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ON THE RATIONAL SOLUTIONS OF
¢-PAINLEVE V EQUATION

TETSU MASUDA

Abstract. We give an explicit determinant formula for a class of rational solu-
tions of a g-analogue of the Painlevé V equation. The entries of the determinant
are given by the continuous ¢g-Laguerre polynomials.

§1. Introduction

Since the introduction of the singularity confinement criterion as the
discrete analogue of the Painlevé test [2], a lot of ordinary difference equa-
tions have been proposed as discrete Painlevé equations [12], [1]. It is
known that the discrete Painlevé equations possess several properties anal-
ogous to the continuous ones such as the coalescence cascade, symmetry as
the Bécklund transformations and particular solutions.

Recently, Kajiwara, Noumi and Yamada have proposed a g-analogue of
the Painlevé IV equation [3], and investigated the structure of symmetry
and special solutions of the ¢-Pry. It has been shown that the ¢-P1yv admits
two types of special solutions; one is the special function type solutions,
which are expressed in terms of the continuous g-Hermite-Weber functions,
and another is the rational solutions expressed as the ratio of a g-analogue
of Okamoto polynomials [11].

In this paper, we consider the symmetric form of ¢-P+v

ap =ag, a1 =a, Qaz=az, az=as,

1+ as fo + azas faf3 + azazao f2.f3 fo
14 aofo + aoar fof1 + aoarazfofifo’
1 + a3 f3 + agaof3fo + asapar f3 fof1
14 a1 f1 + a1aa f1fa + arasazfifofs’
1+ ap fo + aoai fof1 + aparaz fo f1f2
1+ ag fo + azas faf3 + azazao f2f3fo’

fo=aoa1 f1

(1.1) fi=aiazf>

fo = azazfs
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1+ a1 f1 + arazfifo + arazas fifafs
1+ a3 f3 + agao f3fo + agapai f3fofi’

f3 = asaofo
with
(1.2) apaiasas = ¢ °,
where  stands for the discrete time evolution. Introducing a variable ¢ by
(1.3) fofe=fAfs=c",
we find that ¢ plays a role of the independent variable,
(1.4) ¢ = qc.

Originally, the equation (1.1) is derived as a subsystem of the discrete
dynamical systems associated with the extended affine Weyl group sym-
metry of type Agll X Agll [4]. In the case of (m,n) = (2,4), by regard-
ing a translation of W(A(ll)) as the discrete time evolution , we obtain
the system (1.1). The variables ¢ and ¢ are invariant for the action of
W(A(ll) X Agl)) and ,WV/(A:(,})), respectively. The inverse time evolution of
(1.1) is given by

ap = ap, ai=ai, G2 =az, 3= az,

f3 azara0 + arag fo +aofof1 + fafifo

fo= apar apazas + asas fo + asfofs + fofsfe’
_ fo asasar +asarfs+ a1 fsfo + f3fofi
(1.5) f= ,
araz aiapaz + apas fi + azfifo + fifofs
fo = f1 apazaz + azaz fo + azfofs + fofsfe
= agas agarag + arapfo + aofofi + fofifo’
fu— fo arapaz + apas fi + azfifo + fifofs

= agap azaga + agayfs+ a1 fsfo+ fafofi

The reason why we refer to the discrete system (1.1) as the symmetric
form of ¢-Pvy is as follows. By the original construction in [4], it is clear
that this equation admits the affine Weyl group symmetry of type Agl) as
the Backlund transformation group, which is stated in Section 3 precisely.
Moreover, the system (1.1) reduces to the symmetric form of the Painlevé V
equation in the continuum limit. We set

2 2

(16) q= 677 a; = 6770&7 fz = _675901" c= 68’\/7
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and define the derivation % by

dz . Z—z
(17) 45 M,

for a function z in «; and ¢;. Then, we get from (1.1) and (1.4)

dyo 1 dry 1

1
18) —2 - — - <_ - ) L4y _ 2
(1.8) ds 5 wop2(p1 — p3) + 5 a2 | o + ozotm] ds 5

Introducing the variable ¢ and derivation ' as

d
1.9 =Vt, '=t—,
(1.9) 7=t yr
we have
apb=0, o;=0, ay=0, of=0,
1
wo = Pop2(p1 — (5 042)300 + o2,
1
(1.10) v1 = p103(p2 — wo) + (5 a3)<p1 + a3,
1
©3 = papo(ps — 1) + (5 040)<P2 + Q2¢0,
1
w3 = 31(po — p2) (5 1)303 + azpr.
The normalization conditions (1.2) and (1.3) reduce to
(1.11) ag + a1 + g+ az =1,
and
(1.12) Qo+ g2 =1+ 3 = V1,

respectively. This differential system (1.10)—(1.12) is nothing but the sym-
metric form of Py [10].

On the other hand, it has been revealed that a family of the rational
solutions of Py, which exists on the barycenters of Weyl chambers, has a
determinant formula whose entries are the Laguerre polynomials [8]. This
determinant expression is regarded as a specialization of the universal char-
acters [7]. The aim of this paper is to present an explicit determinant
formula for a class of the rational solutions of ¢-Pv.
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This paper is organized as follows. In Section 2, we give the main result
of this paper. In Section 3, we describe the affine Weyl group symmetry and
derive a set of bilinear equations for the 7-functions of ¢-Pv. In Section 4,
we construct the rational solutions of ¢-Pv. Proof of our result is given in
Section 5. Section 6 is devoted to some remarks.

