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BICONCAVE-FUNCTION CHARACTERISATIONS
OP UMD AND HILBERT SPACES

JINSIK MOK LEE

Suppose that X is a real or complex Banach space with norm | • |. Then X is a
Hilbert space if and only if

for all x in X and all X-valued Bochner integrable functions Y on the Lebesgue
unit interval satisfying EY = 0 and \x — Y\ ^ 2 almost everywhere. This leads to
the following biconcave-function characterisation: A Banach space X is a Hilbert
space if and only if there is a biconcave function r) : { (z ,y) £ X X X : \x — y\ ^
2} -> R such that 7/(0,0) = 2 and

If the condition 17(0,0) — 2 is eliminated, then the existence of such a function
77 characterises the class UMD (Banach spaces with the unconditionally property
for martingale differences).

1. INTRODUCTION

The aim of this paper is to introduce a notion that is dual to the notion of (-
convexity and to give new characterisations of UMD and Hilbert spaces with its use.

Suppose that X is a real or complex Banach space with norm | • |. Recall that X
is (-convex if there is a biconvex function ( : X x X - » R such that £(0,0) > 0 and

(11) <(*,»)< I*+»l »f |x| = |y| = l.

Biconvexity means that both ((-,y) and £(*,-) are convex on X for all y and x in X.
Burkholder, who discovered this notion, showed [2, 3, 7] that X is UMD if and

only if X is ^-convex, and that X is a Hilbert space if and only if there is such a function
C satisfying C(0,0) = 1.
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There is a dual notion. Let Tx = {{x,y) £ X x X : \x - y\ ^ 2} . Then X is called

T)-concave if there is a biconcave function TJ : Tx —* R satisfying

(1-2) V(x,v)>\x + V\.

Biconcavity means here that i)(-,y) is concave on the closed ball with center y and

radius 2 with a similar condition on 7](x, •). We shall show that X is UMD if and only

if X is 77-concave, and that X is a Hilbert space if and only if there is such a function

77 satisfying 77(0,0) = 2.

2. SOME CHARACTERISATIONS OF HILBERT SPACES

If 77 : Tx —> R is a biconcave function satisfying (1.2), then

(2.1) !?(0,0)£2.

To prove this, take x in X with |z| = 2 and use the concavity of J7(-,0) and (1.2) to

obtain

*?(0,0) ^ i{ij(a,0) + ?(-*,0)} > \{\x\ + \-x\} = 2.

If there is a biconcave function 1/ : 2JJ —» R satisfying (1.2), the least such function

will be denoted by rfx and called the optimal r)-function.

Burkholder [4, p.683] found the optimal 77-function for R. It is given by the sym-

metry property

VR{X,V) = VR{V, X) = VR(-*, -y)

and

(2.2)
( x + y + (y-x + 2)e-» i f O < y < a ! < y + 2,

VRX'y ~ [2(1+y)-(y-x+ 2)log(l+y) if - 1 < y ^ 0, -y < x < y + 2.

Note that ?7H(0,0) = 2.

If H is a Hilbert space with higher linear dimension over the real field R, then the

optimal 77-function has an entirely different formula:

THEOREM 1. Suppose that H is a reai or complex Hilbert space with the Hnear

dimension over the real Held R greater (iian or equal to two. Then the optimal 77-

function is given by
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where (x,y) denotes the real part of the inner product of x and y.

PROOF: Let u(x,y) = 2^/l + (x,y). Pick (x,y) in TH. Then \x - y\ ^ 2 and

l + ( x , y ) = l + ( x , x - ( x - y ) )

= |x|2 -(x,x-y) + l

>\x\2 -2\x\ + l

Since the mapping {x,y) •—> 1 + (x,y) is biaffine and nonnegative on TH , and the
mapping t t—> s/i is concave on [0, co), the function u is biconcave on TH .

It is easy to see that u satisfies (1.2):

= 4 + 4(x,x - (x - y))

Note that equality holds in the above inequality if \x — y\ = 2.

What remains to be shown is that u is optimal. If |x — y\ = 2, then u(x,y) =
|z + y| as shown above. So u(x,y) ^ *7H(x>y) on the boundary of TH . Suppose that
\x — y\ < 2. Since the dimension of H is greater than or equal to two, there is a point
z in the unit sphere SH of H which is orthogonal to x.

