consistent with the pair of vortices of
a typical von Kármán street and are also consistent with the phase shift φ ≈ 180◦ found
at the first peak in figure 10. As for the second peak, the shapes reveal that it constitutes
a harmonic of the vortex shedding. The signal of the velocity fluctuations at y/D = ±0.8
are in-phase, explaining the phase shift of φ ≈ 0◦ observed for the second peak.
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Figure 10. Coherence between two velocity signals at each shear layer (Cu1u2 ) and its phase shift (φ) for four
different porosity levels β. Re = 65 000. Results are shown for (a) β = 0.10, (b) β = 0.19, (c) β = 0.24, (d)
β = 0.33.

The key question is to understand why the second peak appears only if β is small
enough. We noted above that this second peak can only appear if vortex shedding is
sufficiently regular (by which we mean, continuous in time). If, for whatever reason,
the vortex shedding process is intermittent and, thus, does not continue for long enough
periods of time, then the first peak will be weaker and the second peak (the harmonic) is
rather less likely to appear – it may simply become submerged in the background spectral
energy. Figure 12 shows examples of typical instantaneous axial velocity and spanwise
vorticity fields for three cases, taken from the PIV data. Figure 12(a,d) (β = 0.12) shows a
pattern indicative of periodic vortex shedding and typical of a process yielding a coherence
plot with two peaks. In figure 12(b,e) (β = 0.26) the patterns show evidence of some shear
layer interactions but without evidence of the usual shedding structure at that particular
time. The coherence plot for this case, however, shows one peak, suggesting that shedding
does occur from time to time; figure 10(c) shows the coherence for a case with a very
similar β. Figure 12(c, f ) (β = 0.33) shows a case completely devoid of shedding, so that
the coherence plot has no peaks at all – recall figure 10(d) for a coherence plot of a closely
similar case.
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Figure 11. Spectral POD at Re = 35 000 for (a,b) β = 0.16 and (c,d) β = 0.21. The mode shapes in (b,d)
correspond to the frequencies identified and marked with symbols in (a,c).
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Figure 12. Three instantaneous fields of the total mean velocity (a–c) and vorticity ω (d–f ), characteristic of
the three states observed for 0 ≤ β ≤ 0.35: (a,d) regular and periodic vortex shedding, (b,e) irregular vortex
shedding and (c, f ) no vortex shedding. Results are shown for (a,d) β = 0.12, (b,e) β = 0.26, (c, f ) β = 0.33.

3.3. Results for all plates
Data like those in figure 10 were used to compile coherence maps over the whole range
of β. These are shown in figure 13 for Re = 38 000. The first peak at fD/U∞ ≈ 0.14
forms a clear signature that ranges all the way from β = 0 to a little less than 0.3. The
second peak, associated with vortex shedding that is fairly regular throughout the whole
measurement period, also has a well-defined signature ranging from β = 0 to ≈0.2 but
there is no second peak beyond that and, as noted above, the main peak at the shedding
frequency also disappears beyond β ≈ 0.28. One can thus tentatively divide the β range
into three regions, as shown in the figure, with the central region having only the major
shedding peak present. The start of this region is around β = 0.22, which is roughly where
Castro (1971) deemed vortex shedding to ‘switch off’. On the other hand, Steiros et al.
(2021) suggested that vortex shedding ceases around β = 0.3. How can these various
observations be reconciled?

Now recall that the coherence plots shown thus far were computed using the long-time
series of T = 240 s. They therefore only show the long-time-average state, but do not
directly address the degree of intermittency in the shedding. To obtain more information
about the wake behaviour through time, the total time period was divided into consecutive
sub-intervals (�T) of either twelve or 1.2 s. Each of these was thus either 5 % or
0.5 % of the total available sample period, T , representing typically 300 or 30 shedding
cycles, respectively. Here Cu1u2 and the corresponding phase |φ| were computed for each
sub-interval. Figure 14 shows the coherence and phase data for the particular case of
β = 0.12 and for both values of �T/T . All the coherence values in this figure have
been normalised by their long-time-average coherence values in their particular frequency
band; so C∗