§2. Main result

DEFINITION 2.1. Let p,(C) = pggb)(y‘q) and q(b) = q,(cb)(y\q), k € Z, be

two sets of polynomials defined by

00 kS 3
b TN, g1 bA; b
3 PNk = (z 47 120 P\ =0 for k <0,
(g7 zA, —q 127X @)oo
(2.1) - ( ENE SN )
b —qATA, QAT A b
3 gk = T Doe 4B — g for k < 0,
(@Tb~ A g Tb™ 1N ¢)oo
with
1
(2.2) y=—5 e+,
For m,n € Z>(, we define a family of polynomials Rﬁn)n = (b) n(ylq) by
b b b b b b
‘15 ) q(()) ‘1(—7)n+2 q(—) +1 ‘1(—7)n n+3 ‘1(—7)n n42
b b b b
P C N A
b b b b b b
(2 3) R(b) _ qé’nl, 1 qé% 2 QSn) qin) 1 qin) n+1 qgn) n
. n = b b b b b b
i pgl)m pgllm-&-l pgz)l 51) pgn) 2 p(Qn) 1
b b b b b b
PO a PO0 s (LH " LH S A
b b b b b b
I I I I R

For m,n € Zq, we define Rﬁn)n by
(24) R(b) _ (_1)m(m+1)/2R(b) R(b) _ (_1)n(n+1)/2R(b)

m,n —m—1,n’ m,n m,—n—1"

(b) (0)

Remark 2.2. The polynomlals p,~ and g,  are essentially the contin-

uous g-Laguerre polynomials P( (y|q), which is defined by [6]

00 N a—f—%)\ qa+1)\.q
ST P (ylg) Ak = g Joo
(Q2a+4eu9)\ q20‘+4e 10)\ q)

)

(y|Q) =0for k<0, y=cosb.
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In fact, denoting as

N

o 1a
(2.6) Li(y,blg) = P (ylg), b=q7oT,

we see that pggb) and q,(cb) are expressed as

(b) — (¢gTb 1L ~Tb
27) e Wla) = (q K )Ly (y,q~ 7 blq),
4

1
0" (ylg) = (¢ Tb)* Li(y, g7 b g™,

respectively.
Our main result is stated as follows.

THEOREM 2.3. We set
1
(28) Sunle.0) = ROL0). v =~ g~ o +q iz ), b= g H0g

Then, for the parameters

1 1
(2.9) (ag,a1,az,a3) = (¢" " 2a,a” b, ¢ ™ 2a,¢™ "a" ),

we have the following rational solutions of q-Pv,

(2.10)
1+ ¢7 " Vafy(z,a)
Sm,n(xa a)Sm—l,n—l (q%&“’ qila)

— (4 gy S )
Sm,nfl (q7~’0, a)Smfl,n($a qila)

i

1+atfi(x,a)
) Smfl,n($’ qila)Sm,nfl (q%% qa)

q%n(l + q%(m—n)a—lx—l -
Smn(q% 2, a)Sm-1,n-1(x, a)

9

1+ q_%@m“)afg(x, a)

1 _
— (L4 ) gy Smfl,nfl(l%a)é‘m,n(w z,q""a) ’
Sm—l,n(q?x7q_la)sm,n—l(xa a)
1+q¢™ a1 f3(x,a)
1
Sm,nfl(xa a)Smfl,n(qixa CL)

Sm—l,n—l(q%xa a)Sm,n(xv a)

— qf%n(l _’_q%(mfn)aflel)

)
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with &% = c¢. Moreover, the above solutions admit the other expressions as

(2.11)
1+ q*%@”*l)a 1fo(ac, a)
1 _
=q 2"(1+ q%(m nth gl Smn(a 2,a)Sm—1,n-1(,9"'a)
= 1 b
Sm,n—l(q3x7G)Sm—l,n($7q_1a)
1+afi(z,a)

1
Smfl,n(qua q_la)Sm,nfl(xa qa)

— (1 g aa ) :
Sm,n(q3x7 a)Sm—l,n—l(x7 a)

)

1+ q%(2m+1)a71f2(x’a)

z,a)Smn(x, q la)
x,q )Sm,n—l(xaa)

)

1
% (1+q2(m nt+l), lx—l) Sm—1n— 1(L q:?
Sm 1n(q2
1+q¢ ™ "afs(x,a)

Sm,nfl(q%x’ a)Smfl,n(ﬁ’ a)

1 1
— (g aa ) : .
Sm—l,n—l(q3x7 G)Smm(l', a)

Remark 2.4. The rational solutions of ¢-Py in Theorem 2.3 are a ¢-
analogue of those to the Painlevé V equation [8]. See Appendix C in detail.

83. Weyl group symmetry and bilinear relations

As we mentioned in Section 1, the symmetric form of ¢-Py (1.1) admits

the symmetry of the extended affine Weyl group W = (so, s1, 2, s3,7) of
(1)

type A;” as a group of Bécklund transformations. The action of s; and 7
on the variables a; and f; is given by
(3.1) si(a;) = ajai_aij, m(aj) = aji1,
Q; + f ui]-
(32) s =5 Tag) o+ w0 =i,

where A = (aij)?,j:o is the generalized Cartan matrix of type Aél) and
U= (uU)f’ j—o is an orientation matrix of the corresponding Dynkin diagram

2 -1 0 -1 0 1 0 -1
-1 2 -1 0 -1 0 1 0

(3.3) A= 0o -1 2 -1} U= 0 -1 0 1]’
-1 0 -1 2 1 0 -1 0
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and indices are understood as elements of Z/4Z. These transformations
commute with the time evolution and satisfy the fundamental relations

(3.4) s?=1, s;8j=sj8 (jAi,ix1), sisjsi=sjsi8; (j=1i+1),

7T4:1, TSj = Sj41T.
Let us introduce 7-functions 7; as solutions of the following equations [5],
TiTit1

(35) 7EZ =G s
Ti+1

where g; is given by

(3.6) gi =1+ air1fiy1 + aiv10iv2 fiv1 five + aiv1air2ai 3 fir1 fivafirs

The inverse transformations are given as,

(3.7) 7= hi
o Ti—1
with
(3.8) hi =1+ fiz1 n fi—1fi—2 n fic1fi—afi-s

a;—1 A;—14;—2 A;—1A;—20;—3

The Backlund transformations can be lifted on the 7-functions as follows:
N T 1T P
si(7i) = (1+£)%, si(7) = (1 + apf;) ===
a; Ti Ti
si(tj) =75,  si(Tj) =7,

