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Abstract

In this paper, we provide a novel approach to studying the heavy-tailed asymptotics of the
stationary probability vector of a Markov chain of GI/G/1 type, whose transition matrix
is constructed from two matrix sequences referred to as a boundary matrix sequence
and a repeating matrix sequence, respectively. We first provide a necessary and sufficient
condition under which the stationary probability vector is heavy tailed. Then we derive the
long-tailed asymptotics of theR-measure in terms of theRG-factorization of the repeating
matrix sequence, and a Wiener–Hopf equation for the boundary matrix sequence. Based
on this, we are able to provide a detailed analysis of the subexponential asymptotics of
the stationary probability vector.
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1. Introduction

This paper is devoted to the study of the heavy-tailed asymptotics of the stationary proba-
bility vector of a Markov chain of GI/G/1 type, whose transition probability matrix in block-
partitioned notation can be written as

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D0 D1 D2 D3 D4 · · ·
D−1 A0 A1 A2 A3 · · ·
D−2 A−1 A0 A1 A2 · · ·
D−3 A−2 A−1 A0 A1 · · ·
D−4 A−3 A−2 A−1 A0 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the sizes of the matrices Al for −∞ < l < ∞,D0,Di for i ≥ 1, andD−j for j ≥ 1 are
m×m,m0×m0,m0×m, andm×m0, respectively. {Ak} and {Dk} are referred to as the repeating
matrix sequence and the boundary matrix sequence, respectively. In this paper, a matrix is called
finite if all its entries are finite. Throughout the paper, we assume that (i) the Markov chain of
GI/G/1 type is irreducible, aperiodic, and positive recurrent; (ii)

∑∞
k=1 kDk and

∑∞
k=−∞ |k|Ak

are both finite; (iii) A = ∑∞
k=−∞Ak is irreducible and stochastic; and (iv) φA− < 1,
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where φA− is the radius of convergence of the matrix function
∑∞
k=1 z

−kA−k . (The radius
of convergence of a matrix function is defined as the minimal radius of convergence of the
entry functions. This condition is often satisfied and is assumed in order for the transformation
method to work.) The stationary probability vector π of the Markov chain of GI/G/1 type is
partitioned accordingly into vectors π = (π0, π1, π2, . . . ).

Markov chains of GI/G/1 type have been investigated by a number of researchers, among
whom are Asmussen [2], Grassmann and Heyman [26], Asmussen and Møller [4], Zhao et al.
[51], Zhao [50], Zhao et al. [52], and Li and Zhao [33], [35]. Two important examples of
Markov chains of GI/G/1 type are Markov chains of GI/M/1 type and M/G/1 type. We refer
the reader to Neuts [37], [38] and Li and Zhao [32], [34] for details.

Since the mid 1960s, considerable attention has been paid to studying heavy-tailed distri-
butions and their applications. These have been well documented, for example in books by
Feller [22], Seneta [45], Bingham et al. [8], Resnick [41], and Embrechts et al. [20], and
in the survey papers of Embrechts [15], Resnick [42], Goldie and Klüppelberg [25], and
Sigman [46]. Important properties, for example on convolution tails, integrated tails, and
closeness of tails, have been obtained. Two important heavy-tailed classes, the classes of
subexponential distributions and regular variations, have been discussed extensively. Readers
may refer to Teugels [47], Goldie [24], Embrechts et al. [19], Embrechts and Goldie [16], [17],
Embrechts and Omey [18], Cline [13], [14], Klüppelberg [29], [30], and Bingham et al. [8] for
details. Two important references on discrete heavy-tailed random variables are Chover et al.
[12] and Embrechts et al. [20]. In this paper, some of the existing properties of heavy-tailed
asymptotics will be generalized to matrix form for sequences of nonnegative matrices, which
are always useful and often necessary in studying the heavy-tailed asymptotics of performance
measures of block-structured stochastic models.

Since the publication of the research on Ethernet network data by Leland et al. [31] in
1993, it has been well known that queues fed by long-range-dependent traffic may produce
heavy-tailed performance measures such as busy periods, waiting times, and queue lengths,
while queues with heavy-tailed distributions can result in self-similar or long-range-dependent
traffic. Readers may refer to Norros [39], Erramilli et al. [21], Resnick [42], Adler et al. [1], and
Park and Willinger [40] for more information. The subexponential asymptotics of queueing
and risk processes was discussed in Asmussen et al. [5], Asmussen [3], and Asmussen et al.
[7]. The subexponential asymptotics of random walks was studied in Borovkov and Korshunov
[9] for homogeneous and partially homogeneous Markov chains, in Jelenković and Lazar [28]
and Foss and Zachary [23] for modulated random walks, and in Zachary [49], who provided a
novel probabilistic proof of Veraverbeke’s theorem.

For a regularly varying tail of the busy period, Meyer and Teugels [36] and Zwart [53] studied
the M/G/1 queue and the GI/G/1 queue, respectively. Boxma and Dumas [11] discussed a fluid
queue. There is considerable volume in the literature on the subexponential asymptotics of
stationary waiting times in queues with subexponential service times. For example, see Boxma
and Cohen [10], Whitt [48], and references therein.

For the subexponential asymptotics of stationary queue lengths or, more generally, the
heavy-tailed asymptotics of stationary probability vectors of positive-recurrent Markov chains,
available results are fewer. In terms of stochastic comparison, Resnick and Samorodnitsky [43]
analyzed the heavy-tailed asymptotic behavior of the stationary queue length of a G/M/1 queue
when the arrival process is long-range dependent. Based on a property of the generating
functions of regularly varying sequences, Roughan et al. [44] derived the power law asymptotics
of the stationary queue length of an M/G/1 queue with power law service times. Using the
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distributional version of Little’s law, Asmussen et al. [6] studied the subexponential asymptotics
of the stationary queue length of a GI/G/1 queue with subexponential service times. Using the
Mellin transform, Jacquet [27] provided results on polynomial tails for the stationary queue
length of a single-server queue when the arrival process contains a finite or infinite number of
on–off input sources. For a Markov chain of GI/G/1 type with subexponential increments and
tail-equivalent repeating and boundary matrix sequences, Asmussen and Møller [4] discussed
the subexponential asymptotics of the stationary level process.

The purpose of this paper is to present a novel approach to analyzing the heavy-tailed
asymptotics of the stationary probability vector of a Markov chain of GI/G/1 type. The use
of the R-measure, the RG-factorization of the repeating matrix sequence, and a Wiener–Hopf
equation for the boundary matrix sequence are the keys to this approach. We illustrate that
the RG-factorization of the repeating matrix sequence and a Wiener–Hopf equation for the
boundary matrix sequence play a similarly important role to that played by the Wiener–Hopf
factorization in studying stationary waiting times. Our main contributions are threefold. First,
some useful properties of heavy-tailed sequences of nonnegative scalars are extended to matrix
form for sequences of nonnegative matrices. Second, we provide a necessary and sufficient
condition under which the stationary probability vector is heavy tailed. Third, the long-tailed
asymptotics of theR-measure is derived in terms of theRG-factorization of the repeating matrix
sequence and a Wiener–Hopf equation for the boundary matrix sequence. Based on this, we
are able to provide a detailed analysis of the subexponential asymptotics of the stationary
probability vector. The results obtained in this paper are much stronger than those in [4], due
to the following facts. First, in [4] the boundary matrix sequence is very special, in that the
subexponential tail of the stationary probability vector is independent of this boundary matrix
sequence. In this paper, a much wider class of boundary matrix sequences is considered and
we illustrate that the subexponential tail of the stationary probability vector strongly depends
on the boundary matrix sequence. Second, in a unified matrix-structured form, subexponential
expressions with respect to various boundary matrix sequences are provided explicitly in this
paper. Third, the matrix-form expressions provided here are more convenient for computations
of the subexponential tail of the stationary probability vector of a block-structured stochastic
model.

The rest of the paper is organized as follows. Basic definitions and preliminary properties
of heavy-tailed sequences of nonnegative matrices are given in Section 2. A necessary and
sufficient condition under which the stationary probability vector is heavy tailed is provided
in Section 3. The long-tailed asymptotics of the R-measure is derived in Section 4 and the
subexponential asymptotics of the stationary probability vector is analyzed in Section 5. Final
remarks are also made in Section 5.

2. Preliminaries

In this section, we provide definitions and preliminary properties for heavy tails, long tails,
and subexponentiality for sequences of nonnegative matrices. These preliminaries will be used
in subsequent sections.

For a sequence of nonnegative scalars {gn} with
∑∞
n=0 gn < ∞, we define two associative

functions by g≤x = ∑
0≤k≤x gk and g>x = ∑

k>x gk for an arbitrary real number x ≥ 0.
Specifically, for an integer n ≥ 0, g≤n = ∑n

k=0 gk and g>n = ∑∞
k=n+1 gk . For convenience,

we also write g>n as g≥n+1.
For the real function g≤x associated with the sequence {gn}, the tail of g≤x is defined and

expressed as g≤x = g<∞ − g≤x = g>x for x ≥ 0. Specifically, for an integer n ≥ 0,
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g≤n = g≥n+1. It is clear that if {gn} is a probability sequence, then g≤x is its distribution
function and g≤x is the tail of this function.