1 is the coherence normalised by the maximum long-time average (closely
1.0) of Cu1u2 within the frequency band 0.12 ≤ fd/U∞ ≤ 0.16 and C∗

2 is the coherence
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Figure 13. Coherence (a) and phase (b) for the porous plates with varying porosity β at Re = 38 000. Data
for all β values between those available (indicated by the red diamonds) were simply interpolated to provide
smooth variations.

normalised by the maximum long-time average (0.75) of Cu1u2 within the frequency band
0.26 ≤ fd/U∞ ≤ 0.32.

The top plot in each case shows the maximum coherence value that occurs within
those two frequency bands. Not surprisingly, there is significantly higher scatter in the
data when �T is only 0.005T , figure 14(a,c,e), but the presence of the second (higher
frequency) peak is evident throughout practically the whole time period provided �T is
large enough; see figure 14(b,d, f ). If it is very short – as in figure 14(a,c,e) – there are many
periods within which, although the maximum secondary peak value may be quite large, the
average over that period is very small – compare the red symbol data in the top two plots
of figure 14(a,c,e). Such periods correspond to normalised Cu1u2 values for the first peak
being much lower than average – typically around 0.7, although it is difficult to identify
those specific �T periods within figure 14(a,c,e). Note too that, for �T/T = 0.005, there
is considerable variability in the frequency at which the first peak appears; see the C∗

1 data
in figure 14(a,c,e). This is a result of the influence of the background turbulence field,
which leads to significant ‘jitter’ in the shedding frequency, and is the main reason why
we chose to use the two frequency bands rather than specific frequencies. This jitter effect
is reduced markedly when longer �T periods are used, as is clear in figure 14(b,d, f ). Only
very occasionally are there then periods during which the secondary peak is (on average)
hardly apparent; data for times between t/T = 0.6 and 0.7, in particular, suggest the lack
of a secondary peak on average, consistent with a significant reduction in the maximum
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Figure 14. Plots (a,b) show the maximum value of Cu1u2 within the two frequency ranges 0.12 ≤ fd/U∞ ≤
0.16 (blue symbols) and 0.26 ≤ fd/U∞ ≤ 0.32 (red symbols), as a function of time through the entire record.
Results are shown for (a,c,e) �T/T = 0.005 and (b,d, f ) �T/T = 0.5. The lower plots show the normalised
coherences C∗

1 and C∗
2 (c,d) and corresponding |φ|( f ) (e, f ) within each �T sub-interval, with their values

indicated by the contour scale. β = 0.12, Re = 26 000.

C∗
2 value (see the top plot). Data presented from now on will be those obtained with the

longer sub-interval of twelve seconds, on the basis that this is a long enough averaging
period to minimise the effect of this turbulence-induced jitter in the observed shedding
process. Note, incidentally, that alternative values of �T/T , intermediate between those
used for figure 14, were tried but the results added nothing to the physical interpretations
of the data.

We may define the vortex shedding intermittency, IVS1, as the proportion of those
sub-intervals that contain a first correlation peak within a frequency range of 0.12 ≤
fd/U∞ ≤ 0.16 and having a Cu1u2 of at least 0.6 – i.e.

∑ilast
i=1 i/I, where i = 1 and i = ilast

denote the first and last sub-periods having such a peak, and I is the total number of
sub-periods (20 for �T/T = 0.05). Equivalently, the intermittency is the time sum of
those short periods containing that first peak divided by the total time period,

∑
�Tpeak/T .

A similar calculation was performed for the appearance of a second correlation peak
within the frequency range of 0.26 ≤ fd/U∞ ≤ 0.32 (i.e. the first harmonic of the vortex
shedding frequency), having Cu1u2 = 0.6 at least. This is denoted by IVS2. Figure 15 shows
the intermittency for both peaks (including values obtained with a less demanding cutoff
value of 0.4 for the coherence), along with the time variation of coherence values, C∗

1 and
C∗

2, within the two frequency ranges (0.12 ≤ fd/U∞ ≤ 0.16 and 0.26 ≤ fd/U∞ ≤ 0.32),
and their corresponding phases, all as a function of porosity.

