BULL. AUSTRAL. MATH. SOC. VOL. 23 (1981), 139-142.

STABILITY OF STRONGLY REGULAR GRAPHS

S.K. SHUKLA, M.R. SRIDHARAN AND S.P. MOHANTY

In this note we characterize strongly regular graphs which are stable.

1. Introduction

Transposition in the automorphism group of a graph is a necessary condition for a graph to be stable, but sufficiency conditions for stability of graphs have not yet been found. However, Holton [2] has shown that a tree is stable if and only if it contains a transposition in its automorphism group. Here we prove a similar result for strongly regular graphs.

We refer to [1] for the definitions and results not mentioned here. For a vertex u of a graph G, by $N_G(u)$ we denote the set of all vertices adjacent to u. By $\overline{N_G(u)}$, we denote the set $N_G(u) \cup \{u\}$.

If $W \subseteq V(G)$, then by G_W we mean the induced subgraph $\langle V(G)-W \rangle$ of G. By $\Gamma(G)_W$, we denote the maximal subgroup of $\Gamma(G)$ each element of which fixes each vertex in W; here we consider $\Gamma(G)_W$ as acting only on V(G) - W. A graph G is said to be *semi-stable* (at $v \in V(G)$) if $\Gamma(G_v) = \Gamma(G)_v$. If there exists a sequence v_1, v_2, \ldots, v_n of all the vertices of G such that $G\{v_1, \ldots, v_k\}$ is semi-stable at v_{k+1} for $1 \leq k \leq n-1$, we say that G is stable.

Received 9 September 1980.

139

An r-regular graph G of order n is said to be strongly regular if

- (i) the number of vertices adjacent to both end vertices of an edge is constant and is equal to λ ,
- (ii) the number of vertices adjacent to two non-adjacent vertices is constant and is equal to μ .

 n, r, λ and μ are called the parameters of G .

Now we list the following results which we require to prove the main result.

LEMMA 1 [3]. If a graph G is stable, then either G is K_1 or $\Gamma(G)$ contains a transposition.

LEMMA 2 [3]. If a graph G is stable then \overline{G} is stable.

LEMMA 3 [4]. If G is a strongly regular graph with parameters n, r, λ and μ , then \overline{G} is a strongly regular graph with parameters \overline{n} , \overline{r} , $\overline{\lambda}$, and $\overline{\mu}$ where $\overline{n} = n$, $\overline{r} = n - r - 1$, $\overline{\lambda} = n - 2r + \mu - 2$ and $\overline{\mu} = n - 2r + \lambda$.

2. Main result

THEOREM 1. A nontrivial strongly-regular graph G with parameters n, r, λ and μ has a transposition in the automorphism group if and only if $G \cong mK_n$ or $\overline{mK_{n-n-1}}$ for some $m \ge 1$.

Proof. If $G \cong mK_r$ or $\overline{mK_{n-r-1}}$ and is not equal to K_1 , then certainly it has a transposition.

Suppose G is strongly-regular and $\Gamma(G)$ contains a transposition (uv). If $[u, v] \in E(G)$, then we prove that $G \cong mK_r$. Otherwise we prove that $G \cong \overline{mK_{n-r-1}}$.

Let $[u, v] \in E(G)$. Since $(uv) \in \Gamma(G)$,

$$\overline{N_{G}(u)} = \overline{N_{G}(v)}$$

or

$$\overline{N_G(u)} - \{u, v\} = \overline{N_G(v)} - \{u, v\} .$$

$$d(u) = d(v) = r ;$$

therefore $\lambda = r - 1$.

Let $w \in \overline{N_G(u)}$. Since $[u, w] \in E(G)$ and $\lambda = r - 1$, $\overline{N_G(u)} = \overline{N_G(w)}$. Thus $\overline{N_G(u)}$ induces a complete graph of order r in G. If $n \ge r$, then choose any vertex $x \notin \overline{N_G(u)}$. Since G is strongly regular with $\lambda = r - 1$, $\overline{N_G(x)}$ also induces a graph isomorphic to K_r in G. If still there is any vertex $y \notin \overline{N_G(u)} \cup \overline{N_G(x)}$, then $\overline{N_G(y)}$ will induce a graph isomorphic to K_r . Proceeding in this way, till we exhaust all vertices of G, we find that every component of G is isomorphic to K_r , that is, $G = mK_r$ for some $m \ge 1$.

If $[u, v] \notin E(G)$ then $[u, v] \in E(\overline{G})$. Since $(uv) \notin \Gamma(G)$, $(uv) \notin \Gamma(\overline{G})$. From Lemma 3, we infer that \overline{G} is strongly regular with parameters $\overline{n}, \overline{r}, \overline{\lambda}$, and $\overline{\mu}$ such that $\overline{n} = n$, $\overline{r} = n - r - 1$, $\overline{\lambda} = n - 2r + \mu - 2$ and $\overline{\mu} = n - 2r + \lambda$. Since $[u, v] \notin E(G)$,

$$N_{G}(u) = N_{G}(v) .$$

Hence

$$\mu = |N_{c}(u)| = r .$$

Therefore

 $\overline{\lambda} = n - r - 2 \ .$

Since \overline{G} is a strongly regular graph such that $[u, v] \in E(\overline{G})$, $(uv) \in \Gamma(\overline{G})$ and $\overline{\lambda}$ is equal to n - r - 2, it follows from earlier discussions that $\overline{G} \cong mK_{n-r-1}$ for some $m \ge 1$. Therefore $G \cong \overline{mK_{n-r-1}}$. This completes the proof.

COROLLARY 1. A non-trivial strongly-regular graph is stable if and only if it contains a transposition in the automorphism group.

Proof. Let G be a strongly-regular graph with parameters n, r, λ and μ . If $\Gamma(G)$ contains a transposition, it follows from Theorem 1 that $G \cong mK_p$ or $\overline{mK_{n-r-1}}$. Since complete graphs are stable, mK_p and 142 S.K. Shukla, M.R. Sridharan and S.P. Mohanty

 mK_{n-r-1} are also stable. From Lemma 2, we conclude that $\overline{mK_{n-r-1}}$ is stable. Therefore G is stable.

If G is stable, it is clear from Lemma 2 that $\Gamma(G)$ contains a transposition. This completes the proof.

References

- [1] Frank Harary, Graph theory (Addison-Wesley, Reading, Massachusetts; Menlo Park, California; London; 1972).
- [2] D.A. Holton, "Stable trees", J. Austral. Math. Soc. 15 (1973), 476-481.
- [3] D.A. Holton and Douglas D. Grant, "Regular graphs and stability", J. Austral. Math. Soc. Ser. A 20 (1975), 377-384.
- [4] Xavier L. Hubaut, "Strongly regular graphs", Discrete Math. 13 (1975), 357-381.

Department of Mathematics, Indian Institute of Technology, Kanpur 208016, India.