(3.9) ]
m(1j) = Tj41, 7w(Tj) = Tj41-

The fundamental relations (3.4) are preserved in this lifting. Note that we
have the multiplicative formulas

(3.10) 1+ Ji 7’ 14 aif; = _Tisl(TZ) ’
a; Ti—1Ti+1 Ti—1Ti+1

for the independent variables f; in terms of 7-functions.
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PropoOSITION 3.1. We have the following bilinear equations:

= a(2)50(70)51(771) + (1 — a%)ﬁﬁa;

T05051(71)
715150(70) = a7 2s0(70)51(71) + (1 — a %) a7s,
T15189(T2) = a2s1(m1)s2(T2) + (1 — a) 1370,
(3.11) Tosos1(m1) = a;le(Tl)SQ(fg) +(1- a;Q)Tg?o,
Ty5253(T3) = a3so(12)s3(T3) + (1 — a3)7371,
T38382(T2) = a§282(7'2)53(7'3) +(1- a§2)7'07"1,
T35350(T0) = a3s3(73)s0(70) + (1 — a3)11 72,
T05053(73) = ag ?s3(73)80(70) + (1 — ag ?) 71 7.

Proof. Eliminating fy from (3.9) with ¢ = 0, we obtain

T050(70)
3.12 1 -2 22200 % (g = .
(3.12) 0 050(70) ( 7 1050(70)

From (3.2) and (3.9), we get

2 T3T1

T15051(71)

T151(71) T050(70)
(3.13) NN KALIAEV A 1) T050370)

= 1—|—a2< —,
0 7080(70)

T0T2

which leads to the first equation of (3.11) by using (3.12). The other equa-
tions are derived by the similar way. 0

Let us define the translation operators T; (i = 0,1,2,3) by
(3.14) T1 = TS8389S1, T2 = 8178382, T3 = §9817S83, T() = 8389817,

which commute with each other and satisfy 7775737y = 1. These operators
act on parameters a; as

(3.15)  Ti(ai-1) =q ‘aic1, Ti(a) = qas, Tiay) = a; (j #i—1,i).

In terms of T;, 7-functions in (3.11) are expressed as

(3.16)

71 = T1(70), T = T1T3(70), 3 =T, ' (m0),

so(10) = TalTl(To), s1(m1) = Ta(70), sa(12) = T T5(10),
s3(3) =Ty *(10),  sos1(m1) = TiTeT, (7o), s180(70) = ToTy ' (7o),
s182(m2) = ToT3(70), s2s1(11) = T3(70), s283(13) = Ty ' (70),

8382(7’2) = TlT()(T()), 8380(7'0) = T1T3_1(7'0), 8083(7‘3 = T1T3_1T0_1(7’0).
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Introducing a notation,
(3.17) Timm = ToT TN (T0),  Trmm = ToTS TeH(7), l,m,n € Z,
we can express the bilinear relations (3.11) as

(3.18)
= 2 2n =
TlomnTlm—1n—-2 = @04 Ti—1,m—1,n—2TI4+1,m,n
2 2n —

+ (1 — apq )Tl,mfl,nflTl,m,nfla
= -2 2] =
TI—1,m—-1n—-1TI+1;mn—1 = @1 4§ T—1m—-1,n—-2T+1,m,n

-2 2l =
+ (1 —a) q )Tl,mfl,nflTl,m,nfla
= 2 =2 —
TI-1m=1n—1Tl+1,m+1n = @19 ~ Ti+1mnTl—1,mn—1

2 -2l =
+ (1 —a1q )Tl,m,n—lTl,m,na

= ay2g2-tm)

Tlom—1,n—-1Tl,m+1,n = Ti+1,m,nTl—1,mn—1

2 o(i4 _
+ (1 — Gy ¢ ( m))Tl,m,nflTl,m,na

2(l1—m)

_ 2 _
TI,m—1,n—1Tl—1,m,n — A2q TI—1,m,n—1Tl,;m—1,n

2 2(1— -
+ (1 — Qog ( m))Tl,m,nTl—l,m—l,n—la

—_ angQ(—m—&-n)

7il,m,n—17_l—1,m—1,n = Tl—l,m,n—lﬁ,m—l,n

—2 2—m+ _
+ (1 —ag ¢ (=m n))Tl,m,nTlfl,mfl,nfla

= 2 _2(m—n
TI,mn—1Tl—1,m—2,n—1 = @3¢ ( )

Tlm—1,nTl—1,m—1,n—2
2 _2(m—n —
+ (1 — adq™ ))Tl—l,m—l,n—lTl,m—l,n—ly
= -2 _—2n =
TlomnTl—1,m—2,n—2 = Ay ¢ Tlom—1,nTl—1,m—1,n—2

-2 —2n —
+ (1 —ag“q ") -1, m—1,n-1Tlm—1,n—1-

§4. Construction of rational solutions

In this section, we construct a family of rational solutions of g-Pv. Sim-
ilarly to the continuous case, we consider the fixed points of Dynkin diagram
automorphism 72 to get a seed solution. It is clear that the symmetric form
of ¢-Py (1.1) has a particular solution,

_ 1 _ _1 _
(a07a17a27a3):(q 2a,a 17q 2a,a 1)7

(41) (f07f17f27f3) - ($_lax_17x_17$_1))

z? =¢,
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Applying Béacklund transformations to the seed solution (4.1), we obtain a
family of rational solutions of ¢-Pv.