It is immediately clear that up to β of around 0.26, the first peak coherence is uniformly
high across all the sub-intervals (i.e. throughout all the total period T), but it falls rapidly
for greater β. Up to a rather lower β, around 0.22, the second peak’s coherence value is
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Figure 15. Shedding intermittency (a,b), normalised coherence values, C∗, (c,d) and phase, φ∗, (e, f ) over all
β, for the frequency ranges (a,c,e) 0.12 ≤ fd/U∞ ≤ 0.16 (i.e. for the first peak) and (b,d, f ) 0.26 ≤ fd/U∞ ≤
0.32 (i.e. the second peak). Note that each horizontal bar appearing in the lower plots refers to the corresponding
β value above it in the top plots.

also quite high, rarely dropping below about 0.4. The intermittency of this second peak
begins to fall fairly rapidly beyond about β = 0.22, consistent with the earlier tentative
supposition that this marks the beginning of a transition range, within which the time
consistency of the vortex shedding begins to get weaker, evidenced first by a less consistent
appearance of the second peak. The precise point at which the intermittencies begin to fall
clearly depends somewhat on the cutoff values used (0.4 or 0.6 in the figure), but it is
clear that the second peak decaying earlier than the first is independent of the criteria
used. Note that within and beyond the transition range the �T periods that exhibit high
coherence peaks for either the first or the second peak are randomly distributed in time.
There is thus no longer a time scale governing when the shedding ‘switches’ on and off
during the full time period, T . Note also that, for values of β in excess of about 0.3 (around
the end of the transition range), the intermittency of the second peak can exceed that of
the first. We return to this point in § 3.4.

We conclude that the transition region between β ≈ 0.22 and 0.3, shown in figures 13
and 15, is characterised not by a sudden ‘switching off’ of the shedding process but by a
fairly rapid reduction in the period of time over which the second peak appears, from β ≈
0.22 onwards, followed by a similarly rapid reduction in the total period of time over which
the major shedding peak occurs, beyond β = 0.26. Kármán shedding does not simply
cease entirely beyond β = 0.22, although it then lacks sufficient energy when averaged
over all time to yield significant energy at the first harmonic. It is interesting that the
recirculating bubble is not present beyond about β = 0.28, see figure 9, which is when
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one can conclude from figure 15 that Kármán shedding hardly exists, except perhaps for
occasional, very short periods of time.

It might be asked whether the particular arrangement of the holes in the plate affects the
global wake behaviour. In the early Castro (1971) experiments, the holes, of diameter d,
were arranged in a staggered pattern of three rows, with a range of β provided by 0.077 <

d/D < 0.308. Reynolds numbers based on hole size thus varied from about 1300 to 5200
when Re = UD/ν ≈ 17 000 (the value used to elucidate the behaviour of the separated
bubble). The present experiments used four rows of aligned, octagonal holes (see figure 3),
covering the range 0.046 < d/D < 0.08, with a corresponding Reynolds number range of
1150 < Red < 2000 when Re = 25 000 (the value used for the data shown in figure 7).
Despite these differences, which amounted to a factor of two difference in Red for any
given β, we have seen that the two sets of experiments yield an overall behaviour of the
wake as β varies that is very similar. In particular, the variation of quantities like Cd and St
with Reynolds number is practically the same and the way in which the separated region
moves downstream and changes size and shape as β increases is the same. For example,
the mean flow bubble has in both cases disappeared by β = 0.33 but is still present for
β = 0.28. Very close to the plate there must naturally be significant differences in the
detailed flow, but it seems that the relatively very small-scale motions, particular to the jet
flows through the holes and the wakes behind the solid pieces between them, are rapidly
assimilated into the much larger-scale motions in and downstream of the separated bubble
without having any lasting influence.

