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Relative Homotopy in Relational Structures

P. J. Witbooi

Abstract. The homotopy groups of a finite partially ordered set (poset) can be described entirely in the

context of posets, as shown in a paper by B. Larose and C. Tardif. In this paper we describe the relative

version of such a homotopy theory, for pairs (X,A) where X is a poset and A is a subposet of X. We

also prove some theorems on the relevant version of the notion of weak homotopy equivalences for

maps of pairs of such objects. We work in the category of reflexive binary relational structures which

contains the posets as in the work of Larose and Tardif.

1 Introduction

It is well known that a partial order (a reflexive, transitive and anti-symmetric rela-

tion) on a set X determines a T0 topology on X which has as a basis the collection

{Ux : x ∈ X} where, for each x ∈ X, Ux = {y ∈ X : y ≤ x}. This assignment is

a functor from the category P of posets (partially ordered sets) and order-preserving

functions to the category of T0 topological spaces and continuous functions. In fact,

this functor establishes an isomorphism between the subcategories of finite posets

and finite T0 spaces.

1.1 Notation

For a poset X, let U(X) = {Ux : x ∈ X} where, for each x ∈ X,

Ux = {y ∈ X : y ≤ x}.

On the other hand, there is also a link between finite posets and finite polyhedra

via a functor K defined by Alexandroff [2]. For a finite poset X, KX is the simpli-

cial complex whose vertices are the points of X and whose simplexes are the totally

ordered subsets of X. McCord [10] showed that the associated T0-space X had ex-

actly the same homology and homotopy groups as the underlying polyhedron |KX|.
Specifically, he defined a natural transformation qX : |KX| → X which he proved to

be a weak homotopy equivalence if X is an A-space (a topological space in which the

intersection of every collection of open sets is open) and in particular if X is locally

finite (a space in which every point has a finite closure and a finite neighbourhood).

What this means is that the homomorphisms of homotopy groups (for n ≥ 1)

and the function (for n = 0) (qX)∗ : πn|KX| → πn(X), induced by qX are isomor-

phisms for n ∈ N and a bijection for n = 0. Following this connection, examples of
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finite space models of certain spaces and maps between them have been described,

for instance in [6, 7].

Very recently, Larose and Tardif [8] have constructed an internal version of the

homotopy groups of a poset X. They define analogues of homotopy groups as certain

equivalence classes of maps between posets. Actually, they work in a category which

is bigger than P.

1.2 Relational Structure

A binary reflexive relational structure X = (X, θ) is a set X together with a reflexive

binary relation θ ⊆ X × X. The category R is the category of which the objects

are the binary reflexive relational structures and the morphisms are the functions

f : (X, θX)→ (Y, θY ) satisfying the condition (x1, x2) ∈ θX ⇒ ( f x1, f x2) ∈ θY .

The reflexivity condition, i.e., that (x, x) ∈ θX for all x ∈ X, implies in particular

that every constant function between relational structures is an R-morphism. The

category R is a construct, see [1, 5.1, p. 53; 3.3, p. 14], i.e., its objects are structured

sets and the morphisms are structure preserving functions. For an object (X, θX) of

R, by a regular subobject of (X, θX) we mean an object (Y, θY ) of R such that Y ⊆ X

and θY = {(x, y) ∈ θX : x, y ∈ Y}. Henceforth we shall simply say subobject.

In the sequel the term binary reflexive relational structure will be shortened to

relational structure. Furthermore we shall refer to a relational structure (X, θ) as X,

without explicitly specifying the relation θ when there is no ambiguity.

For decades, posets have been utilized in the study of cohomology of groups. Fi-

nite models of sphere multiplications and Hopf constructions appear in [6, 7]. Rela-

tional structures find application in theoretical computer science. These applications

include complexity problems such as in [4, 8], for instance.

The definition in [8] is reminiscent of the classical definition of the homotopy

groups πn(Y, ∗) of the space Y . The group πn(Y, ∗) consists of homotopy classes of

maps from the n-fold unit cube In into Y which send the boundary of the cube into

the basepoint. In [8] the unit interval is replaced by the infinite fence,

(1.1) 0→ 1← 2→ 3← 4→ 5 · · · ,

which we denote by F. Thus F is the poset of which the underlying set is the set N of

all non-negative integers, and the partial order θ ⊂ N× N is such that

(k, l) ∈ θ ⇔ l = k or |k− l| = 1 and k is even.

For any k ∈ N, Fk denotes the subobject {0, 1, 2, . . . , k} of F.

In Section 2 we review some basic constructions that will be required in the sequel.