The function v defined on R by v(s) = \x — y — s z\ is continuous, v(0) = \x — y\ <

2, and v(s) ^ 2 for \s\ large. So there are two real numbers S\ and a^ so that
s\ < 0 < 32 and \x — y — Siz\ = 2 for i = 1,2. Since x is orthogonal to z, the
mapping s i-» u(x,y + sz) is constant on the closed interval [JI ,J2]- Therefore

u(x,y) = u(x,y + 8iz) 4:TiH(x,y + Siz) for i = 1,2.

Let a = S2/(s2 — «i). Then as j + (1 - a ) s 2 = 0 and

= au(x,y + Siz) + (1 - a )u (x ,y + 82z)

< ar]H(x,y + siz) + (l - a )

< TjH{x,a(y + siz) + (1 - a
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where we have used the orthogonality of x and z and the concavity of 77K(X, •). There-
fore u(x,y) ^ »7H(:E)I/) for all (x,y) 6 Tx- This completes the proof of Theorem 1. D

Hilbert spaces are therefore 7/-concave. Moreover if X is a Hilbert space, there is
a function attaining the lower bound 2 in (2.1) regardless of the dimension of X. A
natural question is: Does this property characterise Hilbert space?

Before we answer this question, let us consider the following problem: Let x be
a point in the Banach space X and Y an X-valued Bochner integrable function on
the Lebesgue unit interval. Denote by EY the integral of Y on [0,1). (See [10]
for background information on the Bochner integral.) Assume that EY — 0 and
\x — Y\ ^ 2 almost everywhere. Then how large can E \x + Y\ be?

LEMMA 1. Suppose that X is an r)-concave Banach space. If x € X and Y is an
X-vaJued Bochner integrable function on the Lebesgue unit interval satisfying EY = 0
and the inequality \x — Y\ ^ 2 almost everywhere, then

(2.3) E\X+Y\^T,(0,0)

for all biconcave functions rj : Tx —* R satisfying (1.2).

PROOF: Take x and Y as above and let 77 be a biconcave function on Tx satisfying
(1.2). We can assume, without loss of generality, that \x — Y\ ^ 2 everywhere. Note
that

By (1.2) and Jensen's inequality applied to the continuous and concave function r)(x, •),

E\x + Y\£ Er,(x,Y) ^ r,(x,EY) = V(x,0)

where the continuity comes from the fact that t] is bounded from below. Replacing 77

by the mapping (x,y) t-> t]{x,y) A r/(—x,-y), if necessary, we can assume that

(2.4) v(*,y) = v(-*,-y)-

By (2.4) and concavity of »?(-,0),

?(*. o) = \ M*, 0) +1?(-», 0)} < 7,(0,0),

which completes the proof of Lemma 1. D

In particular, if X is a Hilbert space, then Theorem 1 and the function TJ/J defined
by symmetry and (2.2) gives E \x + Y\ < 2. A natural question is: Does E \x + Y\ < 2
characterise Hilbert space?
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THEOREM 2 . Suppose that X is a real or complex Banach space. If

E\x + Y\<2

for all x in X and all X-vaiued Bochner integrable functions Y on the Lebesgue unit
interval satisfying EY = 0 and \x — Y\ ^ 2 almost everywhere, then X is a Hilbert
space.

PROOF: Suppose that X is not a Hilbert space. We shall find x and Y so that
EY = 0, \x — Y\ < 2 everywhere, but E \x + Y\ > 2 . To prove this, we can assume
that X is a Banach space over the real field. We need the following two lemmas from
the theory of convex bodies; see [11] and [1] for the proofs.

LEMMA 2 . Suppose that X is a two-dimensional real Banach space. Then the

norm of X is generated by an inner product if and only if the unit sphere of X is an
ellipse.

LEMMA 3 . If C is a symmetric (about the origin) closed convex curve in the plane,
then there exists a unique eUipse of minimal area circumscribed about C. The minimal
circumscribed ellipse touches C in at least four points that are symmetric pairwise.

Without loss of generality, we can assume that the dimension of X is equal to two.
Let Sx denote the unit sphere of X. Then, by Lemma 3, there is a unique ellipse So

of minimal area circumscribed about Sx with at least four contact points that are
symmetric pairwise. After some affine transformations, we can assume that So is the
unit circle. Denote by || • || the norm induced by So. Let ± J 4 and ± C denote four

contact points with no contact points in the interior of the arc AC. The existence of
such points is assured by Lemmas 2 and 3. Let 0 = 1/2ZAOC, one half of the angle
determined by the line segments OA and OC. Here 0 denotes the origin of X. We can
assume that 0 < 20 < TT/2, A = (1,0), and C = (cos29,sin20). Let D = a (cos0,sin0)
where s is a positive number satisfying \s (cos0,sin0)| = 1. Accordingly a < 1.