Calculating 77 ., and 7y, , from (3.2), (3.9) and (3.14), and putting
as (4.1) and
(42) =T =1,

we obtain the 7-functions for the rational solutions of ¢-Pvy. For small
l,m,n, we observe that 7, , and 7 ,, , are factorized as the form

(43) Tiommn = ckUl,m,nu 7Tl,m,n = ékUl,m,n’ k=m-—n-—I.
It is possible to guess that U, = Upmn(x,a) are some polynomials in
z~1, a*! and qi%, and that the factors ¢, and ¢, are determined by the
recurrence relations

~ . k1 1 ~ ~ . _k 1 ~
(4.4) cgy16k—1 =1 +q2a " " )eplr, Crr1ck—1 = 14+ ¢ 2azx™")cxly,
with the initial conditions

(45) Co = C = 1, 50 = 51 =1.

Some examples of them are listed in Appendix A.

Notice that we have
46) TiT!(ag,a1, a9 a3) = (¢"Za,a "L, g %a,a ), a=da, lcZ,
2+0

under the specialization of (4.1). Comparing (4.6) with (4.1), we see that
the effect of T is absorbed by that of Ti; 1 and rescaling of the parameter
a. Then, we do not need to consider the translation 75 for constructing the
family of rational solutions of ¢-Pv, and it is possible to put

(4'7) Ul,m,n(xy a) = UO,m,nfl(xa qla)'

Now, by (4.1), (4.3) and (4.7), we can rewrite the bilinear relations
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(3.18) in terms of Uy, n = Ugmn. We have

g _ 2 2n—1 — o+t
Um,nUm—l,n—2 =aq Mm—nUm—l,n—lUm,n—l

+ (1 - a2q2n71)Um71,n71Um,nflu
07;:1,71(];;;—2 = a2ﬂm—nUnZ:1,n—1UrJﬁ;—1
+ (1 - a2)Um_17n_1[7m7n_1,
Un;:l,nUrJrgil,n—l = a_QVm_nUrJrgjz—lﬁn_l;z
+ (1 — a*Q)Umvn_lffm,n,
Umfl,nflUerl,n = a_2q2m+ll/mfnUnt;71Un_l;l
+ (1 - a_2q2m+1)Um,n—10m,na

2m

(48) Umfl,nflﬁ%;wrl = a2q7 71,UfmfnU7;;1Umfl,n

+ (1= a®¢ " ) UnnUp 21

Um,nfl 7;:1,n+1 = a2q72(min),ulmfnU7;;1Umfl,n
+ (1 - a2q72(mfn))Um7n Fr——

m—1,n°

FT—— -2 _2(m—n rT——
Um,n—lUm_QVn =a q ( )Vm—nUm—l,nU —1,n—1

m
-2 _2(m—n - 7
+ (1 —a q ( )) m,LnUmfl,nfl)
7 —— _ =2 _ —2n+1 FT——
Um,n m—2n—1 " a q Vm—nUm—l,nUm_Ln_l

+(1—a 2" U7 Unc1n1s
with the initial conditions
(4.9) U, 1=U_10=Up-1=Uppo=1,

where we denote as

(4.10) = (1+ ¢z Va2 ) (1 4 gz7a e,
' ve=(1+¢ 7¢ Vag 1)(1+q‘5aw b,

and

(4.11) Ut = Unp(z, ¢ a).

Conversely, by solving the bilinear relations (4.8) with (4.9), we can
construct the family of rational solutions of ¢-Pv. Applying T3"T{' to (3.10)
and denoting as 7375 (fi) = fi(x,a), we have the following proposition.
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PROPOSITION 4.1. Let Uy, = Upyn(x,a) (m,n € Z) be polynomials

in 271, at! and qi% which satisfy the bilinear equations (4.8) with the

initial conditions (4.9). Then, fi(x,a) given by

(4.12)
1+ q%(%_l)afo(x, a)

1
Um,n($’ a)Umfl,nfl(qixa q_la)

=(1+ q_%(m_”ﬂ)ax_l)

)

1
Um,nfl(q?xa CL)Um,Ln(I, q_la)

1
_156_1) Umfl,n(x) q_la)Um,nfl(qu) qa)

14+ a L fy(z,a) = (1+qz(m Mg
Um,n(q%xa a)Um—l,n—l (1‘7 a)

)

1+ q*%@mﬂ)afg(x, a)

mn(QQCU q la)

a)
z,q 1 a)Up pn-1(x,a) ’

— (1+q—%(m—n+1)ax—1) m—1ln— 1i
Um 1n(q2

_156_1) Um,nfl(ﬁ, a)Umfl,n(q%xa a)

1
14 qm_na_lfg(x, a) = (1+ qi(m—n)a g ,
Um—l,n—l(q3x7a)Um,n(x7a)

solve the q-Pvy (1.1) for the parameters

(4.13) (ag,a1,a2,a3) = (qn_%% a”l, q_m_%a, " "ah).

Moreover, the above solutions admit the other expressions as

(4.14)
1+ q_%(%_l)a_lfo(x, a)

1
(14 g g1ty Uman (@2 2, ) Unina(,97 )

1
Um,n—l(quaa)Um—l,n(xa la)

1
_1) Umfl,n(qfxaq_la) m,n— 1(x,qa)

Um,n(q%x7 a)Um—l,n—1($7 a)

1+ afi(z,a) = (1+¢ T ag

)

1+ q%@mﬂ)a*lfg(x,a)

1 _
— (14 gm0y Umfl,nfl(lq 22, 0)Upn (2,9 a)
Um—l,n(q5x7q_la)Um,n—l(xaa)

)

Um,nfl(q%xa a)Umfl,n(ﬁ’ a)

1
L g™ afy(,0) = (14 g~ aa ™) .
Um—l,n—l (q%xv a)Um,n(J;? a)
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85. Proof of Theorem 2.3

In this section, we give the proof for Theorem 2.3.

