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Abstract

A verbal product is introduced for a particular class of varieties of inverse semigroups and this
product is shown to be associative. As well, the structure of this class is examined.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 05.

1. Introduction

In 1937, B. H. Neumann [11] introduced the concept of a verbal subgroup. If G is
a group and w is a set of words in FGX, the free group on a set X, then the verbal
subgroup w(G) of G generated by w is the set consisting of all elements g of G for
which there is a morphism from FGX to G mapping an element of w to g. Such
subgroups are fully invariant (and hence normal) but the converse is not the case.

S. Moran [10], in an examination of associative products of groups, introduced
a verbal product of groups, which is associative and as well is commutative. If G
and H are groups, and GTTH denotes their free product and [G, H] denotes all
commutators of the form [g, h] or [ft, g] where g e G and h G H, then the
w-verbal product is (GirH)/w(GnH) D [G, H].

We may take another approach and fix the group and vary the verbal subgroup
and obtain another associative product. This was the approach of H. Neumann
[12]. The fixed group is FGX and if u and v are verbal subgroups of FGX, then the
product she defines is
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338 Ross Wilkinson [2J

This product is associative since (u(v))(w) = u(v(w)). Thus H. Neumann was able
to define an associative product of varieties of groups with the product of two
varieties being given by the relatively free group defined above.

A striking result established by H. Neumann was that this product of varieties
is equivalent to another product determined by extensions of groups of the first
variety by groups of the second variety. The aim of this paper is to define a verbal
product for a certain class of varieties of inverse semigroups. We see that this
product is associative. As well we examine the structure of this class of varieties
and generalise the above result to semilattices of groups.

2. Verbal varieties

Let Xbe a fixed countably infinite set, X = {*,, x2, x3,...}, and FIX be the
free inverse semigroup on X. An element of FIX is called a word. A pair of words
(w, v) is called an identity of an inverse semigroup, S, if ua = va for all
morphisms a: FIX -> S, and we say S satisfies (u, v). We shall call a word w and
idempotent law of S if for all morphisms a: FIX -» S, wa G E(S), the set of
idempotents of S, and we say S satisfies w. Notice w is an idempotent law of 5 if
and only if (w, ww'1) is an identity of S.

DEFINITION 1. For an inverse semigroup, S, the verbal inverse subsemigroup of
5, denoted by w(5), corresponding to a set of words w is the inverse subsemi-
group of S generated by {wa | w E w, a e Mor(FIX, S)}.

A variety of inverse semigroups is a collection of inverse semigroups closed
under the operation of taking inverse subsemigroups, forming morphic images
and forming direct products. Naturally, we say that a variety of inverse semi-
groups satisfies (u, V) if each inverse semigroup in the variety satisfies (M, V) and
a variety of inverse semigroups satisfies a word w if each inverse semigroup in the
variety satisfies w.

As a special case of a result of Birkhoff [2] we know that T i s a variety of
inverse semigroups if and only if there is a set A C FIX X FIX such that Tis the
collection of all inverse semigroups satisfying each pair (M, V) in A. We shall say
that Tis the variety defined by A, and denote it by %.

DEFINITION 2. A variety of inverse semigroups that is defined by a set
A = {(w, ww"1) | w G w C FIX) is called a verbal variety, and is denoted by %.

Notice that %, = CYA. It follows that ^ consists of all inverse semigroups such
that each w E w is an idempotent law.
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[31 Inverse semigroups 339

DEFINITION 3. If w is a set of words, the set of all idempotent laws satisfied by
% is called the total set generated by w, and is denoted by

We shall investigate the structure of the lattice of verbal varieties a little later in
Section 5 but first we make some brief observations.

Let w C E(FIX), the semilattice of idempotents of the free inverse semigroup
on a set X; then every inverse semigroup satisfies each of the idempotent laws
w £ w, since the morphic image of an idempotent is necessarily an idempotent.
Thus the variety of all inverse semigroups, denoted 5S, is a verbal variety.