3.4. The steady wake at large β

Given that once β exceeds around 0.28 no Kármán vortex shedding appears, it is pertinent
to consider to what extent the wake resembles classical self-similar wakes far downstream
of two-dimensional bluff bodies. We therefore present some wake data for the β = 0.33
case, deduced from the PIV data that covers the wake region up to x/D ≈ 20. Figure 16
shows cross-stream axial velocity and turbulence energy profiles, normalised in the
standard way using uo, the difference between the free-stream velocity (U∞) and the
velocity on the wake centreline, and L, the width of the wake measured as (one half of)
the distance between the points where the velocity difference is one half of its maximum.
Self-similarity for a two-dimensional wake requires that

U2∞
u2

o
= A

(
x − xo

2D

)
and

L2

D2 = B
(

x − xo

2D

)
, (3.1a,b)

where A and B are constants. It is well known that even a long way downstream of the wake
generating body, although similarity in this form usually exists, there is wide variation
in what ideally would be universal parameters. For example, the wake spreading rate,
α = (U∞/uo)(dL/dx), can vary widely depending on the body shape – initial conditions
are not ‘lost’, at least at the distances that can normally be covered in experiments or
computations. In the present case one would not really expect good similarity in the
relatively short and early part of the wake that our experiments covered. Nonetheless,
estimating L/D and uo/U∞ from the raw profiles led to reasonable collapse of the
normalised axial velocity profiles, as seen in figure 16(a). The spreading rate can be
expressed as

√
AB/4 that, using data from the best fit line to L2/D2 vs x/D, figure 16(c),

leads to α = 0.173. This is very different to that found by Wygnanski, Champagne &
Marasli (1986) in their experiments on the wake of a 70 % solidity plate (i.e. β = 0.3),
which had α = 0.09. This difference is not surprising because their measurements were
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Figure 16. (a) Transverse profiles of the axial velocity for β = 0.33. (b) Corresponding profiles of the axial
turbulence energy. The legends show values of x′ = x/D. (c) Growth of the wake. (d) Variation of the centreline
axial energy. The solid red symbols in (c,d) are for β = 0.15, Note that slightly different values of xo have been
used in (c,d).

obtained (roughly) over the range 400 < (x − xo)/D < 1600. The very much higher
turbulence intensities in the near wake must inevitably lead to a more rapid growth of
the wake initially. Whilst reasonable local similarity is evident in the velocity profiles in
our near-wake region, the normalised axial turbulence energy profiles, figure 16(b), are
far from collapse although there is a clear trend towards such collapse as x/D increases.
Indeed, the centreline value of u′2/u2

o at x/D = 19.5 is not very far below the value found
by Wygnanski et al. (1986). Incidentally, their α for a solid flat plate was 0.072 compared
with 0.09 for the 70 % solidity plate, illustrating the lack of universal behaviour in these
wakes even at such long distances downstream. It is interesting that they concluded that
the wake behind the solid plate (which no doubt shed a Kármán vortex street) reached a
self-preserving state more rapidly than the wake behind the porous plate.

Note that figures 16(c) and 16(d) include data obtained for a much lower porosity case,
β = 0.15. This is well within the vortex shedding regime and although, curiously perhaps,
the mean velocity profiles at the four x′ locations (not shown) do happen to collapse when
normalised using the L/D and uo/U∞ values appropriate for each, these values show
clearly that this close to the plate even the mean flow is very far from any hint of local
similarity. Importantly for the present context, Wygnanski et al. (1986) also identified
large-scale structures in their wakes. In particular, in the wake of a β = 0.7 plate, they
found that the predominant frequency at the most upstream location – (x − xo)/D ≈ 10
– was around fD/Ur = 0.3. A very similar result was obtained by Cimbala, Nagib &
Roshko (1988) at x/D = 10 in the wake of a β = 0.47 flat plate. This is about double the
vortex shedding frequency of a solid plate, which suggests that the natural instability in the
wake profile at that point downstream is actually not far from twice the vortex shedding
frequency, whether or not such shedding actually occurs – so it is not in fact a ‘second