In terms of the Riemann–Stieltjes integral, the convolution of two functions F(x) andG(x)
is defined as

F(x) ∗G(x) =
∫ x

0
F(x − y) dG(y). (2.1)

We denote by �x� the maximum integer part of x. For two sequences {cn} and {dn}, it follows
from (2.1) that

c≤x ∗ d≤x =
∫ x

0
F(x − y) dG(y) =

�x�∑
k=0

(�x�−k∑
i=0

ci

)
dk =

�x�∑
k=0

c≤�x�−kdk.

Specifically, for an integer n ≥ 0,

c≤n ∗ d≤n =
n∑
k=0

c≤n−kdk, (2.2)

which is referred to as the convolution associated with the two sequences {cn} and {dn}.
Furthermore, for a sequence {cn} we define cr∗≤n = c

(r−1)∗
≤n ∗ c≤n for r ≥ 2, with c1∗≤n = c≤n.

It should be noted that, in this paper, the usual convolution of two sequences {cn} and {dn}
is denoted by cn � dn and defined as

cn � dn =
n∑
k=0

cn−kdk. (2.3)

We further define cr�n = c
(r−1)�
n � cn for r ≥ 2, with c1�

n = cn.
It is worthwhile to note the relationship between the usual convolution and the convolution

associated with the sequences, using (2.2) and (2.3):

c≤n ∗ d≤n = c≤n � dn =
n∑
k=0

ck � dk (2.4)

and
cn � dn = c≤n ∗ d≤n − c≤n−1 ∗ d≤n−1.

Also, it is clear from (2.4) that

c≤n ∗ d≤n =
∞∑

k=n+1

ck � dk. (2.5)

Note that the two convolutions can be extended to sequences {cn, n = 0,±1,±2, . . . } and
{dn, n = 0,±1,±2, . . . } by writing c≤n ∗ d≤n = ∑

i+j=n c≤idj and cn � dn = ∑
i+j=n cidj ,

respectively.
For a sequence {cn, n ≥ 0}, if we set c−n = 0 for all n ≥ 1, then

c2∗≤n =
n∑
k=0

c≤kcn−k =
∞∑
k=0

c≤kcn−k.
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Specifically, if {cn, n ≥ 0} is a probability sequence, simple computations lead to

c2∗≤n = 1 − c2∗≤n =
∞∑
k=0

ck(1 − c≤n−k) =
∞∑
k=0

ckc≤n−k.

Following Subsections 1.3 and 1.4 of [20], we provide the following definitions for a
sequence of nonnegative scalars to be heavy tailed, long tailed, or subexponential.

Definition 2.1. (i) A sequence {cn} of nonnegative scalars with
∑∞
n=0 cn < ∞ is called heavy

tailed if, for all ε > 0,
∞∑
n=0

cn exp{εn} = ∞.

Otherwise, {cn} is called light tailed. Denote by H the class of heavy-tailed sequences.

(ii) A sequence {cn} of nonnegative scalars with
∑∞
n=0 cn < ∞ is called long tailed if c≤n > 0

for all n > N , where N is a sufficiently large positive integer, and if

lim
n→∞

c≤n+m
c≤n

= 1 for any integer m ≥ 0.

Denote by L the class of long-tailed sequences.

(iii) A probability sequence {cn} is called subexponential if

lim
n→∞

c2∗≤n
c≤n

= 2.

Denote by S the class of subexponential sequences.

Let {ck} be a sequence of nonnegative scalars with
∑∞
k=0 ck = c < ∞. Then c2∗≤n = c2−c2∗≤n,

and

lim
n→∞

c2∗≤n
c≤n

= 2c (2.6)

if and only if {ck/c} is subexponential. According to [47], properties of a subexponential
sequence also hold for a sequence of nonnegative scalars satisfying (2.6). Therefore, in this
paper a sequence of nonnegative scalars satisfying (2.6) is also called subexponential.

To characterize the subexponential asymptotics of the stationary probability vector of a
Markov chain of GI/G/1 type, we need to introduce a particular class S∗ ⊂ S. For a sequence
{ck} of nonnegative scalars with µc = ∑∞

k=0 kck < ∞, we define c(I)k = (1/µc)
∑k
l=0 c≤l .

Clearly, {c(I)k } is a probability sequence. Following Klüppelberg [29], the integral tail of the

sequence {ck} is defined as c(I)≤k , for k ≥ 1. Klüppelberg [29] illustrated that, for {ck} ∈ S, it
is possible that {c(I)k } /∈ S, and provided a useful sufficient condition under which {c(I)k } ∈ S,
which is restated in Proposition 2.1(i), below.

Definition 2.2. A sequence {ck} of nonnegative scalars is in S∗ if µc < ∞ and

lim
k→∞

c≤k � c≤k
c≤k

= 2µc.

Proposition 2.1. (i) If {ck} ∈ S∗ then {c(I)k } ∈ S.

(ii) If {pk}, {qk} ∈ S then {pk � qk} ∈ S if and only if {λpk + (1 − λ)qk} ∈ S for all λ ∈ (0, 1).
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Proof. From part (c) of Theorem 5.1 of [25], this proposition follows by noting that (i) the
sequence {pk} ∈ S if and only if the function p≤k ∈ S, and (ii) the sequence {pk � qk} ∈ S if
and only if the function of convolution p≤k ∗ q≤k ∈ S, since p≤k ∗ q≤k=∑k

l=0 pl � ql .

Definition 2.3. (i) (Tail equivalence.) Two sequences {ck} and {dk} of nonnegative scalars are
called tail equivalent, denoted by c≤k � ξd≤k , if limk→∞ c≤k/d≤k = ξ for some ξ ∈ (0,∞).

(ii) (Tail lightness.) A sequence {ck} of nonnegative scalars is tail lighter than a sequence
{dk} of nonnegative scalars (or {dk} is tail heavier than {ck}), denoted by c≤k = o(d≤k), if
limk→∞ c≤k/d≤k = 0.

Remark 2.1. It is easy to check that H and L are both closed with respect to tail equivalence.
Also, Teugels [47] proved that S is closed with respect to tail equivalence, while Goldie and
Klüppelberg [25, p. 445] illustrated that S∗ is closed with respect to tail equivalence.

In what follows, we extend the above notion for sequences of nonnegative scalars to one for
sequences of nonnegative matrices. In an abuse of our notation, which should not cause any
confusion, we will use the same symbols H , L, and S and S∗ for the classes of heavy-tailed,
long-tailed, and subexponential matrix sequences, respectively.

Definition 2.4. We assume that the nonnegative matrices Bn, n ≥ 1, have the same size, and
that

∑∞
n=0 Bn is finite.

(i) The sequence {Bn} of nonnegative matrices is called heavy tailed if there exists at least one
entry sequence of {Bn} that is heavy tailed. Otherwise, {Bn} is called light tailed. Denote by
H the class of the heavy-tailed matrix sequences of all sizes.

(ii) The sequence {Bn} of nonnegative matrices is called long tailed or subexponential, respec-
tively, if there exists at least one entry sequence of {Bn} that is long tailed or subexponential
and all the other entry sequences are either long tailed or subexponential or tail lighter than
some long-tailed or subexponential entry sequence of {Bn}. Denote by L and S the classes of
long-tailed and subexponential matrix sequences of all sizes, respectively.

(iii) The sequence {Bn} of nonnegative matrices is in S∗ if there exists at least one entry sequence
of {Bn} that is in S∗ and all the other entry sequences are either in S∗ or are tail lighter than
some entry sequence of {Bn} in S∗.

In the remainder of this paper, we denote by b(i, j) the (i, j)th entry of the matrix B. For
a sequence {Bk} of matrices, B≤k and B≤k are defined elementwise as B≤k = (b≤k(i, j)) and
B≤k = (b≤k(i, j)), respectively.

We denote by � the class of heavy-tailed matrix sequences with the property that, for each
sequence {Bk} in �, there exists a heavy-tailed scalar sequence {βk} and a finite, nonzero,
nonnegative matrix W such that limk→∞ B≤k/β≤k = W . The sequence {βk} of nonnegative
scalars and the matrix W are called a uniformly dominant sequence of the matrix sequence
{Bk} and the associated ratio matrix, respectively.

Proposition 2.2. A heavy-tailed matrix sequence {Bk} is in � if and only if there exists at
least one pair (i0, j0) such that the sequence {bk(i0, j0)} is heavy tailed and the limit
limk→∞ b≤k(i, j)/b≤k(i0, j0) is either 0 or a positive number for all i and j .

Proof. For sufficiency, if there exists at least one pair (i0, j0) such that the sequence
{bk(i0, j0)} is heavy tailed and the limit limk→∞ b≤k(i, j)/b≤k(i0, j0) is either 0 or a positive
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number for all i and j , then the matrix W = limk→∞ B≤k/b≤k(i0, j0) is finite, nonzero, and
nonnegative. We then take βk = bk(i0, j0) for k ≥ 1, which implies that {Bk} ∈ �.