Now if x E X, then S satisfies x only if 5 is a semilattice since otherwise if
s2 ^ s E S then the morphism generated by x, -» s, x, G X shows that S does not
satisfy x. Thus if w = FIX, then only a semilattice can satisfy all w G w.
Certainly, however, every semilattice satisfies every word in FIX, so the variety of
semilattices, denoted §£ , is the smallest verbal variety.

The variety, § £ , is not the only verbal variety to have trivial intersection with
the variety of groups §. If Qn, n > 1, denotes the variety of inverse semigroups
defined by the identity ( x " + l , x"), then each 6n is an DC-degenerate variety, that is
each inverse semigroup in the variety has each of its %-classes containing only
one element. Thus each Qn has only one element groups in it. Each Qn is a verbal
variety, since (xn+\ x") and {{xnxx~n\xnxx~n)'\ x"xx~") are equivalent identi-
ties. These varieties are of some significance, since Djadchenko [4] shows that
every %-degenerate variety of inverse semigroups satisfies (x"+\ x") for some

We shall see later that not every variety of inverse semigroups is a verbal
variety. There are however, "plenty" of verbal varieties. Given any variety of
inverse semigroups, T , we may obtain the smallest verbal variety containing it by
taking the variety of inverse semigroups satisfying (ww~\ w) for all identities of
this form satisfied by T. In the lattice of varieties of inverse semigroups, this is a
closure operation and so we shall denote the verbal variety obtained in this way
from a variety T , by T c .

3. Fully invariant congruences and normal inverse subsemigroups

We call a congruence p on an algebra A fully invariant if for all endomorphisms
<f>: A - » A and for all x,y G A , we have (x, y) G p implies (x<f>, y<j>) G p. Further,
an inverse subsemigroup, A of an inverse semigroup S is said to be fully invariant
in S, if for each endomorphism <j> of S, A<j> C A .

Fully invariant congruences, introduced by Birkhoff [2], play a central role in
studying varieties and the key result when specialized to inverse semigroups, gives
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LEMMA 4. Let R be a set of pairs of words in FIX. Then TR, the variety defined by
R, satisfies all identities (u, V), where (u, v) £ p%, the fully invariant congruence of
FIX generated by R, and only those identities.

The construction of a fully invariant congruence from a relation R may be
achieved as follows.

LEMMA 5. Let R be a relation on a semigroup S. Let Ro = R and let

Rt = {(a, b)<=SX S\(a, b) = {cO, dO) with (c, d) E Pi_xand9 E End(S)}

where p,_, is the congruence on S generated by /? ,_, , i> \. Let pj[ = U°l 0 /?, (and
hence — U°lop,) . Then p% is the fully invariant congruence on S, generated by R.
(See Clifford and Preston [3] page IS for a constructive definition of p,.)

COROLLARY. Let R be a relation on an inverse semigroup S. Then pjj, as defined
in the lemma, is the fully invariant congruence on S generated by R.

DEFINITION 6. Let <f>: 5 -» T be a morphism of inverse semigroups. The core of
4>, written core <J>, is {x £ S\x<j> =

We recall the following definition by Green [5].

DEFINITION 7. Let N be an inverse subsemigroup of an inverse semigroup S.
Then N is normal in S (or where it is clear simply normal) if

(i) E(S)CN, that is N is full, and
(ii) for all x, y £ S and for all n £ N, xy £ Â  implies xny £ iV.

DEFINITION 8. If S is an inverse semigroup and N is an inverse subsemigroup of
S, then we denote by pN, the congruence on S generated by{(n, n/i"')|/i£JV}.

We slightly extend a result of Green [5] to consider the case of full invariance,
to obtain the following most useful result, that perhaps justifies the use of the
term "normal".

LEMMA 9. For any <J>: S -» T,a morphism of inverse semigroups, core $ is normal.
Conversely, for any normal inverse subsemigroup N of an inverse semigroup of S,
there is a congruence on S, namely pN, with corcpN = N. Further N is fully
invariant if and only if pN is fully invariant.