PRrROPOSITION 5.1. We have

n+1

(5'1) Um,n = (_1)( 2 )/fm’insm,m

where Syn = Smn(x,a) is defined in Theorem 2.3 and k,, is the factor
determined by

—%(2n+1)x—1(1 2n+1)

(5.2) Knt1Kn-1 = q —q Knkn, ko =#k-1=1

We notice that k,, for n > 0 is expressed as

n k
(5.3 o = g (T (8 HH 2

By substituting (5.1) into (4.12), we find that Theorem 2.3 is a di-
rect consequence of Propositions 4.1 and 5.1. Taking (5.1) and (2.8) into

account, we obtain the bilinear relations for R,(ﬁ?n.
PRrROPOSITION 5.2. The following bilinear relations hold:

(5.4)
_gr@m—2n-1), — MR} Rt
- bg mana1 +R R;f;;—l—:r (1 —p? m+n+1)R
_gi@m—on=3), 1 — " Ry 11 R,y
—b2mn+R R:":;I-Fx( men)R

1— q2m+1)R;@_17an+l,n—1

= bf2q7m+nVR:1,n71R;z,71 +a2*(1-b"%q ern)Rm n1Rmn;
1 (—2m+2n-1) (1

m—1,n m— lan’m

Rm,nu

m—1,n m—1,n

q% (76m+2n73)x(

q 2m+1)R

—4q
=b" 2 m+n+1VR:_n,n—1R;1;z+$ ( —-b" 2 m+n+1)Rmn 1Rmm
} _
_q_z(2m+6n+3) (1—q2n+1)Rm 1,n— 1Rmn+1
— g IMR__Rm 1ntZ (1—62 e I)Rm”R

m—1,n°
e R R

m—1n—18 11,
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_ b2q7m+TLMR7* R-i- 4 1'2(1 o quiern)Rm,nR_

m,n- m—1,n m—1,n°

q—%(2m+2n+1)x(1 — q2m+1)R77nj|>1,n*1R;7«*17n

= b7 2" " Ry Ry + 2 (1 - 072" RR,,

m,n*m,n—1’

—L(6m+2n m D— -
q 4 (m+2 +3)~’U(1_q2 +1)Rm+1,anfl,n71
— bquiminJeriRm,nR;nTnil + $2(1 . bi2qimin+l)RZnTnR;,n717
with
(5.5) p=(r+bNa+qTbh), v=(z+b)(z+q 70),

where we denote as

(5.6) Xt E o xE ) = X (R D).
From the above discussion, now the proof of Theorem 2.3 is reduced to that
of Proposition 5.2.

It is possible to reduce the number of bilinear relations to be proved in

(5.4) by the following symmetry of Rg?n(y|q).

LEMMA 5.3. We have the relations for m,n € Zx>q

-1
RV (ylg™Y) = Ru(yla),

5.7
(5.7) Rgﬁ;;) _ (_1)m(m+1)/2+n(n+1)/2R7(£?n'

Proof. From (2.7), it is easy to see that

1
(5.8) a?lg) =" (ylg™),

which leads to the first relation of Lemma 5.3. To verify the second relation,

we introduce polynomials cj,(cb) = (j,(gb) (y|lq) by

00 1. 3.
(5.9) Zq(b))\k _ (—q=b 1)\7—(]4 b 1)\§Q)oo (j(b) —Ofor k<0
‘ ’ (giah giz1); L '
k=0 qraA, g TN oo

Comparing the generating functions, we see that each ¢ is a linear com-

bination of q;, j = k,k — 2,k —4,.... Therefore we can express Rg;?n for
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m,n € Z>q in terms of p; and g as

ng) q(()b) ) ~(b) Q) ~(b)

q—m+2 q—m+1 q_m—n+3 q—m—n+2
~(b) ~(b) ~(b) ~(b) ~(b) ~(b)
a3 d2 4 omtda o437 A—m—nt5 9—m—n+4
~(b) ~(b) ~(b)  ~(b) ~(b) ~(b)
(5 10) R(b) _ 92m—1 92m—2 qm 9m—1 qm7n+1 9m—n
. o b b b b b b
e R S R LN P
b b b b b b
PO ia P s o Py Py Py ps)
b b b b b b
PO i P s o Py PO o py p)

Noticing that ¢i and py are related as

~(b b1
(5.11) Q' wla) = (=" wla),
we obtain the second relation of Lemma 5.3. []

From the symmetries of Rgg?n(y]q) described by (2.4) and Lemma 5.3,
it is sufficient to prove the first two relations in (5.4) for m,n € Zx>, which
are equivalent to

1 (om—2n— D 1 P
(512) —q+4 (2m—2n 1)R;7";’n+1Rm71,n71 +qg+ (2m+2n+1)Rmfl,n+lR7JrFL,n71

= xR" Rm,n,

m—1,n
S _
(5.13) — g (@m=6n 3)37(1_q2n+1)Rm—l,n+1R7J7rm,n—1

= qum_”u'FRr_n_LnR:;:; +2%(1 - qum_”)R;_Lanvn,
In the following, we show that these bilinear relations are reduced to

Jacobi’s identity of determinants. Let D be an (m+n+1) x (m+n+1)
determinant and D [;i ;i N ;’Z } the minor which are obtained by deleting the
rows with indices i1, ...,%; and the columns with indices ji,...,jx. Then
we have Jacobi’s identity

(5.14) D-D[T mt 1 }

m+n+1
_plmlp m+1 D m+ 1 D m '
1 m+n+1 1 m+n-+1

We first choose proper determinants as D (D itself should be expressed in

terms of Rgﬁ?n). Secondly, we construct such formulas that express the minor
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determinants by Rg?n. Then, Jacobi’s identity yields bilinear equations for

RY,, which are nothing but (5.12) and (5.13).
We have the following lemmas.