985 A40-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.300


M.M. Cicolin, S. Chellini, B. Usherwood, B. Ganapathisubramani and I.P. Castro

harmonic’ at all. This may help to explain why, for β > 0.3, the coherence peak at what
seems to be the second harmonic can still appear and, indeed, appear more frequently than
the first peak, as noted earlier. Recall also that figure 12(c, f ) (for β = 0.33) indicates the
presence of large-scale structures, although these have not yet developed into the form
typically seen in far wakes by, for example, Wygnanski et al. (1986).

A related explanation for the broad coherence peak (when β > 0.3) at a frequency
significantly larger than the low-β vortex shedding frequency is provided by the work
of Huang & Keffer (1996). They explored the wake in the range 1 < x/D < 20 behind a
two-dimensional mesh with β = 0.4. By studying spectra of the transverse velocity (v′)
and coherence from autospectra of two such signals obtained on either side of the wake,
they showed that the small-scale structures that develop in the two initially independent
shear layers merge to form quasi-periodic larger structures further downstream, having
a characteristic frequency equivalent to St ≈ 0.19. This began to be evident as early as
x/D = 5. It seems likely that the large-scale structures Huang & Keffer (1996) identified
are precisely those found by Wygnanski et al. (1986), as indeed the former authors
recognised. In any case, they are very different from the Kármán-type vortex structures
that appear at lower porosities.

4. Final discussion and conclusions

This paper has focused on the characterisation of the vortex shedding pattern in the
flow past flat porous plates in the range 0 ≤ β ≤ 0.35 based on a series of experiments
carried out at Reynolds numbers between 15 000 and 70 000. The main objective was
to understand how the flow evolves from the regular von Kármán street, typical of
two-dimensional bluff bodies, to a wake without any vortex shedding. It has been
shown that the subtleties in vortex shedding cannot be fully identified from drag force
measurements on the plate or, indeed, from a single probe in the near wake. We have used
coherence and phase data from twin probes to identify some of these subtleties.

The general behaviour of the wake – i.e. a fall in the plate’s drag coefficient and
Strouhal number as porosity increases – is in line with the conclusions of earlier works.
However, three distinct wake patterns have been characterised and are illustrated in
figure 12. The first is the classical von Kármán vortex street, with regular and periodic
shedding of vortices having a well-defined frequency. This is characterised by two peaks
in the coherence spectrum, associated with the frequency of vortex shedding and its
first harmonic. Spectral peaks at higher harmonics are largely absent because of the
diffusion-like effects of the high-intensity turbulence in which the vortex street exists.
The second pattern represents an irregular vortex shedding process, in which the Kármán
shedding occurs for short periods, interspersed randomly with periods when it ceases. This
process was identified by sub-dividing the total sampling length into shorter intervals,
which allowed definition of a shedding intermittency – the proportion of total time during
which shedding occurred, giving the fundamental spectral peak at the Strouhal frequency.
As the porosity increases through this second range of β, this intermittency decreases, in
the sense that the shedding periods become shorter and less frequent, with concomitant
reduction in the energy at the shedding frequency and a fairly rapid disappearance of the
second peak. The third pattern is characterised by almost no periods of vortex shedding,
so that the shedding intermittency is very small. On average, the vortex shedding pattern is
dominant for the cases having β ≤ 0.22, whereas the non-vortex shedding pattern occurs
once β exceeds about 0.28. Between these two (necessarily approximate) limits, the wake
is in the transition regime, with irregular vortex shedding sufficient to give a clear spectral
peak at the fundamental frequency but (increasingly) none at the first harmonic.
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A natural question concerns why, in the transition regime, the vortex shedding only
lasts for relatively short periods and then apparently disappears, before reappearing later.
The very early stability analysis of von Kármán, mentioned in § 1, indicated that a
street composed of a staggered array of idealised point vortices was stable to first-order
two-dimensional disturbances provided the ratio (a/b) of lateral to longitudinal spacing
between them was 0.281. However, it was subsequently shown that this system is in fact
unstable at the second order of approximation in the disturbance amplitude (Kochin 1939)
but, more importantly, that the stability could be critically affected if the vortices are of
finite size (and could change shape); see, for example, Saffman & Schatzman (1982) and
Maches et al. (2021). Such analyses were all in the context of an irrotational, uniform
velocity free stream. In practical cases like those studied here, the vortices are certainly of
finite size right from their inception and they are also embedded in a highly turbulent and
sheared flow. Nonetheless, although it undoubtedly takes some axial distance before the
regular vortex street develops into its final stable state for low-β cases, and probably much
further downstream than where our PIV data were gathered, typical vortex spacings from
the present PIV measurements in the early wake are not inconsistent with the classical
Kármán result of a/b = 0.28. However, it is not at all surprising that for larger β (in the
transition regime), even during the sub-periods when shedding occurs, the vortex pattern
seems to be quite different, so that those ‘segments’ of vortex street have an unstable
configuration. The street therefore cannot last for long because of the very significant
(three- as well as two-dimensional) disturbances. With increasing amounts of bleed air and
the subsequent further movement downstream of the separated region, it is increasingly
unlikely that the much weaker and more diffuse vortices resulting from the roll-up of the
two shear layers can sustain any stable configuration. Eventually, as we have seen, they do
not form at all.