PROOF. It is clear that core </> is a full inverse subsemigroup of S. Normality
follows essentially because, for any inverse semigroup, and hence for T, if e and
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ab are each idempotent, then so is aeb. To show the converse, we first consider the
relation T where (a, b) £ T if and only if there exist r,, . . . ,rn, j , , . . . ,«„ £ S1 and
w,,..., wn E N such that

t* *~~ 11iVi»>i C\ — /1iVi\vi j i

( 1 ) . 2 2 2 ^ 2 2 2 2 2

Now {(n, wT1)!/! E iV} C T and also by the definition of T, T C pN. But we
shall see that T is a congruence; so T = pN. Since a = a(a~la)\ and a =
a(a'xa\a~xa)'x\, (a, a) £ T for any a E 5. Let (a, 6) £ T with (1) holding. Thus

* = (rnwn)w;\ cB_, = (^wj^-'w^

so that (fc, a) E T. It is clear that T is transitive. Let (a, i » ) £ r and let (1) hold.
Letx ,^ £ 5 ' , so

xay = {xrx)wx(xiy)

xby = (xrn)wnw;l(sny)

and so (xay, xby) £ T. Thus T is a congruence and T = pN.
Now clearly N C corep^. Let a £ corep^. Thus (a, aa'x) E T so equalities of

the following form hold:

a = ^w,^, c, =

Now aa"1 £ N and wn £ N so by condition (ii) defining normality, cn_] =
( ^ ^ " " ' K C ^ ) £ tf. But c n _ ,£ iV and wn_,£iV so, as for cn_,, cn^2 =
(rB_ 1wn_jH^ii)%_i(*n_i) £ N, and so on. Thus we find that cn^x,...,cx £ N,
and finally that a E N. Hence N = core pN.

Finally, suppose that N is fully invariant and that (a, b) £ pN. Then for all
endomorphisms $: S -* S,

ad = ( r ^ s , ) ^ c,0 = (r^yvf ' j , )^
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But for all i, (r^s^O = (r,0)(w,0)(,s,0), and as N is fully invariant wfi E N, and
hence (ad, bd) E p^. Conversely if pN is fully invariant and a G N = corepN,
then (a, aa~l) G p^ so (aO,(aa'l)O) E p^ and hence (aO, aO(aO)'x) E pN since 6
is morphic. Thus a# E core pN so a0 E iV. Thus iV = core pN is fully invariant.

The proof given here is different from that of Green. When the congruence is
constructed as in this proof then it becomes easy to see that if JV is fully invariant,
then so is pN. This fact is not obvious otherwise. Notice that unlike the situation
for groups, we need to show normality as well as full invariance. The following
example illustrates this.

EXAMPLE 10. Let S be the inverse semigroup of one to one mappings generated
by (i | ) . Then

( ! \ ) \ \ ? ) • ( ! ])•(] I)}-
Let N be the inverse subsemigroup

Now if N is not fully invariant, then there exists 0 E End(S) and a G S\N such
that (\)0 = a. Now suppose (\\)0 = b. Then

However a check of the multiplication table of S reveals that there exists ab such
that aa'x — ab2 only if a G N. Thus N is fully invariant. However N is not
normal since (l

2 |Xa) = 0 e N and (?) e N but (\ \)(W\) = (3
2) € M

We now give a lemma needed later.

LEMMA 11. Every total set of words is a fully invariant normal inverse subsemi-
group of FIX.

PROOF. Let w be a total set of words, then by Lemma 4, p* is all the identities
satisfied in % . Thus w = {M>|(W, ww~l) is an identity satisfied in %} = corep*.
Now p* is fully invariant, so by Lemma 9, w is a fully invariant normal inverse
subsemigroup of FIX.

COROLLARY, / /w = T(w), vf(FIx) = w.
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PROOF. Since w is fully invariant in FIX, wot G w, for any w E w and a E
End(FIx). Thus w = yv(FIx).