By necessity, if {Bk} ∈ � then there exist a heavy-tailed scalar sequence {βk} and a finite,
nonzero, nonnegative matrixW such that limk→∞ B≤k/β≤k = W . We assume that the (i0, j0)th
entry w(i0, j0) of the matrix W is not 0. Then, for all i and j ,

lim
k→∞

b≤k(i, j)
b≤k(i0, j0)

= lim
k→∞

b≤k(i, j)/β≤k
b≤k(i0, j0)/β≤k

= w(i, j)

w(i0, j0)
,

which is either 0 or a positive number. Since b≤k(i0, j0) � w(i0, j0)β≤k , {βk} is heavy tailed,
and w(i0, j0) > 0, it is obvious that {bk(i0, j0)} is heavy tailed. This completes the proof.

The following proposition provides a way of using a sequence of nonnegative scalars to char-
acterize the tail of a sequence of nonnegative matrices. The proof follows from Definition 2.4
and Remark 2.1.

Proposition 2.3. Given a heavy-tailed matrix sequence {Bk} ∈ � with a uniformly dominant
sequence {βk}, and the associated ratio matrix W ,

(i) {Bk} is long tailed if and only if {βk} is long tailed;

(ii) {Bk} is subexponential if and only if {βk} is subexponential; and

(iii) {Bk} ∈ S∗ if and only if {βk} ∈ S∗.

Now we provide some basic properties for heavy-tailed matrix sequences. For simplicity,
we assume that all the nonnegative matrices involved are square matrices of common size m.

Proposition 2.4. For two sequences {Bk} and {Ck} of nonnegative matrices, {Bk} is heavy
tailed if

(i) there exists a nonnegative, invertible matrix W such that Bk ≥ WCk for all k > N ,
where N is a sufficiently large positive integer; and

(ii) {Ck} is heavy tailed.

Proof. If {Ck} is heavy tailed, then there exists at least one pair (i0, j0) for which the (i0, j0)th
entry sequence {ck(i0, j0)} is heavy tailed. SinceW is invertible, each column ofW is nonzero.
For the i0th column of W , we assume that the (i1, i0)th entry w(i1, i0) > 0. We then find that

m∑
l=1

w(i1, l)ck(l, j0) ≥ w(i1, i0)ck(i0, j0).

Since Bk ≥ WCk , we have bk(i1, j0) ≥ w(i1, i0)ck(i0, j0). Notice that w(i1, i0) > 0 and
{ck(i0, j0)} is heavy tailed. It follows from Definition 2.1(i) that {bk(i1, j0)} is heavy tailed.
Therefore, {Bk} is heavy tailed according to Definition 2.4(i).

Proposition 2.5. For two sequences {Bk} and {Ck} of nonnegative matrices, suppose that
there exist a nonnegative, invertible matrix V and an invertible matrix W ≥ V such that
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VCk ≤ Bk ≤ WCk for all k > N , where N is a sufficiently large positive integer; that
{Ck} ∈ �; and that {Bk} ∈ L. Then

(i) {Bk} ∈ S if {Ck} ∈ S, and

(ii) {Bk} ∈ S∗ if {Ck} ∈ S∗.

Proof. Using Theorem 2.1 of [29], a similar argument to the proof of Proposition 2.4 will
lead to the stated results.

For two sequences {Bk} and {Ck} of matrices, B≤k ∗ C≤k is defined elementwise as

B≤k ∗ C≤k =
(∑

r

b≤k(i, r) ∗ c≤k(r, j)
)
.

The following two propositions characterize the tail behavior of convolutions of sequences
of nonnegative matrices.

Proposition 2.6. If

(i) {pk} ∈ S, {qk} is any probability sequence, and q≤k = o(p≤k); and

(ii) B≤k � Wp≤k and C≤k � V q≤k ,

then B≤k ∗ C≤k � WVp≤k .

Proof. It is easy to check that

B≤k ∗ C≤k =
( m∑
r=1

b≤k(i, r) ∗ c≤k(r, j)
)
.

Since B≤k � Wp≤k and C≤k � V q≤k , we obtain

b≤k(i, r) � w(i, r)p≤k and c≤k(r, j) � v(r, j)c≤k(r, j).

If w(i, r) = 0 or v(r, j) = 0, then we take b≤k(i, r) ∗ c≤k(r, j) � 0. If w(i, r) 
= 0 and
v(r, j) 
= 0, then

b≤k(i, r) ∗ c≤k(r, j) = w(i, r)v(r, j) · b≤k(i, r)
w(i, r)

∗ c≤k(r, j)
v(r, j)

.

Since
b≤k(i, r)
w(i, r)

� p≤k,
c≤k(r, j)
v(r, j)

� q≤k,

{pk} ∈ S, and q≤k = o(p≤k), it follows from Proposition 2.7 of [46] that p≤k ∗ q≤k � p≤k
and, so, b≤k(i, r) ∗ c≤k(r, j) = w(i, r)v(r, j)p≤k . Therefore, we obtain

B≤k ∗ C≤k �
( m∑
r=1

w(i, r)v(r, j)p≤k
)

= WVp≤k,

which completes the proof.
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Proposition 2.7. If {pk} ∈ S and two sequences {C(1)k } and {C(2)k } of nonnegative matrices

satisfy C(l)≤k � Hlp≤k for l = 1, 2, where H1 and H2 are two finite, nonzero, nonnegative

matrices, then C(1)≤k ∗ C(2)≤k � (H1ee
� + ee�H2)p≤k , where e is a column vector of 1s and ‘ �’

denotes the transpose of a matrix.

Proof. The condition that C(l)≤k � Hlp≤k for l = 1, 2 implies that

c
(1)
≤k(i, r) � h1(i, r)p≤k, c

(2)
≤k(r, j) � h2(r, j)p≤k.

Noting that

C
(1)
≤k ∗ C(2)≤k =

( m∑
r=1

c
(1)
≤k(i, r) ∗ c(2)≤k(r, j)

)
,

using Theorem 5.1 of [25] leads to

c
(1)
≤k(i, r) ∗ c(2)≤k(r, j) = [h1(i, r)+ h2(r, j)]p≤k.

Simple computations then lead to C(1)≤k ∗ C(2)≤k � (H1ee
� + ee�H2)p≤k , which completes the

proof.

3. A condition on the heavy tail of {πk}
In this section, we provide an expression for the stationary probability vector in terms of the

R-measure. Using this expression, we obtain a necessary and sufficient condition under which
{πk} is heavy tailed.

For the transition probability matrix of GI/G/1 type, the R- and G-measures have been
extensively studied, for example in [26] and [50]. Note that the R- and G-measures have
decompositions in terms of {R0,k} and {Rk}, and {Gk,0} and {Gk}, respectively. The sequences
{Rk} and {Gk} can be expressed by means of a matrix sequence {�i,−∞ < i < ∞}. Let
L0 = {(0, j) : 1 ≤ j ≤ m0} and Li = {(i, j) : 1 ≤ j ≤ m}. Also let L≤i = ⋃i

k=0 Lk and
write L≥i for the complement of L≤(i−1). To define the matrices �i , −∞ < i < ∞, we write

P =
(L≤n L≥(n+1)

L≤n Q0 U

L≥(n+1) V Q1

)
for n ≥ 1. Let P [n] = Q0 + UQ̂1V , where Q̂1 = ∑∞

k=0Q
k
1. We denote by P [n]

i,j the (i, j)th
block entry of P [n] corresponding to the levels of P . Grassmann and Heyman [26] showed that
the matrices P [n]

n−i,n, for 0 ≤ i ≤ n− 1, and P [n]
n,n−j , for 0 ≤ j ≤ n− 1, are all independent of

n ≥ 1. Therefore, for n ≥ 1, 0 ≤ i ≤ n− 1, and 0 ≤ j ≤ n− 1, we define

�i = P
[n]
n−i,n, �−j = P

[n]
n,n−j .

It is shown in Section 3 of [26] that

Ri = �i(I −�0)
−1, i ≥ 1,

and
Gi = (I −�0)

−1�−i , i ≥ 1, (3.1)
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where I denotes the identity matrix. Furthermore, {Rk} and {Gk} are the minimal nonnegative
solutions to the Wiener–Hopf equations

Ri(I −�0) = Ai +
∞∑
l=1

Ri+l (I −�0)Gl, i ≥ 1, (3.2)

and

(I −�0)Gj = A−j +
∞∑
l=1

Rl(I −�0)Gj+l , j ≥ 1. (3.3)

Similarly, after we correct two typographical errors, the Wiener–Hopf equations [50, Equations
(18) and (19)] for {R0,j } and {Gi,0} are given by

R0,k(I −�0) = Dk +
∞∑
i=1

R0,k+i (I −�0)Gi, k ≥ 1, (3.4)

and

(I −�0)Gk,0 = D−k +
∞∑
i=1

Ri(I −�0)Gi+k,0, k ≥ 1.

Let

	0 = D0 +
∞∑
i=1

R0,i (I −�0)Gi,0.

This is the censored matrix of P to level 0, and it is positive recurrent since the Markov chain
is irreducible and positive recurrent.