In Section 3 we extend the work in [8] by defining analogues in R of relative homo-

topy groups for objects of the form (X,A, ∗), where X is a relational structure, A is a

subobject of X and ∗ is a (base) point in A. The groups are denoted by σk(X,A, ∗),

k ∈ N. Section 4 comprises some observations and lemmata required to compare,

in the case of posets, the newly defined relative group with the classical relative ho-

motopy group. Much of this is adapted from the paper [8] of Larose and Tardif.
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In Section 5 we further analyze analogies of the new theory with homotopy theory,

such as the existence of a long exact sequence. We show that in the case that X is a

poset, then for every k ∈ N the group σk(X,A, ∗) is isomorphic to πk(X,A, ∗), where

in the latter case we consider the underlying T0 spaces instead of posets. This fact

implies that every concept which is defined entirely in terms of homotopy groups,

can be introduced into R. Thus in Section 6 we discuss weak homotopy equivalences

in the relative sense. In particular we prove a generalization of a well-known the-

orem of Quillen [11, Theorem 6.3] (formulated in this paper as Theorem 6.2) on

weak homotopy equivalences. Much further work has been done on posets under

this theme initiated by Quillen, see for instance the paper by Björner, Wachs, and

Welker [3]. Even the special case of Theorem 6.3, of considering only posets rather

than relational structures more generally, is a new contribution in this regard.

2 Some Basic Constructions

We review some basic concepts and some constructions that lead to new relational

structures. Some of these can be found in [8]. We include some further insights.

2.1 Connected Sets

Consider any R-object X. For a pair of points x, y ∈ X we say that x ∼c y if there

is an R-morphism g : F → X (and here F is the fence) such that x, y ∈ g(F). The

relation ∼c is an equivalence relation on X, and the equivalence classes are called the

connected components of X or simply the components. If X has only one component,

we say that X is connected. The set of all components of X will be denoted by σ0(X).

We also note that if f : X → Y is an R-morphism and C is a connected subobject

of X, then f (C) is a connected subobject of Y . Thus every R-morphism f : X → Y

induces a function f∗ : σ0(X)→ σ0(Y ).

Definition 2.1 An R-morphism f : X → Y is said to be a 0-equivalence if the

function f∗ : σ0(X)→ σ0(Y ) is surjective.

For k ∈ N the map f : X → Y is said to be a k-equivalence if the following two

conditions hold.

(i) f∗ : σ0(X)→ σ0(Y ) is bijective;

(ii) for every x ∈ X, the homomorphism f∗ : σn(X, x) → σn(Y, f (x)) is an iso-

morphism whenever 1 ≤ n ≤ k− 1 and an epimorphism if n = k.

The map f : X → Y is said to be a weak equivalence if it is a k-equivalence for all

k ∈ N.

2.2 Barycentric Subdivision

Consider any relational structure X. By a chain in X we mean a subset C of X where

C is the image in X of an R-morphism f : T → X where T is a totally ordered set.

We recall from [8] that the barycentric subdivision X ′ of X is defined to be the poset

(under set inclusion) of all finite chains in X. Barycentric subdivision can be seen to
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be a functor from R to P. We further want to note that in [8], for any R-object X, an

R-morphism p : X ′ → X is shown to exist, such that for every chain τ in X, p(τ ) is an

upper bound of τ . Such a map induces an isomorphism of (σ−) homotopy groups

and is unique if X is antisymmetric. Let us refer to any such map as a barycentric

projection. We note however that while such a map p is a retraction as a function

between the sets, p is not a retraction in R.

Remark 2.2 When constructing barycentric subdivision and projections we find

that for a morphism g : X → Y , a square of the form

X ′

g ′

//

α

��

Y ′

β

��
X

g

// Y

is not necessarily commutative. However we observe the following.

• If g is injective, then for any choice of α we can find a certain β such that the

square above is commutative.

We note that in R there is a natural way of imposing relational structures on prod-

ucts and hom-sets.

2.3 Product

The product of two relational structures (X, θX) and (Y, θY ) is defined to be the re-

flexive binary relational structure (X×Y, θX×Y ), where θX×Y is the relation on X×Y

described as follows. For x, x1 ∈ X and y, y1 ∈ Y , ((x, y), (x1, y1)) ∈ θX×Y if and

only if (x, x1) ∈ θX and (y, y1) ∈ Y .

2.4 Structure on Hom-sets

Consider any R-objects X and Y . We denote the set of R-morphisms X → Y by

Hom(X,Y ). Let H = Hom(X,Y ) and let us define a relation θH on H as follows. For

f , g ∈ H, we let ( f , g) ∈ θH if and only if, whenever (x, y) ∈ θX , then ( f x, g y) ∈ θY .

Then θH is reflexive and thus Hom(X,Y ) becomes a relational structure.