4. The verbal product of verbal varieties

Before introducing the verbal product we need a little more notation. If u is a
word in FIX, let c(u) denote the content of M, that is the set of elements explicitly
used in the word u. Thusc^i.xf.xf1) = {*i, x2] and c(xfxf'x3x4) = {*,, x3, x4}.
Further if c(«) = {x,, x2,...,xn} then we may write u — M(X,, x2,...,xn).

If wuw2,...,wn G FIX and c(u) — {x1;. . . ,x n } , then we may write
w(w1, w2,... ,wn) for the word formed by replacing each instance of x, in u by the
word wt, for / = 1,...,«.

LEMMA 12. Let w be a total set of words in FIX. Let S be an inverse semigroup.
Then the verbal inverse subsemigroup w(S) = { w a | w G w and a G MOT( FIX, S)}
and furthermore w(S) is fully invariant.

PROOF. W ( 5 ) = {wa\w G w and a G Mor(FIx, S)} - T, say, if and only if T
is already an inverse subsemigroup of S. Let x = ua and y — vfi, where u, v G w
and a, )8 G MOT(FIX, S). NOW choose </> G End(FIx) such that c(w) D c(v<j>) =
0. Then i i , c f 6 w and there exists y: FIX -> S with Ma = uy and (v<(>)y = vfi,
whence xy = (ua)(vfi) = uy(v^>)y = (u(v<f>))y G T, aU since w is a fully in-
variant inverse subsemigroup of FIX, by Lemma 11. Also, again by Lemma 11,
since w G w implies w"1 e w, wa G T implies (way1 E T, so T is an inverse
subsemigroup, and hence w(5) = T. Finally, if ua G T and 6 G End(S), then
a0 G Mor(FIx, S) so (Ma)0 = u(a6) G T, so w(S) is fully invariant.

It is not the case, however, that a verbal inverse semigroup of a total set is
necessarily normal, since if w = T(x2), for some x £ l , and S is the inverse
semigroup generated by (23), the inverse semigroup mentioned in the previous
example, then

which was shown not to be normal in S.
We note in passing that the operation of obtaining a total set of words from a

set of words in FIX is a closure operation on the lattice of subsets of FIX. It is also
clear from the definition of a total set that \ = %<„), and further that if u and v
are subsets of FIX, since T(v) is an inverse subsemigroup of FIX, by Lemma 11,
we may form r(u)(r(v)), the verbal inverse subsemigroup of T(y).
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DEFINITION 13. Let \ and % be the verbal varieties defined by the sets of
idempotent laws u and v, respectively. Let \ * % = cV7.(uX7-{y))) where T(u)(T(\))
is the verbal inverse subsemigroup of T(v) for the set of words r(u). \ * % will
be called the verbal product of the varieties % and CVT.

THEOREM 14. The verbal product of verbal varieties of inverse semigroups is
associative.

PROOF. Let \ , % and % be verbal varieties defined by u, v and w respectively.
Since the product is defined in terms of total sets and since °VU — %-<„), we may
and shall assume that u, v and w are total. Thus, all that is required is that we
show that [u(v)]w = u(v(w)). Let z G [u(v)]w. Then there exist morphisms 6:
FIX -» v and x: FIX -> w and u E u such that (ud)\ = z. However 0\: FIX -* v(w)
so that z = (u6)x = u($x) E u(v(w)). Thus [u(v)]w C u(v(w)).

Conversely, suppose z G u(v(w)). Then there exist a morphism a: Flx -» v(w)
and u G u such that ua = z. Now if P = {1 ,2 ,3 , . . .} , a is defined by xt -»i>,0,,
for each / G P, where each u, G v and each 0, G Moi(FIx,v/). Now since the
naming of the elements of A" was arbitrary we may assume that u — u(xu... ,xn),
that is C(M) = {xu... ,xn). Let xr be the element of X in U"=1 c(u,) with largest
subscript. Suppose that for 1 «s / < n, a,: P -»P is chosen such that t>, =