We suggested in § 3.3 that the particular arrangement of the holes in the plate has little
effect on the overall, large-scale behaviour of the wake. It is interesting that the same
conclusion was reached by Perera (1981) in their study of porous plates mounted on a wall;
they found no effect of the type of porosity on the large-scale behaviour. They also found,
incidentally, that the mean flow bubble disappeared once β exceeded about 0.3, in line with
the present results. On the other hand, in tests over a wall-mounted fence with β ≈ 0.38,
Kim & Lee (2001) found a distinct effect of hole arrangement (varying size and spacing
but with constant β). This is perhaps not surprising, since at such a high porosity the ‘life
time’ of the individual, smaller-scale structures downstream of the holes will inevitably be
greater, since they are not rapidly engulfed by the highly turbulent, often reversing flow
that exists near the plate at low β. It is also worth noting that in the recent direct numerical
simulation study of Singh & Narasimhamurthy (2022) on porous plates, which explored
the nature of the flow very near the plate, the authors found that the plate’s perforations
led to a transitional state in the near wake. However, their Re (U∞D/ν) was only 250, so
the jet flows through the holes were laminar and detailed comparisons with the present
data are perhaps inappropriate. Nonetheless, they observed that the drag coefficient and
Strouhal number variations with β had ‘excellent qualitative agreement with the high Re
experiments of Castro (1971)’.

In the cases when virtually no vortex shedding occurs, the wake displays some local
similarity but, not surprisingly, this is far from complete (there is no self-similarity in
the turbulence profiles); it is non-existent when regular Kármán shedding occurs. The
remaining hints of a coherence or spectral peak at a significantly higher frequency (perhaps
in the range 0.2 < St < 0.3) may, in fact, be evidence more of the natural wake instability
found by other authors or of the large-scale structures resulting from the merging of
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smaller structures in the very near wake, rather than any very occasional periods of
Kármán vortex shedding.

Within the Re range covered, the results presented here are only weakly dependent on
Re, suggesting a universal behaviour of the wake response to varying porosity since the
minimum Re number (in excess of 20 000) was sufficient to yield a fully turbulent wake.
It seems likely that two-dimensional porous bodies of any shape would display the same
three regimes as porosity increases: Kármán shedding at low porosity, no shedding at
high enough porosity and a transition regime between them, in which shedding becomes
increasingly irregular. We do not speculate about the wake behaviour behind porous
two-dimensional axisymmetric bodies (like discs or spheres), not least because of the
rather different vortex shedding processes in such cases. This would be an interesting topic
for further study.
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