Define the generating functions for the matrix sequences {Ak}, {Rk}, and {Gk} as

A∗(z) =
∞∑

k=−∞
zkAk, R∗(z) =

∞∑
k=1

zkRk, G∗(z) =
∞∑
k=1

z−kGk.

The followingRG-factorization will be used in our study (refer to Zhao [50] or Zhao et al. [52]
for a proof using (3.2) and (3.3)):

I − A∗(z) = [I − R∗(z)](I −�0)[I −G∗(z)]. (3.5)

Let φA+, φD , φR , and φR0 be the radii of convergence of the matrix functions
∑∞
k=1 z

kAk ,∑∞
k=1 z

kDk ,R∗(z), and
∑∞
k=1 R0,kz

k , respectively. By using theRG-factorization, Theorem 1
and Lemma 3 of [33] provide important relations between the radii of convergence:

φR = φA+, φR0 = φD. (3.6)

If the Markov chain of GI/G/1 type is positive recurrent, then [26, Equation (28)] shows that
the stationary probability vector {πk} is given by

π0 = x0,

πk = π0R0,k +
k−1∑
i=1

πiRk−i , k ≥ 1,
(3.7)
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where x0 = cx̂0 and R0 = ∑∞
k=1 R0,k . Here, x̂0 is the stationary probability vector of the

censored matrix 	0 of P to level 0, c = (̂x0R0(I − R)−1e)−1, and R = ∑∞
k=1 Rk . Let


∗(z) = ∑∞
k=1 z

kπk . It follows from (3.7) that


∗(z)[I − R∗(z)] = x0R
∗
0(z).

Since the Markov chain is positive recurrent, Corollary 30 of [52] shows that all solutions to
the equation det(I −R∗(z)) = 0, if any exist, reside outside the unit circle |z| > 1. This means
that I − R∗(z) is always invertible for all |z| ≤ 1. Therefore,


∗(z) = x0R
∗
0(z)[I − R∗(z)]−1,

which implies that

πk = x0R0,k �
∞∑
n=0

R
n�
k (3.8)

and, thus,

π≤k =
∞∑

l=k+1

x0R0,l �
∞∑
n=0

R
n�
l .

The following lemma provides an expression for the tail of the stationary probability vector
{πk}, and later plays a key role in our study.

Lemma 3.1. For all k ≥ 1,

π≤k = x0R0,≤k ∗
∞∑
n=0

R
n�
≤k ,

where R0,≤k = ∑k
l=1 R0,l , R

n�
≤k = ∑k

l=1 R
n�
l , and

R0,≤k ∗
∞∑
n=0

R
n�
≤k = R0(I − R)−1 − R0,≤k ∗

∞∑
n=0

R
n�
≤k .

Proof. Noting that

k∑
l=0

x0R0,l �
∞∑
n=0

R
n�
l +

∞∑
l=k+1

x0R0,l �
∞∑
n=0

R
n�
l = R0(I − R)−1,

it follows from (3.8) and (2.5) that

π≤k = x0R0(I − R)−1 −
k∑
l=1

x0R0,l �
∞∑
n=0

R
n�
l

= R0(I − R)−1 − R0,≤k ∗
∞∑
n=0

R
n�
≤k = x0R0,≤k ∗

∞∑
n=0

R
n�
≤k .

This completes the proof.

The following lemma provides a useful tail heaviness property for the matrix sequences {Ak}
and {Dk}. The proof is obvious, from the definition of heavy tails.

Lemma 3.2. (i) If φA+ = 1 then the matrix sequence {Ak} is heavy tailed.

(ii) If φD = 1 then the matrix sequence {Dk} is heavy tailed.
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Under the assumptions in Lemma 3.2, the matrix sequences {Rk} and {R0,k} are heavy tailed
since φR = φA+ and φR0 = φD .

In this work, we carry out the tail analysis of Markov chains of GI/G/1 type under the
assumption that min{φA+, φD} = 1, which is an extension of [33], where it was assumed
that min{φA+, φD} > 1. The following theorem shows that satisfaction of our condition is
necessary and sufficient for the stationary probability vector {πk} to be heavy tailed.

Theorem 3.1. If the Markov chain of GI/G/1 type is positive recurrent, then the stationary
probability vector {πk} is heavy tailed if and only if min{φA+, φD} = 1.

Proof. We first prove the necessity of the condition. Suppose that min{φA+, φD} > 1. Then
both φA+ > 1 and φD > 1. Using (3.6) and


∗(z) = x0R
∗
0(z)[I − R∗(z)]−1

gives φπ = min{φA+, φD, η} > 1, where φπ is the radius of convergence of the vector
function 
∗(z) and η > 1 is the minimal positive solution, if one exists, to the equation
det(I − R∗(z)) = 0 (with the convention that η = ∞ if there does not exist such a solution).
Hence, {πk} is light tailed, but this is in contradiction with the assumption that {πk} is heavy
tailed.

We now prove the sufficiency of the condition. Note that when φA+ ≥ 1 and φD ≥ 1, the
assumption that min{φA+, φD} = 1 implies that φA+ = 1 or φD = 1.

Case I: φD = 1. In this case, since


∗(z) = x0R
∗
0(z)[I − R∗(z)]−1 ≥ x0R

∗
0(z),

we have πk ≥ x0R0,k for k ≥ 1. Note that, since the Markov chain of GI/G/1 type is irreducible
and positive recurrent, the censored chain	0 to level 0 is also irreducible and positive recurrent,
which implies that x0 > 0. Under the assumption that φD = 1, {R0,k} is heavy tailed. Thus,
there always exists at least one pair (i, j) such that the sequence {r0,k(i, j)} is heavy tailed,
where r0,k(i, j) is the (i, j)th entry of the matrixR0,k for each k ≥ 1. It is clear thatπk ≥ x0R0,k
implies that

πk ≥ ( 0, . . . , 0︸ ︷︷ ︸
j−1 zeros

, x0(i)r0,k(i, j), 0, . . . , 0︸ ︷︷ ︸
m−j zeros

),

where x0(i) is the ith entry of the positive row vector x0. Therefore, {πk} is heavy tailed.
Case II: φD > 1 and φA+ = 1. In this case, since


∗(z) = x0R
∗
0(z)[I − R∗(z)]−1 ≥ x0R

∗
0(z)R

∗(z),

we have
πk ≥ x0R0,k � Rk for all k ≥ 1. (3.9)

Under the assumption that φA+ = 1, {Rk} is heavy tailed. Thus, there exists at least one pair
(i0, j0) such that {rk(i0, j0)} is heavy tailed. The assumption that the Markov chain is irreducible
and positive recurrent leads to x0 > 0, and using Theorem 6 of [33] leads to x0R0 > 0. (Recall
thatR0 = ∑∞

k=1 R0,k .) Therefore, there always exist an l0 ≥ 1 and an i∗ such that the (i∗, i0)th
element r0,l0(i

∗, i0) of R0,l0 is positive. Thus, it follows from (3.9) that, for k ≥ N ,

πk ≥ ( 0, . . . , 0︸ ︷︷ ︸
i0−1 zeros

, x0(i
∗)r0,l0(i∗, i0)rk−l0(i0, j0), 0, . . . , 0︸ ︷︷ ︸

m−i0 zeros

). (3.10)

Since x0(i
∗)r0,l0(i∗, i0) > 0 and {rk−l0(i0, j0)} is heavy tailed, (3.10) implies that {πk} is heavy

tailed.
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4. The long-tailed asymptotics of the R-measure

In this section, we provide the long-tailed asymptotics of the R-measure. In particular,
we show that the matrix sequence {R0,k} is long tailed if the matrix sequence {Dk} is long
tailed, and that the matrix sequence {Rk} is long tailed if the matrix sequence {Ak} is long
tailed. These results are the key to deriving the subexponential asymptotics of the stationary
probability vector in the next section. Throughout the rest of the paper, we assume that a
heavy-tailed matrix sequence {Ak} or {Dk} is an element of �.

We first discuss the long-tailed asymptotics of the matrix sequence {R0,k}. To do so, we
must provide an expression for the matrix R0,k , k ≥ 1. The following lemma is useful for this
purpose.

Lemma 4.1. Let Bi = �−i (I −�0)
−1, i ≥ 1, and

� =

⎛⎜⎜⎜⎜⎜⎝
I

−B1 I

−B2 −B1 I

−B3 −B2 −B1 I
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

Then

�−1 =

⎛⎜⎜⎜⎜⎜⎝
I

X1 I

X2 X1 I

X3 X2 X1 I
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where

Xl =
∞∑
i=1

∑
n1+n2+···+ni=l
nj≥1, 1≤j≤i

Bn1Bn2 · · ·Bni , l ≥ 1.

Proof. Noting that �−1� = I , we find that −Bk − ∑k−1
i=1 Bk−iXi +Xk = 0 for all k ≥ 1.

Let X∗(z) = ∑∞
k=1 z

kXk and B∗(z) = ∑∞
k=1 z

kBk . Then

X∗(z) = [I − B∗(z)]−1B∗(z) =
∞∑
i=1

[B∗(z)]i =
∞∑
l=1

zl
∞∑
i=1

∑
n1+n2+···+ni=l
nj≥1, 1≤j≤i

Bn1Bn2 · · ·Bni ,

(4.1)

and we thus have

Xl =
∞∑
i=1

∑
n1+n2+···+ni=l
nj≥1, 1≤j≤i

Bn1Bn2 · · ·Bni , l ≥ 1.