V,(Xaim,... ,*a,(m(O))> W h e r e WJ(/) =1 c(«,) I • N o W d e f i n e &• FIX ~* V b y

xnP vn{ x ( n - l)r+a,(l)> • • • >X(n- \)r+an(m(n)))>

Xn+sP = V,

where v is an arbitrary element of v and s is any element of P. ft is a morphism
into v since v is fully invariant and hence if Vj(xa/(I),... ,xa.(m(/ ) )) is in v then so is

• • >*(,•-i)r+o,(m(o))- N o w d e f i n e & morphism y: FIX - w by,

[ x t -* w, if A:^=( / - l )r + at(j),

for any / = 1,...,« a n d / = l , . . . ,m( i ) , and some arbitrary choice of w. Notice
that y is well defined due to the choice of r. Also (FIx)y C w since each 0,:
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FIX -» w. Also for any i = 1,...,«,

xiPf = vi[x(i-\)r+ai(\)>' • • •<x(i-\)r+ai(m(i)

= vi[xat(\)>- • • >xa,(m{i))l^i

= x,a.
Thus ufly = ua = z, whence z E [u(v)]w, so u(v(w)) C [u(v)]w. The result of the
theorem follows.

LEMMA 15. Let CVU, % be verbal varieties of inverse semigroups. Let S be an
inverse semigroup such that there exists a congruence, p , on S with core p G % and
S/p e %. Then S G \ * %.

PROOF. Let K(U, , . . . , v n ) E T(u)(T(v)), whereM(X,,.. .,xn)E T(u) andu, E
for i = \,...,n. Let 0 E Mor(F/;r, S). Now (t>,0)p E E(S/p) for each u,, as
S/p E Fv and 0p: FIX -» S/p, so t>,0 E corep" = corep. Thus (w(t>,,... ,un))0 =
«(«,&,...,unfl) E corep, and since corep E Va, {u{vx,...,vn))0 E E{S). Thus

We shall say that an inverse semigroup S is an extension of an inverse
semigroup A by an inverse semigroup B if there is a congruence, p, on S such that
T4 32 core p and 2? s S/p. Thus we have just seen that the verbal product of
varieties of inverse semigroups contains extensions. Now H. Newmann [12]
defined a product of varieties of groups to be the collection of all extensions of
groups in the first variety by groups of the second variety. She then showed that
this product of varieties is equivalent to a verbal product of varieties of groups.
This product defined by extensions does not translate readily into inverse
semigroups, as J. Bales [1] in an example showed that such a product is not
always a variety of inverse semigroups.

We now give a partial converse to Lemma 15. We need the following lemma.

LEMMA 16. Let w be a total set of words and S a semilattice of groups. w(S) is a
fully invariant normal inverse subsemigroup of S.

PROOF. By Lemma 12, all we need to show is that w(S) is normal in S. Let
ab E w(S) and d E w(S). Then ab = ua and d = vB where u, v E w and a,
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)3 G Mor(FIx, S). Now choose <j> E Aul(FIx), induced by a permutation of X,
such that C(M)DC(U<J>)= 0 . Define a morphismy: F/^- -> 5 by

ix,a, i fx,Ec(M),

x,<jrV?, ifx, Ec(t></>),and

b, otherwise.

Choose xk G X, not in C(M) U c(v<j>). Now by Lemma 11, w is a fully invariant
normal inverse subsemigroup of FIX. Thus since x~^xk G E(FIX) C w and v$ G
w£ C w, then xk\v<j>)xk and hence MX^U^OX^ G w. Thus (uxkXv<j>)xk)y G w(5)
so that ((«y)x^1yX(t)^y)-x*Y) = abb'xdb = adb G w(5), since idempotents lie in
the centre of a semilattice of groups. Thus w(S) is normal.

THEOREM 17. Let % and % be verbal varieties. Let S be a semilattice of groups.
S E \ * % if and only if there is a congruence p on S such that core p £ \ and
S/p G %, that is S is an extension of a member of T,, by a member of <Yy.