2.5 Pairs

By a pair in R we shall mean an object X together with a subobject A, and an R-mor-

phism f : X → Y is said to be a map of pairs f : (X,A)→ (Y,B) if f (A) ⊆ B. A pair

(X,A) in R is called a pointed relational structure if A consists of exactly one point.

Thus we shall sometimes speak of pointed maps.
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2.6 Geometric Realization

Let P be any poset. For any function h : P → [0, 1] the support st(h) of h is the subset

of P defined by st(h) = {p ∈ P : h(p) 6= 0}(see [8]).

Now consider the set

P̂ = {h ∈ [0, 1]P : st(h) is a finite chain in P and Σp∈P h(p) = 1}.

The set P̂ is equipped with the coherent topology (see [12]) and the resulting topo-

logical space is called the geometric realization of P.

3 The Relative Homotopy Group

Let F be the fence defined in the introduction (1.1). Recall that for any m ∈ N, by Fm

we mean the subposet {0, 1, 2, . . . ,m} of F. For the homotopy theory in posets, the

posets Fm fulfill the role of the unit interval.

3.1 The Set Σk(X,A, ∗)

Let X be a relational structure, let A be a subobject of X, and fix a point ∗ in A. We

also fix k ∈ N and let K = {1, 2, 3, . . . , k}. We denote a typical element of Fk by

t = (t1, t2, . . . , tk).

For k = 1, let Σ1(X,A, ∗) be the set of all maps f : F → X such that f (0) ∈ A, and

for which there exists a least integer n = N( f ) such that for every s ∈ N, f (n + s) =

f (n) = ∗.
For any k ∈ N with k ≥ 2, let Σk(X,A, ∗) be the set of all R-morphisms f : Fk → X

satisfying the following conditions (and here t ∈ Fk):

(i) If tk = 0, then f (t) ∈ A.

(ii) If ti = 0 for some i ∈ K\{k}, then f (t) = ∗.
(iii) For each i ∈ K there exists a natural number ni( f ) such that if ti ≥ ni( f ) for

some i ∈ K, then f (t) = ∗.

For a given i, the minimum of the numbers ni( f ) will be denoted by Ni( f ) and

we let N( f ) = max{Ni( f )|i = 1, 2, 3, . . . , k}.

3.2 The Group σk(X,A, ∗)

The set Σk(X,A, ∗), being a set of morphisms between two relational structures, be-

comes itself a relational structure (see Section 2.6). The set of connected components

(which will also be referred to as homotopy classes) of Σk(X,A, ∗) will be denoted

by σk(X,A, ∗). For any member g of Σk(X,A, ∗), the connected component which

contains g will be denoted by [g]. Note that in the case A = ∗, the set σk(X,A, ∗)
coincides with σk(X, ∗) as defined in [8, Definition 2.5].

Now let us assume k ≥ 2. For f , g ∈ Σk(X,A, ∗) and for an even integer N with

N ≥ N( f ) we define

( f , g)N (t1, t2, . . . , tk) =

{
f (t1, t2, . . . , tk) if t1 ≤ N,

g(t1 − N, t2, . . . , tk) otherwise.
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We extend the definition of the group operation [8, Definition 2.6] in the case k ≥ 2

by setting [ f ] · [g] = [( f , g)N ] for any even integer N with N ≥ N( f ). Thus, for

k ≥ 2, the same formula used in [8, Definition 2.6] to impose a group structure

on σk(X, ∗) turns out to give a group structure also on σk(X,A, ∗). The unit of the

latter group is the connected component of the constant ∗ map in Σk(X,A, ∗). Fur-

thermore the relative group σ(−) is a functor. It follows that for k ≥ 2 the group

σk(X, {∗}, ∗) is the same as the group σk(X, ∗) of [8].

The set of path components of Σ1(X,A, ∗) is denoted by σ1(X,A, ∗). We note that

σ1(X,A, ∗) is functorial but is not a group in general.

4 An Approximation Theorem for Maps Into Posets

In this section we introduce some technical terminology and we revisit some key re-

sults of [8], formulating the appropriate versions for our purposes. The proofs of

such modified results from [8] follows almost verbatim as those of their counter-

parts in [8], and we omit the proofs. These results are required in Section 5 to prove

the exactness of the homotopy sequence of a pointed pair (X,A, ∗) in R, and in the

case of X being a poset, to compare the relative homotopy group σk(X,A, ∗) with

πk(X,A, ∗).

4.1 Notation

Just as in [8], for a pointed pair (X,A, ∗) of posets we define a function

∆k : σk(X,A, ∗)→ πk(X,A, ∗).