Define x and Y on (—s,a) by

x(t) = t (cos 0, sin 0)

and

Y(t) =(2 + t cos 0, t sin 6) I[0,p) + (2 cos 20 + t cos 0,2 sin 20 + t sin0) I\pl2p)

-{2a-t)(cos0,sm0)I[2ptl)

where p = (2s — <)/(4 (cos 0 + s)) and I[a,b) denotes the indicator function of the in-
terval [a,b). Then, for any real number t G (—s,s), we have EY(t) = 0, \Y — x\ = 2
everywhere, and

Y(t) + x(t) = 2 (1+ t cos 0, t sin 0) I[OtJ>) + 2 (cos 20 + t cos 0, sin 20 + i sin 0) I^i2p)

- 2(s-t) (cosO,sm0)I[2pA).
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Let / and g be functions defined on (—s,s) by

f(t) = E\Y(t) + x(t)\

= 2p |(1 +t cosO,t sinO)\ + 2p \(cos26 + t cos0,sin20 + t sinfl)| + ^ ^

g(t) = 2p ||(1 + / cos6,t sin0)|| + 2p ||(cos20 + * cos0,sin20 + < sin0)||

Then

f{t) > g{t) with /(0) = 5(0) = 2,
. . 2s-t . „ . 2vi 2cos0 + t s-t

g(t)= ——(l + 2t cos 0 + t2y +
cos8 + sK '

and g'(0) = —.—^ r (s2 - l) < 0 since 0 < s < 1 and 0 < 0 < TT/4.
S (COSP + 3)

So there is a number e 6 (0,2] such that f(t) ^ ^(t) > g(Q) if - e < t < 0. Let
i = sc(i) and F = Y(t) for a real number t £ (—e, 0). Then z is a point in X and
Y is an X-valued simple function satisfying EY = 0, \x — Y\ = 2 everywhere, and
E \x + Y\ > 2. This completes the proof of Theorem 2. D

An immediate consequence of Theorem 2 is the following biconcave-function char-
acterisation of Hilbert spaces:

THEOREM 3 . Suppose that X is a real or complex Banach space. II there is a
biconcave function 77 : Tx —> R such that rj(O,O) = 2 and (1.2) is satisfied, then X is
a Hilbert space.

PROOF: Suppose on the contrary that X is not a Hilbert space. Let r\ : Tx —* R-
be a biconcave function satisfying (1.2). As before we can assume that t] satisfies (2.4).

By Theorem 2 and its proof, there exist a point x G X and an X-valued simple
function Y so that EY = 0, \x - Y\ - 2 everywhere, and E \x +Y\ > 2. Therefore
by (2.3)

This completes the proof of Theorem 3. D

3 . A CHARACTERISATION OF THE CLASS U M D

It is well known that the UMD spaces provide the right setting for many problems
in analysis. See the work of Burkholder, McConnell, and Bourgain in the early 1980s
and the later work of many others referenced in [7] and [8]. We shall recall the definition,
which will be needed later, of the UMD property.
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Let (£1,FBO,P) be a probability space. In fact, without loss of generality, let
f) = [0,1) and P be Lebesgue measure on the Borel <r-field Foo of ft. Let F =

{Fn)n>0 be a nondecreasing sequence of sub-<r-fields of Foo and / = ( / n ) n ^o ^ e a n

n

X-valued martingale adapted to F with difference sequence d = (dn)n>0: /n = $2 ^*

where dk : f2 —» X is Bochner integrable and measurable with respect to Fk with
£(<ijt | Fk-i) = 0 almost everywhere. If / converges almost everywhere, let foo denote
its almost everywhere limit. The maximal function /* of / is defined by /*(«) =
suPn |/«(*)|, s G [0,1), and the lAnormof / by ||/||p = suPn(E \fn\

pfP, 1 ̂  p < oo,
and | | / | | o o =8up B ) 0 | | / n | | o o .