LEMMA 5.4. We set

_mtn=2 1 _q 4 _ _ _
+2 . q ‘11 T 4, q1 e d—m—n+3 —m—n+2
qi 2 qu_lqg' @73 e qufnJrE) 7fmfn+4
_n—m L‘ 1 + _ _ _
(515) D =14 2 44T “qoy,_q q2m—1 t dm—n+1 dm—n
q_npiferl ﬁnferZ e ]52n 132n+1
q_lpirnferg Pn—m+4a D2 D3
p—n—m-‘,—l ﬁ—n—m—f—Z e 130 ﬁl
Then, we have
D= gim=tninsogmpy
[em — cm+1 _
D 1 :| = Rmfl,n+17 D |: 1 :| = Rm,na
[ m _ L m-1)2-Lm-1)(n+4)-1,.—m+1 p+
(516) D m—|—n+1:| =q* * z Rm—l,n’
[ m + 1 12 _1p_9o 3)—1 —
D :q4m 4(n )(n+3) 7 mRJr
m+n—+ 1:| m,n—1°
[cem m—+1 -
D = -1
1 m+n+1] Rom-t,n-1

LEMMA 5.5. Define P].[;Cm_nﬂ] and ngm—njtj] by

(5.17)
[—m—n+j] e -1 L(mAn—j)(k—L (mtn—5)+2L), [-m—n+tj]
ij = H (q 1 2x)q2 2 2y, ,
=1
—m—n+j —L(m+n—j —m—n-+j
Q;k +51 B L s g)kql[C +J]’

where we denote

(5.18) XU = XUl b) = X (g% 2, g5 D).
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Then, setting

135

~[—-m—n]++ —m—n+1 -1 0
Qg,lm " Q[l,lm " ] Q£n+]n71,7mfn+3 an]ﬁ»n,fmfn«k?
~l—m—n]++ —m—n+1 —1 0
Q[O,S : Q[I,B b Q£n+]n—l,—m—n+5 QEL-]&-n,—m—n+4
~[—m—n]++ ~[-m—n+1 —1 0
(5 19) D — Qg,QTnfq] [1,27::177; ] Q£n+]n71,mfn+1 Q'[m]+n,m7n
. - ﬁ[fmfn]ﬁ»«l» P[fmfnﬁ»l] P[fl] P[O] )
0,2n 1,2n+1 m+n—1,2n+1 m+n,2n+1
PR & P s Pl
Dl—m—n]++ —m—n+1 —1 0
P(E,O ] P[, b Pr[n-&-lz—l,l Pr[nl,-n,l
where
P[fmfn]JrJr
ﬁ[fmfn]++ _ 02k
0,2k - 1—g2k+1 7
2
(5 0) [—m—n]++
~l-m—n]++ 0,2k—1
0,2k—1 qm+n+172k(1 _ qu7n+2kb2) )
we have
(5.21)
m+n
[[ pl=m=ntl
D= (_1)n+1 Jj=1 ++
(q_%b—Qx)m-&-n ﬁ (1_q2k+1) ﬁ qm+n+1—2i(1_q—m—n+2ib2) m,n’
k=0 =1
m m+1
D |:1:| = Rmfl,n+17 D |: 1 :| = Rm,ny
D m — (_1)n+1xn+1
m+n+1
m+n—1
R I L= R
j=1
X
m— =m—1
(q*%b—Qx)m-&-n—l ﬁ (1—g2k+1) Hlqm+n+1—2i(1,q—m—n+2ib2) moLn
k=0 =1
m—+1
D — (—1)"z"
m+n+1
I L TEEE U s RS
j=1 +
X ‘Rm,nfl7

1 n—1 m . . -
(qub72x)m+nfl H (1_q2k+1) H qm+n+172z(1_q7mfn+27,b2)

k=0

i=1
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m m+1 [ WSS (- U VS IO
D[l m—i—n%—l}_q T T Ry

It is easy to see that the bilinear relations (5.12) and (5.13) follow
immediately from Jacobi’s identity (5.14) by using Lemmas 5.4 and 5.5,
respectively. We give the proof of Lemmas 5.4 and 5.5 in Appendix B. This
completes the proof of our main result Theorem 2.3.

§6. Remarks

The ¢-Py (1.1) admits the ultra-discrete limit [14]. The limiting pro-
cedure is the same as the case of ¢-Pry [4] and preserves the symmetry
of the extended affine Weyl group of type Aél). Moreover, it is observed
that Uy, = Upn(z,a) are polynomials in 271, a*! and qi% with positive
coefficients. Then, the rational solutions of ¢-Pv (1.1) in Theorem 2.3 are
thought to survive after taking the ultra-discrete limit.

It is known that the special polynomials associated with the rational
solutions of the Painlevé equations possess the mysterious combinatorial
properties [16], [9], [15]. It is interesting problem to investigate whether the
polynomials Uy, , admit such properties.

In [4], it has been shown that the ¢-Pry coincides with Sakai’s Mul.6
system [13]. As mentioned in Section 1, the ¢-Pv (1.1) has W(Agl) X Aél))
symmetry by the original construction. On the other hand, Sakai’s Mul.5
system [13], which should be also regarded as a g-analogue of the Painlevé V
equation, admits the symmetry of W(Afll)). It might be an important
problem to study the relationship between the equation (1.1) and Sakai’s
Mul.5 system.

Acknowledgment. The author would like to thank Prof. M. Noumi,
Prof. Y. Yamada and Prof. K. Kajiwara for fruitful discussions.

A. Table of ¢, ¢, and U, .,
The polynomials U, »(z,a).
Uoo =1,
Uip=1+ q%x_2 + a_lq%(l + q%)x_l,
Usg=1+g72 + a7 (14 7)1 +q+¢*) (" +q277)
g T Hg+ ) |1 +a 2T (1 + q%)Q] (272 + g2
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+a g (14¢2)[2(1+¢7 +q) +a 21+ q%)Q]x’S,

Uop =1+aqz(1+q2)a ' +q2a72,

Upa=1+q22 % +a(l+q¢7)(1+q+¢*) (" +qz)
tq 1)1 +atgd (1403)2 @2+ g
+ aq%(l + q%) [2(1 + q% +q) + a2q2(1 + q%)2] :c_3,

Upp=14q t+ 1+ q%)(a +a Mzt + q%x_?’)