PROOF. We have shown one half of the result already in Lemma 15, so now to
show the other half, let 5 G % * %. Without loss of generality, we assume that u
and v are total. We shall show that pv(S) meets the requirements of the theorem.
Now by Lemma 9, corepv(S) = v(5). Thus we must show that v(S) G \ . Let
w G u and 6 G Mor(/7A-, v(S)). Since the naming of elements in X was arbitrary,
we assume that C(H) = {x,, . . . ,xn). Now for each x, E c{u), xfi E v(5), so we
may pick t>, G v and a, E \Aox{FIx, 5), with xfi — t»,a(, and using the full
invariance of v, we may assume that c( u,) D c( v}) = 0 for i ¥=j,i,j = \,2,...,n.
Define /?: FIX -> S by

[x, -> *,«,., if x, E c(u,) forx, E U"=1c(«,.),

[x, -» s, for some arbitrary s G S, otherwise.

Thus vt(} = u,a, for / = 1,... ,n.
Now

u6 = u{xu...,xn)6

= u(xfi,...,xn0)
= 11(0,0 , , . . . ,o B o B )

But as S G Tu * Tv and w(u,,...,un) G u(v), then «(«,,...,«n)j8, and hence
u8 G £(5) . Thus, since v(5) is normal in S, E(v(S)) = E(S) and so v(5) G \ .
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It remains to show that S/py{S) e %. Define 0, G lAox(FIx, S) by xi6] = s,
where s, is any element of xfi. Then 6 = 0,(pv(S)) and

vO = t>(0,(p¥(S)))

= («^l)(Pv(S))

= (w-'0,)(pv(S)), by definition of pv(S)

Thus t>0 e £(S/py(S)) and hence 5/pv(S) E Tv.

5. The lattice of verbal varieties

After the initial remarks concerning verbal varieties made in Section 1, we now
wish to examine the lattice of verbal varieties, denoted ET^S) in a little more
detail. First observe the following well-known result, as quoted by Bales [1].

LEMMA 18. Let S be an inverse semigroup. Then S is a group if and only if S
satisfies an identity (M, V) where c(u) ¥^ c(v).

We can thus observe that verbal varieties of inverse semigroups never coincide
with varieties of groups. However by investigating the structure of the lattice of
verbal varieties, we strengthen this result to see that a verbal variety never consists
solely of semi-lattices of groups.

First we need definitions of meet and join in £T(fJS). The meet of two verbal
varieties is the largest verbal variety contained in both of them; the join of two
verbal varieties is the smallest verbal variety containing both of the varieties. It is
easy to see that the meet of two verbal varieties % and % in £T(^§) coincides
with the meet in £(5§), the lattice of varieties of inverse semigroups. Thus we
have:

LEMMA 19. Let \ and % be verbal varieties. In £T(5S) % A % = %Uv, the
variety defined by the union of the generating set of words, u and v.

In £(<JS), the join of \ and % in the variety defined by p* n p*, the
intersection of the fully invariant congruences generated by {(«, uu~l)\u G u}
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and {(v, vv'])\v E v} respectively. Now consider all pairs (w, ww'1) £ p* n p*
and denote this set by w. Then Tw is the smallest verbal variety that contains both
\ and %. Now consider the verbal variety <YTQ,)nT(yy \,% C \ ( u ) n 7 . w , so that
\ = \ v % Q \wnTW However i fwGw then (w, vw"1) E p* D p*, so w E
T(u) n T(v). Thus w C T(u) n T(\), so T ^ n ^ = % . Thus we have shown:

LEMMA 20. Lef <YU and % be verbal varieties. Then in £T(4S), Tu V % =
vr(u)nr(v)-

We now consider where the verbal product sits in the lattice. In the case of
groups, because of the product's alternative characterization in terms of exten-
sions it is trivial to see that if % and T are varieties of groups, then the verbal
product contains both varieties. Thus if, % * T denotes the verbal product of %
and Tin the lattice of varieties of groups £(§), we have

LEMMA 21. Let %, T be varieties of groups. Then in t(§), 1 l V ^

This result holds for £T(5S) as well.