This completes the proof.
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The following theorem characterizes the long-tailed asymptotics of the matrix sequence
{R0,k}.
Theorem 4.1. Suppose that the Markov chain of GI/G/1 type is positive recurrent. If {Dk} is
long tailed with a uniformly dominant sequence {qk} and associated ratio matrix V , then

lim
k→∞

R0,≤k
q≤k

= V

(
I −

∞∑
i=0

�−i
)−1

.

Proof. It follows from (3.4) and (3.1) that, for all k ≥ 1,

R0,k −
∞∑
i=1

R0,k+i�−i (I −�0)
−1 = Dk(I −�0)

−1,

or

(R0,1, R0,2, R0,3, R0,4, . . . )

⎛⎜⎜⎜⎜⎜⎝
I

−B1 I

−B2 −B1 I

−B3 −B2 −B1 I
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F�
1

F�
2

F�
3

F�
4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

where Fk = Dk(I −�0)
−1 for k ≥ 1. Using Lemma 4.1 gives, for all k ≥ 1,

R0,k = Fk +
∞∑
i=1

Fk+iXi = Dk(I −�0)
−1 +

∞∑
i=1

Dk+i (I −�0)
−1Xi.

Since (I −�0)
−1 ≥ 0 and Bi = �−i (I −�0)

−1 ≥ 0 for i ≥ 1, it follows from (4.1) that

0 ≤ D≤k+i
q≤k

(I −�0)
−1Xi ≤ D≤k+i

q≤k
(I −�0)

−1[I − B∗(1)]−1B∗(1).

Thus, using the dominated convergence theorem, we obtain

lim
k→∞

∞∑
i=1

D≤k+i
q≤k

(I −�0)
−1Xi =

∞∑
i=1

lim
k→∞

D≤k+i
q≤k

(I −�0)
−1Xi.

Also note that, since {Dk} is long tailed with a uniformly dominant sequence {qk} and associated
ratio matrix V , we obtain

lim
k→∞

R0,≤k
q≤k

= lim
k→∞

(
D≤k
q≤k

(I −�0)
−1 +

∞∑
i=1

D≤k+i
q≤k

(I −�0)
−1Xi

)

= V (I −�0)
−1

(
I +

∞∑
i=1

Xi

)
,
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where we have used the fact that limk→∞D≤k/q≤k = limk→∞D≤k+i/q≤k = V for an
arbitrary i ≥ 1. It follows, from Lemma 4.1, that

∑∞
i=1Xi = [I − B∗(1)]−1B∗(1) and

I + ∑∞
i=1Xi = [I − B∗(1)]−1. Hence, we obtain

[I − B∗(1)]−1 =
[
I −

∞∑
i=1

�−i (I −�0)
−1

]−1

= (I −�0)

(
I −

∞∑
i=0

�−i
)−1

and, therefore,

lim
k→∞

R0,≤k
q≤k

= V

(
I −

∞∑
i=0

�−i
)−1

,

which completes the proof.

In what follows, we study the long-tailed asymptotics of the matrix sequence {Rk}.
Throughout the rest of the paper, we denote by ω the stationary probability vector of the
matrix A. The following lemma, in which sp(R) denotes the spectral radius of R, will be
needed; readers are referred to Theorem 4 of [51] or Theorem 23 of [52] for details.

Lemma 4.2. Suppose that the Markov chain P of GI/G/1 type is irreducible.

(i) If P is positive recurrent then ωR � ω (i.e. sp(R) < 1) and G is stochastic.

(ii) If P is null recurrent then ωR = ω (i.e. sp(R) = 1) and G is stochastic.

(iii) If P is transient then ωR = ω (i.e. sp(R) = 1) and G is strictly substochastic.

The following two lemmas are useful in determining a uniformly dominant subsequence of
the matrix sequence {Rk}, and the associated ratio matrix if the matrix sequence {Ak} is long
tailed.

Lemma 4.3. If the Markov chain of GI/G/1 type is positive recurrent and
∑∞
k=−∞ |k|Ak is

finite, then
∑∞
k=1 kGk is finite.

Proof. It follows from (3.5) that

∞∑
k=1

kA−k −
∞∑
k=1

kAk = (I − R)(I −�0)

∞∑
k=1

kGk −
∞∑
k=1

kRk(I −�0)(I −G).

Since the Markov chain is positive recurrent, it follows from Lemma 4.2(i) that I − R is
invertible and (I − G)e = 0. It is clear that (I − �0)

−1(I − R)−1 � 0 and is finite. Since∑∞
k=−∞ |k|Ak is also finite,

∞∑
k=1

kGke = (I −�0)
−1(I − R)−1

( ∞∑
k=1

kA−k −
∞∑
k=1

kAk

)
e

is finite. Therefore,
∑∞
k=1 kGk is finite.

When the Markov chain of GI/G/1 type is positive recurrent, the matrix I −R is invertible,
according to Lemma 4.2. It follows from (3.5) that I − A = (I − R)(I − �0)(I − G).
When A is irreducible and stochastic, the maximal eigenvalue of A is simple and is equal
to 1. Hence, rank(I − A) = m − 1. Since the matrix I − �0 is invertible, we find that
rank(I − G) = m − 1; hence, the maximal eigenvalue of G is simple and is equal to 1.
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Letting g1 = 1 and gi , 2 ≤ i ≤ m, be the m eigenvalues of the nonnegative matrixG, we have
the following lemma.

Lemma 4.4. If the Markov chain of GI/G/1 type is positive recurrent and the matrix A is
irreducible and stochastic, then the adjoint matrix of I −G can be expressed as

adj(I −G) = κGe
ω(I − R)(I −�0)

ω(I − R)(I −�0)e
, (4.2)

where κG = ∏m
k=2(1 − gi) 
= 0.

Proof. Note that when the maximal eigenvalue of the matrixG is simple and equal to 1, we
obtain

adj(I − αG) = det(I − αG) · (I − αG)−1 =
m∏
i=2

(1 − αgi) · (1 − α)(I − αG)−1,

where α ∈ (0, 1). Thus, there exists an invertible matrix T (α) such that

T (α)−1(I − αG)T (α) =
(

1 − α

J (α)

)
,

which is the canonical Jordan form of the matrix I − αG. It follows that

(1 − α)(I − αG)−1 = T (α)

(
1

(1 − α)J (α)−1

)
T (α)−1.

Since, in the matrix

T (1)−1(I −G)T (1) =
(

0
J (1)

)
,

J (1) is invertible due to the fact that rank(I−G) = m−1, we have limα↗1(1−α)J (α)−1 = 0.
Note that, since adj(I − αG) is continuous for α ∈ (0, 1], we obtain

adj(I −G) = lim
α↗1

adj(I − αG) = lim
α↗1

m∏
i=2

(1 − αgi) · (1 − α)(I − αG)−1

= κGT (1)

(
1

0

)
T (1)−1 = κGe

ω(I − R)(I −�0)

ω(I − R)(I −�0)e
.

The final equality holds because the vectors e and ω(I − R)(I −�0)/ω(I − R)(I −�0)e

are the right and left Perron–Frobenius eigenvectors of G, respectively. Note that, since
rank(I − G) = m − 1, it is clear that adj(I − G) 
= 0, which implies that κG 
= 0. This
completes the proof.

To study the long-tailed asymptotics of the matrix sequence {Rk}, we need to extend the
results in Lemma 4 and Proposition 1 of [28] to a matrix setting. We do so in the following two
lemmas. All the measures involved in the following can be signed measures.

Let B(R) be the σ -algebra of Borel sets on R =(−∞,∞). The convolution of two measures
µ1 and µ2 is defined as

(µ1 ∗ µ2)(B) =
∫
(−∞,∞)

µ1(B − x)µ2(dx), B ∈ B(R), B − x = {y : y + x ∈ B}.
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For B ∈ B(R), let U(B) and V (B) be two m×m matrices whose entries are finite measures,
given as

U(B) = (uij (B))1≤i,j≤m and V (B) = (vij (B))1≤i,j≤m.

The convolution of the two matrices U and V of finite measures is defined as

(U ∗ V )(B) =
( m∑
k=1

(uik ∗ vkj )(B)
)

1≤i,j≤m

and the convolution of a matrix U of finite measures and a finite scalar measure v is defined as

(U ∗ v)(B) = ((uij ∗ v)(B))1≤i,j≤m.

Remark 4.1. It should be noted that when B is a singleton, the convolution for measures
coincides with the ordinary convolution for sequences.

A distribution function F(x) is called long tailed if limx→∞ F(x + y)/F (x) = 1 for all
y ∈ R, where F(x) = 1 − F(x).

Lemma 4.5. Let U and U− be two m × m matrices of finite measures on (R,B(R)). If
limx→∞ U([x,∞))/F (x) = C, where F(x) is a long-tailed distribution function and the
matrix C is finite, and U− has support on (−∞, 0], then the matrix � = U− ∗ U satisfies

lim
x→∞

�([x,∞))

F (x)
= U−((−∞, 0])C

and the matrix �̃ = U ∗ U− satisfies

lim
x→∞

�̃([x,∞))

F (x)
= CU−((−∞, 0]).