+q T+ ) (1 +q7 +q)r2,
Uip=1+ Pr 8+ ailq’%(l + q%) [1 + a2(1 +q+ q2)] (x Vg2 x*7)

+q 7 [a%%(l +47)2(1+q+d?)
+ (g g+ )1 +Ha+ad +¢)| @2+ g0
+a g M1 +q7) [a4q2(1 + g7 +a®(1+q+ )2+ 347 +2q)
+(1+q7 + q)} (73 +qz27%)

+q A+ g% +q+q% + )
< [a%3 (1 +a)(1+ (1 +4%) + 20 +q+)]a ™",

Uza=1+¢"s " +a7q 7 (1 +47) {GZ +(1+q+ qZ)} (@ gz
+a7% (14 g +q+ @)1 +a+a7 + )
Pt 14 g Pt at )] @ 4 g )
+a 1+ a) [a4(1 +q7 +q)+a>(1+q+¢%)(2+3¢7 +29)
+¢*(1+ q%)ﬂ (z73 + q%x_5)

+a72 7 (14 g% +q+q7 +6P)
1 1 3
X |262(1+ g+ %) + aF (1L+aF) (1 + Q)1+ aF) o™
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The factor ¢ and ¢.

co=1 c =1,

co=1+ q%a_lx_l,

c3=(1+ q%a_lx_l)(l +qa e (1 + q_%a:):_l),

ca = (14 q%a_lx_1)2(1 +qatz7H(1 + q%a_lx_l)(l + q_%am_l)
x (1+q tax™t),

5= (14 q%aflel)Q(l +qa 272 (1 + q%aflel)(l + ¢*a 2zt
x (14 q_%ax_l)Q(l + ¢ taz™H(1 + q_%a:):_l),

co=1, ¢ =1,

ca=1+ q_%aﬂc_l,

é3=(1+ qiéagfl)(l + ¢ tax™) (1 + q%cflx’l),

¢ =1+ qiéaafl)Q(l + ¢ taz)(1 + quaafl)(l + q%cflafl)
x (1+qa ta™h),

és=(1+ q_%a:):_l)Q(l +q tax™)?(1 + q_%ax_l)(l + ¢ laz™?)
x (1+ q%a_lx_1)2(1 +qatz7H(1 + q%a_lx_l).
B. Proof of Lemmas 5.4 and 5.5
We first note that the following contiguity relations hold,
£ _ 1 _k _ 1
B1)  pf—q7he=—qTapi_y, G —q T@=—q T2 lqly,
ko 3 _ _k _3
(B.2) Pk—q?p, = —q T '\ph1, Gr—q g = —q Taqe_1,
and
kg1 _ 1,9 _
(1= " Nprr1 = g7 5o (b - b pF — g7 6% up

(B.3)

1 _ i _
(1 _ qk+1b2)qk+1 SN e (k+1)b(b 1 b)g;:_i_l + qk+4 b2x lﬂqu+7

which are easily derived from (2.1).
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Let us prove Lemma 5.4. Noticing that p; = 1 and pr = 0 for £ < 0,
we see that R, , can be rewritten as

a1 q0  q—m—n+3 §¢—m—-—-n+2 d—m—n+1
q3 q2  q—m—n+5 —m—n+4 d—m—n+3
q2m—1 q2m—2 t dm—n+1 dm-—n 9m—m—1
(B.4) Ryn= | Pr-m Pn-mt1 == DPm-2  DP2n-1 P2n
P—n—m+4 P—n—m-+5 P2 p3 Pa
P—n—m+2 P—n—m-+3 Po P1 P2
P—n—m P—-n—m+1 pP-2 pP—-1 Po

Adding the (j —1)-th column multiplied by ¢ Tz to the j-th column of R}, ,
forj=m+n,m+n—1,...,2 and using (B.1), we get

(B.5) R}, = q*%m2+%(nfl)(n+4)xm

_ m4n—=3 1 1+ _ _ _
q 27 q4xq Q@ o em—n+4 §—m—n+3
_ m4n=>5 1 1+ _ _ _
q 2 gdx gy qs3 “ —m—n+6 §—m—n+5
_n=—m=-1 1 4 _ _ _

X |4 2 Q42" 4oy 1  @2m—1  dm—n+2 dm-—n+1
g Hpt Pn—m+1 =  DP2n—2 P2an—1
qilptn_m+4 P—n—m+5 P2 p3

ptn,erg P—n—m+3 Po P1

From (B.4) and (B.5), we obtain Lemma 5.4.

We next prove Lemma 5.5. Adding the (i + 1)-th column multiplied by
q%_(m+”_j)x to the i-th column of R,,, fori =1,2,...,5, j =m+n —
1,m+n—2,...,1 and using (B.2), we get

—m—n-+1 —m—n—+2 —1 0

Q[l,l : Q[Q,O : Q£n+]n71,7mfn+3 QEn]ﬁ»n,fmfn«k?
—m—n+1 —m—n+2 -1 0

Q[l,Sm i Q[Q,Qm nta Q£n+]n—l,—m—n+5 QL-]&-n,—m—n+4

Ql-m—n+1] gl-m—n+t2] o[-l QU
(B6) Rmn — [1,2 71+1] [2,2m72+2] m,[+711,]71,m7n+1 ErQL]«kn,mfn
’ —m—n —m—n —

P1,2n—1 P2,2n—1 Pm+n—1,2n—1 Pm+n,2n—1
[=m—n+1] p[—m—n+2] (—1] (0]

P1,3m " P2,3m " Pm+n71,3 Pm+n,3
—m—n+1 —m—n+2 -1 0

Pl[,lm " ]Pz[,lm SRR Pv[n+lz—1,1 Pr[n]+n,1

Noticing that p;1 = 1 and p, = 0 for £ < 0, we see that R,,, can be
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rewritten as