A real or complex Banach space X has the unconditionality property for martingale
differences, in short, X is UMD, if all X-valued martingale difference sequences are
unconditional in the Lebesgue-Bochner space £p([0,1),X) for 1 < p < oo: There
exists a positive constant /? so that if d is an X-valued martingale difference sequence,
e is a sequence with values in {1,-1}, and n is a nonnegative integer, then

t=0 U=o

Here g = (gn)n>0, where gn = 52 e* dfc, is called the transform of the martingale /

by the sequence e. The constant /3 depends only on p and X not on d, e, or n. The
least such /3, denoted by /?P(X), is called the UMD constant of X.

THEOREM 4 . A Banach space X is UMD if and only if it is rj-conca-ve.

Let Z = {Zn)n>0 be a martingale with values in X X X. Write Zn = (Xn,Yn)
where both Xn and Yn have their values in X. Then Z is a zigzag martingale if, for
every positive integer n, either

Xn-Xn^=0 or Yn-Yn-1=0.

The martingale Z is simple if each term Zn is a simple function and Zn = Zn+i =
• • • = Zoo for some nonnegative integer n.

The notion of 77-concavity arises in connection with an upper solution to a non-
classical boundary value problem posed by Burkholder (see [4] for the real case and [7]
for the Banach space case). If X is jj-concave then the least biconcave function on Tx
satisfying (1.2) can be represented in terms of zigzag martingales as follows.

For (x,y) e Tx, let Z(x,y) denote the set of all simple zigzag martingales Z,
defined on the Lebesgue unit interval, such that ZQ = (x,y) and Zn = (Xn,Yn) has all

https://doi.org/10.1017/S0004972700012533 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012533


304 J.M. Lee [8]

its values in Tx • Then it is easy to see that Z(x,y) is nonempty for all (x,y) G Tx •

Let
U{x,y)=sup{E\X00+Y00\ : Z G Z(x,y)}.

LEMMA 4 . Suppose that the Banach space X is rj-concave. Then the function U
is the optimal rj-function rjx •

See [7] for the proof and for the more general setting. The relevance of upper
solutions and lower solutions to nonclassical boundary value problems of this type is
revealed in [4, 5, 6], and [7]. The relationship between ^-convexity and a lower solution
is described in Chapter 5 of [7].

From Lemma 4 it follows that X is 77-concave if and only if U(x,y) < 00 for
all (x,y) £ Tx- Furthermore 77-concavity is assured by the finiteness of the value of
E/(0,0):

LEMMA 5 . A Banach space X is 77-concave if and only if U(Q, 0) is finite.

From time to time, it is more convenient to work with the following representation:

(3-1) U(0,0) = 2 sup { H/II, : (f,g) e M(0,0) }.

This comes from the one-to-one correspondence between the set .2(0,0) and the set
.M(0,0), where the set M(0,0) consists of all pairs (f,g) of X-valued simple martin-
gales denned on the Lebesgue unit interval starting at 0 with g a transform of / by
a sequence e of numbers in {1,-1} with the property that g is uniformly bounded in
norm by 1; see [4].

Finally we need the following lemma from [3]:

LEMMA 6 . Suppose that

Il/H^ < 00 implies that P(g* < 00) > 0

for all f and g where g is the transform of an ^.-valued martingale f by a sequence

of numbers in {1 , -1} . Tien X is UMD.

PROOF OF THEOREM 4: Suppose that X is UMD. Select (f,g) e M(0,0): f is
a martingale on the Lebesgue unit interval with /o = 0, and g is a transform of / by
a sequence of numbers in {1,-1} with the property that g is uniformly bounded in
norm by 1. Then

ll/lli < II/II2 ^ &(X) ||0||a < fc(X) IfolL ^ A(X).

Here ^ 2 (X) , the UMD constant of X, is finite because X is UMD. The first and the

third inequalities hold because the mapping p t-» | | / | | is nondecreasing on (0,00]
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for any Bochner integrable function / defined on (0,1). It follows from (3.1) that
f/(0,0) ^ 2/?2(X). By Lemma 5, the Banach space X is 77-concave.

Suppose that X is 77-concave. Let / be an X-valued martingale with ||y||00 < oo-
We can assume that H/H^, ^ 1. Let g be a transform of / by a sequence e of numbers
in { 1 , - 1 } . Since / is a martingale transform of g by the same sequence e, it follows
from (3.1) and Lemma 5 that 2 ||p||j < U(0,0) < oo. By Doob's weak-type inequality
[9] applied to a nonnegative submartingale (|<7n|)n>0)

Letting A —» oo, we obtain P(g* < oo) = 1. By Lemma 6, the Banach space X is
UMD, which completes the proof of Theorem 1. U
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