Proof. Using Lemma 4 of [28], we obtain

lim
x→∞

�([x,∞))

F (x)
= lim
x→∞

1

F(x)

( m∑
k=1

(u−ik ∗ ukj )([x,∞))

)
1≤i,j≤m

=
( m∑
k=1

u−ik((−∞, 0])ckj
)

1≤i,j≤m
= U−((−∞, 0])C.

This completes the proof.

Lemma 4.6. Let U and U+ be two m×m matrices of finite measures on (R,B(R)). Assume
that (i) µ− is a finite scalar measure with support on (−∞, 0], such that µ−((−∞, 0]) = 0
and 0 < |∫

(−∞,0] xµ−(dx)| < ∞; (ii) U+ has support on [0,∞) with at least one nonzero
element, and all the nonzero elements of U+ are strictly positive on [a,∞) for a > 0; and
(iii) limx→∞ U([x,∞))/F (x) = C, where F(x) is a long-tailed distribution function and the
matrix C is finite. If U = µ− ∗ U+, then

lim
x→∞

U+([x,∞))∫
[x,∞)

F (y) dy
= C∫

(−∞,0] xµ−(dx)
.
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Proof. The proof is obvious from Proposition 1 of [28].

Lemma 4.7. Suppose that the Markov chain of GI/G/1 type is positive recurrent. If {Ak} is
long tailed with a uniformly dominant sequence {pk} and associated ratio matrix W , then

lim
k→∞

R≤k
p≤k

≥ W(I −�0)
−1.

Proof. Note that, since the Markov chain of GI/G/1 type is positive recurrent, it follows
from (3.2) and (3.1) that, for all k ≥ 1,

Rk = Ak(I −�0)
−1 +

∞∑
l=1

Rk+l�−l (I −�0)
−1 ≥ Ak(I −�0)

−1,

since (I −�0)
−1 ≥ 0 and Rk ≥ 0 and �−k ≥ 0 for k ≥ 1. Hence, for all k ≥ 1,

R≤k =
∞∑

l=k+1

Rl ≥
∞∑

l=k+1

Ak(I −�0)
−1 = A≤k(I −�0)

−1.

Since {Ak} is long tailed, it is clear that

lim
k→∞

R≤k
p≤k

≥ lim
k→∞

A≤k
p≤k

(I −�0)
−1 = lim

k→∞
A≤k
p≤k

(I −�0)
−1 = W(I −�0)

−1.

Now we are able to prove the following theorem, which characterizes the long-tailed
asymptotics of the matrix sequence {Rk}.
Theorem 4.2. Suppose that the Markov chain of GI/G/1 type is positive recurrent, φA− < 1,
and

∑∞
k=−∞ |k|Ak is finite. If {Ak} is long tailed with a uniformly dominant probability

sequence {pk} and associated ratio matrix W , then

lim
k→∞

R≤k
p≤k

= Weω(I − R)

ω(I − R)(I −�0)
∑∞
j=1 jGje

, (4.3)

where p≤k = ∑∞
n=k+1 p≤n.

Proof. It follows from (3.5) that

[R∗(z)− I ] det(I −G∗(z)) = [A∗(z)− I ] · adj(I −G∗(z)) · (I −�0)
−1 (4.4)

when the matrix I −G∗(z) is invertible. To evaluate the asymptotics of the coefficient matrix
sequence in the generating functionR∗(z)−I , we first analyze the asymptotics of the coefficient
matrix sequence in the generating function [A∗(z) − I ] · adj(I − G∗(z)), using Lemma 4.5.
Since A∗(z)− I and adj(I −G∗(z)) are analytic for φA− < |z| < φA+ = 1 (where φA+ = 1
results from the fact that {Ak} is long tailed), we can write A∗(z)− I = ∑∞

k=−∞ zkÂk , where

Âk =
{
Ak if k 
= 0,

A0 − I if k = 0.
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Since G∗(z) = ∑∞
k=1 z

−kGk , by the definition of the adjoint matrix we can write

adj(I −G∗(z)) =
0∑

k=−∞
zkSk

and define Sk = 0 for all k ≥ 1. Let

∞∑
k=−∞

zkQk = [A∗(z)− I ] · adj(I −G∗(z)).

Then the equality
∞∑

k=−∞
zkQk =

∞∑
k=−∞

zkÂk ·
∞∑

k=−∞
zkSk,

with
∑∞
k=1 z

kSk = 0, implies that

Qk =
∑
i+j=k

ÂiSj = Âk � Sk, (4.5)

with Sj = 0 for j ≥ 1. Therefore, we obtain Q≤k = A≤k ∗ S≤k for k ≥ 1. If, for a matrix
sequence {Ck}, we define the matrix of measures by µC(B) = ∑

k∈B Ck , then it follows from
Remark 4.1, (4.5), and Lemma 4.5 that

lim
k→∞

Q≤k
p≤k

= W ·
0∑

k=−∞
Sk = W · adj(I −G). (4.6)

We now evaluate the asymptotics of the coefficient matrix sequence in the generating function
R∗(z)− I , using (4.4), (4.6), and Lemma 4.6. Let det(I −G∗(z)) = ∑0

k=−∞ zkgk and define
µ−(B) = ∑

k∈B gk . Since the Markov chain of GI/G/1 type is positive recurrent, apply-
ing Lemma 4.2(i) leads to

∑0
k=−∞ gk = det(I −G∗(1)) = det(I −G) = 0. It is clear that∑0

k=−∞ kgk = (d/dz){det(I − G∗(z))}|z=1. To compute
∑0
k=−∞ kgk , taking the derivative

(elementwise) of the equation det(I −G∗(z)) · I = adj(I −G∗(z)) · [I −G∗(z)] leads to

d

dz
{det(I −G∗(z))}|z=1 · I = adj(I −G) ·

∞∑
k=1

kGk + d

dz
{adj(I −G∗(z))}|z=1 · (I −G).

(4.7)

After multiplying (4.7) by ω and e and using the facts that ωe = 1 and (I −G)e = 0, it follows
from Lemma 4.4 that

0∑
k=−∞

kgk = d

dz
{det(I −G∗(z))}|z=1 = ω · adj(I −G)

∞∑
k=1

kGk · e

= κG
ω(I − R)(I −�0)

ω(I − R)(I −�0)e
·

∞∑
k=1

kGke. (4.8)
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Note that, since
∑∞
k=−∞ |k|Ak is finite, Lemma 4.3 illustrates that

∑∞
k=1 kGk is also finite.

Thus,
∑0
k=−∞ kgk is finite and nonzero according to Lemma 4.4, and

∑∞
k=1 kGke ≥ Ge = e.

Therefore, 0 < |∑0
k=−∞ kgk| < ∞. Since {Ak} is long tailed, Lemma 4.7 implies that

lim
k→∞

R≤k
p≤k

≥ W(I −�0)
−1.

Noting the facts that W � 0 and (I − �0)
−1 � 0, it is clear that W(I − �0)

−1 � 0, since
the matrix I − �0 is invertible. Hence, there exists at least one pair (i0, j0) such that the
(i0, j0)th element of the matrix W(I −�0)

−1 is positive. Therefore, Lemma 4.7 implies that
r≤k(i0, j0) > 0 for all k ≥ N , where N is a sufficiently large positive integer. Similarly, for
each positive element of the matrix W(I −�0)

−1, written as the (i∗, j∗)th element, we have
r≤k(i∗, j∗) > 0 for all k ≥ N . DefineU+(B) = ∑

k∈B Rk andU(B) = ∑
k∈B Qk(I −�0)

−1.
It follows from (4.4), (4.6), and Lemma 4.6 that

lim
k→∞

R≤k
p≤k

= W · adj(I −G)(I −�0)
−1∑0

k=−∞ kgk
. (4.9)

Substituting (4.2) and (4.8) into (4.9) leads to the expression in (4.3). This completes the proof.

Remark 4.2. It is easy to see from Theorem 4.2 that the equilibrium excess probability
sequence {p(I)k } of the sequence {pk} is a uniformly dominant sequence of the matrix sequence
{Rk}. Compare this with the fact that the sequence {qk} is a uniformly dominant sequence
of the matrix sequence {R0,k}. Here, {pk} and {qk} are uniformly dominant sequences of the
matrix sequences {Ak} and {Dk}, respectively. This means that {Rk} is tail heavier than {R0,k}
if limk→∞ p≤k/q≤k = c, where c is a positive constant, since

lim
k→∞

q≤k
p
(I)
≤k

= 0

according to Lemma 3.1 of [46].

Since π≤k = x0R0,≤k ∗ ∑∞
n=0 R

n�
≤k for k ≥ 1, according to Lemma 3.1, the tail of the vector

sequence {πk} can be expressed as a tail of convolution of the two matrix sequences {R0,k} and
{∑∞

n=0 R
n�
k }. It is well known that the convolution of two long-tailed matrix sequences may

not be long tailed; therefore, it is possible that the vector sequence {πk} is not long tailed, even
though the two matrix sequences {Ak} and{Dk} are. In the remainder of the paper, the two
matrix sequences {Ak} and{Dk} will be restricted to either the subexponential class or the class
of light-tailed sequences.