LEMMA 22. Let \ , % be verbal varieties of inverse semigroups. Then in

PROOF. Let w be a law of \ * %; hence w = M(U,,. .. ,vn) where « is a law of
\ and each u, is a law of %. Now consider the map 0 E MOT(FIX, FIX)

generated by

J*,•->»,., ifx, Gc(«),and
I - * * , , otherwise.

Then u6 = w. However u is a law of Tu and the laws of % form a fully invariant
subgroup of FIX, so that w is also a law of Tu. Thus T,, «£ % * %. Now if
5 G %, then for any 6 E MOT(FIX, S), V a law of %, v$ E E(S), so certainly
u(©,,... ,vn)6 E E(S), soSE\* %. Thus % < \ * %. Hence % V % < %
* % and by symmetry, \ V % < (% * %) A (% * % ) .

This inequality cannot be strengthened, as we can see in the following example.
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EXAMPLE 23. Let C2 be the two element group, and let 8: C2 -* Aut(C2 X C2)
be given by

* ( ' - ' < • " '

[a -+a:C2XC2->C2X C2,

where a is given by (1, a)a = (a, 1), (a, l)a = (1, a), (a, a)a = (a, a) and (1, l)a
Then we may form the semi-direct product of groups C2 and C2 X C2 under 8.

This is the dihedral group, Z>4. Now C2 and C2 X C2 are both members of °V{x2j.
However D4, with multiphcation,

2. J i ) = (-*i*2> {yi(x28))y2),

is not a member of ^ 2 } , since

Now D4 is an extension of C2 X C2 by C2 and so by Lemma 15, Z>4 is an element
of T ^ j • T^aj, which thus strictly includes T ^ j V T ^ , = T ^ .

We now wish to examine the atoms of fY0S) and as a consequence of this
examination, show that no verbal variety consists solely of semilattices of groups.

Let B2 denote the five element combinatorial Brandt semigroup; this inverse
semigroup may be derived in various different ways.

(i) B2 is isomorphic to the inverse subsemigroup of Ix, the symmetric inverse
semigroup on X, generated by the map (x, -» x2).

(ii)B2 s M°(1; /, /; A) where | / | = 2.
(iii) B2 s FIM/p where p is the fully invariant congruence on FI{x] generated

V ' V 2 1 1

(iv) 52 and FIx/p, where p is the fully invariant congruence generated by
((X\X2x\x), (JC^^F'X-KI-*^*!""1)"1) generate the same variety. See Reilly [13] and
Kidman [7].

THEOREM 24. Let w be a set of words in FIX. If % ^ S£, rAe« 52 e \ .

PROOF. Suppose B2 £ % . Now 52 has only two elements that are not idempo-
tents. Let x be a non-idempotent element of B2. Thus there exist w e w and
tf £ MOT{FIX, B2) such that wtf = x. Without loss of generality we may assume
thatc(w) = {x,,...,jcn}. Now define a E End(FIx)by, for i — \,...,n,xta — x,,
x\x, xxx\x or x\xxx according as to whether xfi = x, x'x, xx~x or x'xx, and for
/' > n, xta - x2. (Clearly xfi =£ 0 for i = 1,... ,n.) Now x in B2 and x, in 7=7̂
share the property that they are the product of a string a, am if and only if
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the string can be expanded to xx-xxx~xx...x~xx (or jc^f'xjjcf1...jcf'jc, respec-
tively), so that since wO = x, wot = JC,. Thus, since 7(w) is a fully invariant inverse
subsemigroup of FIX, x, E T(w) and so T(w) = FIX. Thus % = S£.

COROLLARY 1. T ^ ^ , , w tfie on/y atom offY0S).

PROOF. By the fourth formulation of B2, above, the variety defined by B2 in 5§
is the verbal variety T ^ ^ i , and so by the theorem T ^ ^ i , c % , for any
non-trivial verbal variety.

COROLLARY 2. No non-trivial verbal variety consists solely of semilattices of
groups.

PROOF. B2 is not a semilattice of groups.
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