—m— —m—nit1 -1 0
Qg,lm " Q[l,Om L Q£n+]n—l,—m—n+2 an]—s-n,—m—n-&-l
Cm— “m—nit1 -1 0
Q([),Sm " Q[l,Qm " ] Q£n+]n71,7mfn+4 QL,«]&»n,fmfnﬁ»S
—m— —m—n+1 -1 0
(B 7) R _ ga;:’l—q] Q[LQTH—Z e Q£n+]n—1,m—n Q£n]+n,m—n—1
. m,n — —m— —m—n+1 -1 0
Pl ™ Pl ™™ o PU o Py non
—m— —m—n+1 -1 0
S P & P I e PR
e Cm—n+1 -1 0
TSR < P SA I o+ e NP Pilno

NIy =2p(] — gmmonhp?
Then, adding the j-th column multiplied a7 z(l—¢ )

M[*m*”fj]
to (j+1)-th column of R}, for j = m+n,m+n—1,...,1 and using (B.3),
we obtain
(B.8)
(q—%b72x)m+n ﬁ (1—g2k+1) i—n[ grnHL=2i () _gmm—nt2ip2)
++ _ (_1)n+1 k=0 i=1
m,n m—+n
H u[*m*’"«“l’j]
j=1

Al—m—n]++ —m—n+1 -1 0
Q[O,lm "l Q[l,lm mH Q£n+]n—1,—m—n+3 an]+n,—m—n+2
Al—m—n]++ —m—n+1 -1 0
Qg,3m " Q[1,3m " ] Q'[m+]n71,7mfn+5 QELJ&»n,fmfn+4

Glom—nl++ gl-m—n-1 0

[—1]

% 0,2m—1 1,2m—1 Qm+n—1,m—n+1 Qm+n,m—n
plom—nl++ pl-m—n+1] [—1] [ 7
PO,2n P1,2n+1 P’m+n71,2n+1 Pm+n,2n+1
pl-m—nlt++ pl-m-n+1] [-1] [0
PO,Q P1,3 Pm+n—1,3 Pm+n,3
plom—nl++ pl-m—n+1] [~1] [

PO,O Pl,l P’m+n71,1 Pm+n1

where we use the relations

P[*m*"JFjJFl]* — —%-l—%-l—%(m—l—n—j)x—lp'[;m*nJrj]
J7

Ear q )
(B'g) {;kmfnJerrl]f £ S [-m—n+j]
Qj,k =q-2 Qj,k :

Lemma 5.5 follows from (B.6), (B.7) and (B.8).

C. Continuum limit to the rational solutions of Py

We consider the continuum limit of the rational solutions of ¢-Pvy to
those of the Painlevé V equation. In the previous paper [8], we have pre-
sented a determinant formula for the rational solutions of Py .
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A(r) _ (1)

() and cj,(:) = (j,(:)(z) be polynomials

ProposITION C.1. Letp,.~ = p,
defined by
(c1) B =L@, 40 e) = L),

respectively, where Ll(:) (z) are the Laguerre polynomials. For m,n € Z>q,

~

we define a family of polynomials f{(mr)n = R%)n(z) by

a” 4 e e s
a5 8" e d ) d s A s @ s
(C.2) R™ (z) = P aw o a), ‘fxlnﬂ s,
: mn\Z) = | o) () O RNS (1) ()
Ppim  Ppim+1 Pp1  Pn DPon—2 Pon—1
D ma Bms = B s B0a B8 By
P2 s = D0y 80 B By
For m,n € Z«q, we define R%?n by
nr) _ m(m+1)/2 p(r) nr) _ n(n+1)/2 p(r)
(03) R7(n?n - (_1) ( % Rfmfl,rw Rgn?n - (_1) ( )/ Rm,fnfl'
Moreover, we introduce Sy, = Smn(t,s) as
(C.4) Rg;?n(z) =Smn(t,s), z= 5 = 2s —m + n.

Then, ¢; = p;(t,s) given by

Vo = ﬁ §m,n(ta S)S\m—l,n—l(t7 S — 1)
2 Sm,nfl(ta S)Smfl,n(t’ S — ]—) ’
Y1 = ﬁ mfl,n(tv s — 1)Sm,n71(t, s+ 1)
(C 5) 2 Sm,n(tas)sm—l,n—l(tas) ’
. \/% m—l,n—l(ta S)Sm,n(t7 s — 1)
R : ,
Smfl,n(ta s — ]—)Sm,nfl(ta 3)
o \/E Sm,nfl(ta's)smfl,n(t’ 5)
n=53 S

Sm—l,n—l (t, S)Sm,n (t7 S)

solve the symmetric form of Py (1.10) for the parameters

1 1
(060,041,042,043) = (5 —85—n,S, — —s+m,s—m+n).

(C.6) >
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Let us consider the continuum limit of the result in Theorem 2.3. First,
we note that the continuous g-Laguerre polynomials P,ga) (y|q) are expressed

Q§C]>7

y = cosf for k > 0,

as

(@) . (@ )k g R qzTTe? g2 ae
(C.7) P, (ylg) = Wg b2 410

in terms of the basic hypergeometric functions [6]. Then, from (2.2), (2.6)

and (2.7), the polynomials p,(gb) (y|q) are written as
(C.8)
1
b s (%) g * —q 2 ba, —ba!

P;E;)(?/|Q) =(q*b 1)kﬁ3¢ ( b2.0 q;q| for k>0.
Setting

T 52 £
(CQ) b:q37 qZCT, g;‘:—e?\/i’

and taking the limit as € — 0, we obtain
. T -kt r—
10t i) = A (|8 ) 2V rorkzo

Similarly, we see that q,(gb) reduce to L,(I_l)(—t/ 2). Thus, we get

(C11) lim R, (yla) = R, (2),
and

(C.12) lim Spn(2,a) = Simnt, s),
with a = ¢°. Finally, setting as

(C.13) fi=—e7,

we find that (2.10) and (2.9) reduce to (C.5) and (C.6), respectively. It is
shown that ¢-Pv (1.1) reduce to the symmetric form of Py (1.10) by the
above limiting procedure in Section 1. Therefore, the rational solutions of
q-Pv stated in Theorem 2.3 reduce to those of Py.
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