5. The subexponential asymptotics of {πk}
In this section, under the condition min{φA+, φD} = 1, we consider the following three

cases:

(a) {Ak} ∈ S∗ and {Dk} is light tailed,

(b) {Ak} is light tailed and {Dk} ∈ S, and

(c) {Ak} ∈ S∗ and {Dk} ∈ S.
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In these three cases, we can characterize the subexponential asymptotics of the stationary
probability vector {πk}. We can also explicitly express a uniformly dominant subsequence of
{πk}, and the associated ratio vector.

According to Lemma 3.1, it is crucial to characterize the subexponential asymptotics of the
matrix sequence {∑∞

n=0 R
n�
k }. To do this, we need Lemma 4.3 of [5], which we now restate.

Lemma 5.1. (Asmussen et al. [5].) Let H(x) be a matrix of nonnegative functions such that
H = H(∞)−H(0) is strictly substochastic (and, therefore, the spectral radius ofH is strictly
less than 1). If there exist a probability distribution F(x) ∈ S and a finite matrix L such that
limx→∞H(x)/F (x) = L, then

lim
k→∞

∑∞
n=0H

n�(x)
F (x)

= (I −H)−1L(I −H)−1.

The following lemma characterizes the subexponential asymptotics of {∑∞
n=0 R

n�
k }.

Lemma 5.2. Suppose that the Markov chain of GI/G/1 type is positive recurrent, φA− < 1,
and

∑∞
k=−∞ |k|Ak is finite. If {Ak} ∈ S∗ with a uniformly dominant probability sequence {pk}

and associated ratio matrix W , then {∑∞
n=0 R

n�
k } ∈ S and

lim
k→∞

∑∞
n=0 R

n�
≤k

p≤k
= (I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Proof. Since {Ak} ∈ S∗ ⊂ L and p(I)k = (1/µp)p≤k for k ≥ 1, where µp = ∑∞
k=1 kpk =∑∞

k=1 p≤k < ∞ according to the assumption that
∑∞
k=−∞ |k|Ak is finite, it follows from

Theorem 4.2 that

lim
k→∞

R≤k
p
(I)
≤k

= lim
k→∞

R≤k
(1/µp)p≤k

= µpL, (5.1)

where

L = Weω(I − R)

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Let G̃k = �−1R�
k � for k ≥ 1, where � = diag(ω1, ω2, . . . , ωm). Then Lemma 4.2(i) gives

ωR � ω and, so, G̃ = ∑∞
k=1 G̃k is strictly substochastic, since

G̃e =
∞∑
k=1

G̃ke =
∞∑
k=1

�−1R�
k �e = �−1(ωR)� � �−1ω� = e.

It follows from (5.1) that limk→∞ G̃≤k/p
(I)
≤k = µp�

−1L��, and it follows from Proposi-
tion 2.1(i) that {p(I)k } is a probability sequence in S. Therefore, Lemma 5.1 implies that

lim
k→∞

∑∞
n=0 G̃

n�
≤k

p
(I)
≤k

= (I − G̃)−1 · µp�−1L�� · (I − G̃)−1. (5.2)

Since the Markov chain of GI/G/1 type is positive recurrent, I − R is invertible. It is easy to
see that (I − R)−1L(I − R)−1 
= 0, since L 
= 0. Therefore, it follows from (5.2) that

lim
k→∞

∑∞
n=0 R

n�
≤k

p
(I)
≤k

= µp(I − R)−1L(I − R)−1 = µp(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

. (5.3)
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Noting that
∞∑
n=0

R
n�
≤k =

∞∑
n=0

R
n�
≤k ,

it follows from (5.3) that

lim
k→∞

∑∞
n=0 R

n�
≤k

p≤k
= lim
k→∞

(1/µp)
∑∞
n=0 R

n�
≤k

p
(I)
≤k

= (I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Therefore, {∑∞
n=0 R

n�
k } ∈ S according to Proposition 2.3. This completes the proof.

Remark 5.1. As seen from this proof, Lemma 5.2 still holds under the weaker conditions that
{Ak} ∈ L and {p≤k} ∈ S. The proof of this lemma can be made shorter if results of [23] are
used.

The following corollary is a direct result of Theorem 4.1, using Proposition 2.3.

Corollary 5.1. Suppose that the Markov chain of GI/G/1 type is positive recurrent. If {Dk} ∈ S
with a uniformly dominant sequence {qk} and associated ratio matrix V , then {R0,k} ∈ S and

lim
k→∞

R0,≤k
q≤k

= V

(
I −

∞∑
i=0

�−i
)−1

.

The following lemma characterizes the light-tailed asymptotics of the matrix sequence
{∑∞

n=0 R
n�
k } when the matrix sequence {Ak} is light tailed. Its proof can be obtained by

computations similar to those in Subsection 4.1 of [33].

Lemma 5.3. Suppose that the Markov chain of GI/G/1 type is positive recurrent and φA+ > 1.
If there exists a minimal positive solution η ∈ (1, φA+) to the equation

det(I − A∗(z)) = 0,

then

lim
k→∞

∑∞
n=0 R

n�
≤k

η−(k+1)
= (I −�0)[I −G∗(η)]v(η)u(η)
(η − 1)u(η)

∑∞
k=1 kη

k−1Rkv(η)
,

where u(η) and v(η) are the left and right Perron–Frobenius vectors of A∗(η), satisfying
u(η)e = u(η)v(η) = 1.

Remark 5.2. Suppose that the Markov chain of GI/G/1 type is positive recurrent. If φA+ > 1
then the matrix sequence {∑∞

n=0 R
n�
k } is light tailed. For simplicity, in the remainder of

the paper we only consider the light-tailed case in which there exist a uniformly dominant
subsequence {bk}, and associated ratio matrix B, such that

lim
k→∞

∑∞
n=0 R

n�
≤k

b≤k
= B.

If η ≥ φA+ in Lemma 5.3, then the expressions for both bk and B might be more complicated
– such examples were provided in [33].
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Similarly, if φD > 1 then {R0,k} is light tailed. In what follows, we only consider the case in
which there exist a uniformly dominant subsequence {dk}, and associated ratio matrixD, such
that

lim
k→∞

R0,≤k
d≤k

= D.

In general, it is not easy to give explicit expressions for both dk and D – such examples were
also discussed in [33].

The following theorem characterizes the subexponential asymptotics of {πk} for the cases
in which (a) {Ak} ∈ S∗ and {Dk} is light tailed, and (b) {Ak} is light tailed and {Dk} ∈ S.

Theorem 5.1. Suppose that the Markov chain of GI/G/1 type is positive recurrent, and that∑∞
k=−∞ |k|Ak is finite.

(a) If φD > 1, the light-tailed sequence {R0,k} has a uniformly dominant subsequence {dk} with
associated ratio matrix D, and {Ak} ∈ S∗ has a uniformly dominant subsequence {pk} with
associated ratio matrix W , then {πk} ∈ S and

lim
k→∞

π≤k
p≤k

= x0D(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

(b) If φA+ > 1, the light-tailed sequence {∑∞
n=0 R

n�
k } has a uniformly dominant subsequence

{bk} with associated ratio matrix B, and {Dk} ∈ S has a uniformly dominant subsequence {qk}
with associated ratio matrix V , then {πk} ∈ S and

lim
k→∞

π≤k
q≤k

= x0V

(
I −

∞∑
i=0

�−i
)−1

B.

Proof. We need only prove part (a), as part (b) can be proved similarly.
If {Ak} ∈ S∗ has a uniformly dominant sequence {pk} with associated ratio matrix W , then

lim
k→∞

∑∞
n=0 R

n�
≤k

p≤k
= (I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

,

according to Lemma 5.2. If φD > 1 then {R0,k} is light tailed. When {R0,k} has a uniformly

dominant sequence {dk} and associated ratio matrix D, it is clear that d≤k = o(p
(I)
≤k ), since

p
(I)
k ∈ S due to the fact that {Ak} ∈ S∗. Therefore, it follows from Lemma 3.1 and Proposi-

tion 2.6 that

lim
k→∞

π≤k
p≤k

= x0D(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Hence, {πk} ∈ S. This completes the proof.

Remark 5.3. Although, for some stochastic models, it may not be easy to provide an explicit ex-
pression for a uniformly dominant subsequence of the light-tailed matrix sequence {∑∞

n=0 R
n�
k }

or {R0,k}, and the associated ratio matrix, Theorem 5.1 provides a useful relation between the
subexponential asymptotics of {πk} and the repeating and boundary matrix sequences in the
transition matrix of GI/G/1 type.

https://doi.org/10.1239/aap/1118858635 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858635


Heavy-tailed asymptotics 505

The following theorem characterizes the subexponential asymptotics of {πk} in case (c); that
is, when {Ak} ∈ S∗ and {Dk} ∈ S.

Theorem 5.2. Suppose that the Markov chain of GI/G/1 type is positive recurrent, and that∑∞
k=−∞ |k|Ak is finite. Assume that {Ak} ∈ S∗ has a uniformly dominant subsequence {pk}

with associated ratio matrixW , that {Dk} ∈ S has a uniformly dominant subsequence {qk} with
associated ratio matrix V , and that the limit limk→∞ p≤k/q≤k is either 0, a positive number,
or ∞. Then {πk} ∈ S. Furthermore,

(i) if q≤k = o(p≤k) then

lim
k→∞

π≤k
p≤k

= x0V

(
I −

∞∑
i=0

�−i
)−1

(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

,

(ii) if p≤k = o(q≤k) then

lim
k→∞

π≤k
q≤k

= x0V

(
I −

∞∑
i=0

�−i
)−1

(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

, and

(iii) if p≤k � ξq≤k for a constant ξ > 0 then

lim
k→∞

π≤k
q≤k

= x0

[
V

(
I −

∞∑
i=0

�−i
)−1

e1e
� + ξe1e

�(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

]
,

where e1 is the column vector of dimension m0 with all entries equal to 1.

Proof. According to Lemmas 3.1 and 5.2 and Corollary 5.1, parts (i) and (ii) can easily be
proved using Proposition 2.6, while part (iii) follows directly from Proposition 2.7.

If {pk} ∈ S∗, {qk} ∈ S, and there does not exist a limit limk→∞ p≤k/q≤k , then it is possible
that {πk} /∈ S – such an example was provided in Theorem 6.2 of [25]. The following corollary
follows from Theorem 5.1(c) of [25].

Theorem 5.3. Suppose that the Markov chain of GI/G/1 type is positive recurrent, and that∑∞
k=−∞ |k|Ak is finite. If {Ak} ∈ S∗ has a uniformly dominant subsequence {pk} and

associated ratio matrixW , {Dk} ∈ S has a uniformly dominant subsequence {qk}and associated
ratio matrix V , and {λqk + (1 − λ)p

(I)
k } ∈ S for all λ ∈ (0, 1), then {πk} ∈ S.

Proof. It follows from Lemma 3.1 that π≤k = x0R0,≤k ∗ ∑∞
n=0 R

n�
≤k and, hence, that

π≤k(j) = ∑m0
i=1

∑m
l=1 x0(i)r0,≤k(i, l) ∗ ψ≤k(l, j), where ψ≤k(l, j) is the (l, j)th entry of

the matrix
∑∞
n=0 R

n�
≤k . It follows from Corollary 5.1 and Lemma 5.2 that

r0,≤k(i, l) � λ(i, l)q≤k and ψ≤k(l, j) � µ(l, j)p≤k,

where λ(i, l) and µ(l, j) are the (i, l)th and (l, j)th entries of the matrices

V

(
I −

∞∑
i=0

�−i
)−1

and
µpWeω(I − R)

ω(I − R)(I −�0)
∑∞
j=1 jGje

,
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respectively. If λ(i, l) = 0 or µ(l, j) = 0, we take r0,≤k(i, l) ∗ ψ≤k(l, j) � 0, while, if
λ(i, l) 
= 0 and µ(l, j) 
= 0, we obtain

r0,≤k(i, l) ∗ ψ≤k(l, j) = λ(i, l)µ(l, j)
r0,≤k(i, l)
λ(i, l)

∗ ψ≤k(l, j)
µ(l, j)

.

Since
r0,≤k(i, l)
λ(i, l)

� q≤k and
ψ≤k(l, j)
µ(l, j)

� p≤k,

we obtain r0,≤k(i, l) ∗ ψ≤k(l, j) � λ(i, l)µ(l, j)q≤k ∗ p(I)≤k . Therefore,

π≤k � x0V

(
I −

∞∑
i=0

�−i
)−1 µpWeω(I − R)

ω(I − R)(I −�0)
∑∞
j=1 jGje

· q≤k ∗ p(I)≤k .

Note that, since {qk} ∈ S, p(I)k ∈ S (due to the fact that {pk} ∈ S∗), and λqk + (1 − λ)p(I)k ∈ S
for all λ ∈ (0, 1), it is clear that {qk � p

(I)
k } ∈ S, which is equivalent to saying that the function

q≤k ∗ p(I)≤k , k ≥ 0, is in S. Therefore, {πk} ∈ S. This completes the proof.

We now provide a result on regular variation and conclude the paper with some remarks and
discussion.

Definition 5.1. (a) A sequence {ln} of nonnegative scalars, with
∑∞
n=0 ln < ∞, is called

slowly varying if l≤n > 0 for n > N , where N is a sufficiently large positive integer, and
limn→∞ l≤�λn�/l≤n = 1 for any λ > 0. Denote by R0 the class of slowly varying sequences.

(b) A sequence {cn} of nonnegative scalars with
∑∞
n=0 cn < ∞ is called regularly varying,

with index α ∈ (−∞,∞), if c≤n = nαl≤n for all n ≥ N . Denote by Rα the class of regularly
varying sequences with index α.

Definition 5.2. A sequence {Bn} of nonnegative matrices is called regularly varying, with index
α ∈ (−∞,∞), if there exists at least one entry sequence of {Bn} that is regularly varying with
index α, and all the other entry sequences are either regularly varying with index β ∈ (−∞, α]
or are tail lighter than some entry sequence of {Bn} in Rα . Denote by Rα the class of regularly
varying matrix sequences, with index α, of all sizes.

Corollary 5.2. Suppose that the Markov chain of GI/G/1 type is positive recurrent, and that∑∞
k=1 kDk and

∑∞
k=−∞ |k|Ak are both finite.

(i) If φA+ > 1 and {Dk} ∈ R−β for β ≥ 2, then {πk} ∈ R−β .

(ii) If φD > 1 and {Ak} ∈ R−α for α ≥ 2, then {πk} ∈ R−(α−1).

(iii) If {Ak} ∈ R−α for α ≥ 2 and {Dk} ∈ R−β for β ≥ 2, then {πk} ∈ R−γ , where
γ = min{α − 1, β}.

Remark 5.4. The model studied in this paper is a generalization of the model of [4]. We allow
for a more general boundary sequence, which makes the study much more challenging. The
interpretation or determination of results of [4] can be easily obtained from results in this paper,
as follows. Consider the Markov chain with {Ak} ∈ S∗ and pk = qk for all k ≥ 1. Since
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limk→∞ q≤k/p≤k = (1/µp)q≤k/p(I)≤k = 0 according to Lemma 3.1 of [46], it follows from
Theorem 5.2(i) that

lim
k→∞

π≤k
p≤k

= x0V

(
I −

∞∑
i=0

�−i
)−1

(I − R)−1Weω

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Comparing this expression to [4, Equation (1.3)] leads to the determination of c2 (in [4]):

c2 = x0V

(
I −

∞∑
i=0

�−i
)−1

(I − R)−1We

ω(I − R)(I −�0)
∑∞
j=1 jGje

.

Furthermore, for a Markov chain of M/G/1 type, it is clear thatGj = 0 and�−j = 0 for j ≥ 2.
In this case, we have

c2 = x0V (I −�0)(I −G1)(I − R)−1We

ω(I − R)(I −�0)G1e
.

Remark 5.5. Borovkov and Korshunov [9] considered a partially homogeneous Markov chain
defined by the following recursion:

X(n+ 1) =
{

[X(n)+ ξn]+ for X(n) > 0,

ηn for X(n) = 0.

(This recursion is more general than Lindley’s; see Subsection 2.2 of [9] for details.) Obviously,
the partially homogeneous Markov chain provides the scalar case of the Markov chain of GI/G/1
type, where {ξn} and {ηn} correspond to the repeating matrix sequence {Ak} and the boundary
matrix sequence {Dk}, respectively. The tail of the stationary probability given in Theorem 2
of [9] plays the same role as that of our Lemma 3.1. We make the following comparisons.

(i) If
∫ ∞
x

P{η > u} du is a u.p. function (see [9]) and
∫ ∞
x

P{η > u} du = o(
∫ ∞
x

P{ξ > u} du)
as x → ∞, then Corollary 1(c) of [9] is the same as our Theorems 5.1(a) and 5.2(i). However,
the conditions in Corollary 1 of [9] are stronger than those of our Theorem 5.2(i), because∫ ∞
x

P{η > u} du is always tail heavier than P{η > x} (or q≤k is always tail heavier than q≤k).

(ii) Our Theorems 5.1(b) and 5.2(ii) are better than Corollary 2(c) of [9] in the sense that∫ ∞
x

P{η > u} du is part of the conditions and part of the tailed expression in [9], while
Theorems 5.1(b) and 5.2(ii) here only require the tail q≤k .

Remark 5.6. Foss and Zachary [23] studied the subexponential asymptotics of the maximum
of a more general random walk, whose increments ζXn , n ≥ 0, are subexponential. Here,
ζXn is modulated by an independent sequence {Xn}, which is a χ -valued discrete-time random
process with finite states, including Markov chains as a special case. The results of [23] can
be used to study the subexponential asymptotics of the R-measure for the repeating matrix
sequences (see, for example, Lemma 5.2 above), but cannot be used to deal with the general
boundary condition imposed in this paper.
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