For g ∈ Σk(X,A, ∗), let m be any natural number which is not less than N(g) =

max(S) where S is the set S = {N1(g),N2(g), . . . ,Nk(g)}. Let [g] be the homotopy

class of g in σk(X,A, ∗) and let g be the restriction of g to Fk
m.

Let αk
m : F̂k

m → Fk
m be the weak equivalence of McCord similar to, for instance, the

one in [8, Theorem 3.2].

Let φk
m : F̂k

m → Ik be the obvious homeomorphism, similar to the one defined in

[8, Definition 3.6], and let ψk
m be its inverse.

Now let ∆k[g] = [g ◦ αk
m ◦ ψ

k
m]. Then ∆k is well defined. It is also clear that

∆k is a homomorphism. In the next section we prove that for each k ∈ N, ∆k is an

isomorphism.

4.2 Definition

Let n ≥ 2 be an integer and k ∈ N.

A subset B of [0, 1]k is an n-box if B = Π
k
i=1Bi , where each Bi is an interval of the

form Bi = [0, 1] ∩ ( a
n
, b

n
), for odd integers a and b with a < b (cf. [8]).

Let P be a poset. A continuous function f : [0, 1]k → P is said to be n-simple if for

each p ∈ P, the set {x ∈ [0, 1]k : f (x) ≤ p} is a union of n-boxes.
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4.3 Notation

Let us fix k ∈ N and let K = {1, 2, 3, . . . , k}. We define the following sets:

Jk = {x ∈ Ik+1 : xk+1 = 1 or xi(1− xi) = 0 for some i ∈ K},

J∗k = Jk ∪ {x ∈ Ik+1 : xk+1 = 0} = ∂Ik+1.

In order to prove the exactness of the analogue of the homotopy sequence of a pair

of relational structures, we require two auxiliary results which can be derived from

work in [8].

Lemma 4.1 ([8, Lemma 3.15]) Let (P, ∗) be a pointed poset and let n ≥ 4 be an even

integer. A map f : Ik → P is n-simple if and only if there exists a poset map g : Fk
n → P

such that g ◦ αk
n ◦Ψ

k
n = f , i.e., the following diagram commutes.

Ik

f
//

Ψ
k
n

��

X

F̂k
n

αk
n

// Fk
n

g

OO

Theorem 4.2 ([8, Theorem 3.17]) Let (P,U ,V ) be a triple in P with V ⊆ U ⊂ X.

Let f : (Ik+1, J∗k , Jk) → (P,U ,V ) be a continuous map. Then there exists an integer s

and an s-simple function g : Ik+1 → P such that g ≤ f , g( J∗k ) ⊆ U , and g( Jk) ⊆ V .

5 The Homotopy Sequence of a Pair

There is an analogue in R of the exact homotopy sequence of a pair of spaces. We de-

fine the sequence in (5.2), and settle the exactness in Theorem 5.2. We now describe

the relevant boundary homomorphism.

5.1 The Boundary Homomorphisms ∂ : σk(X,A, ∗)→ σk−1(A, ∗)

For k ∈ N with k ≥ 2 and for a pair (X,A), we define

(5.1) ∂ : σk(X,A, ∗)→ σk−1(A, ∗)

as follows: given any g ∈ Σk(X,A, ∗), let n = N(g) and let ∂([g]) = [g0], where

g0 : Fk−1 → X is the map g0(t1, t2, t3, . . . , tk−1) = g(t1, t2, t3, . . . , tk−1, 0). Then g0 ∈
Σk−1(A, ∗), and the induced function ∂ : σk(X,A, ∗) → σk−1(A, ∗), is obviously a

group homomorphism.

The injections i : σk(A, ∗) → σk(X, ∗) and j : σk(X, ∗) → σk(X,A, ∗), and the

boundary homomorphism (5.1) give rise to a homotopy sequence for a pair in R
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such as in (5.2), which is analogous to the homotopy sequence of a pair of pointed

topological spaces

(5.2) · · ·
j
−→ σk+1(X,A, ∗)

∂
−→ σk(A, ∗)

i
−→ σk(X, ∗)

j
−→ σk(X,A, ∗).

The sequence terminates at the right-hand side in the object σ1(X, ∗). (Actually we

can continue a little further in the right-hand direction, as is the case with the ho-

motopy sequence of a pair of topological spaces, but the relevant objects fail to be

groups.)

Theorem 5.1 Let k ∈ N with k > 1. Given any [h0] ∈ σk(X, ∗) for which j[h0] =

0 ∈ σk(X,A, ∗), then there exists [h1] ∈ σk(A, ∗) for which i[h1] = [h0].

Proof Suppose that [h0] ∈ σk(X, ∗) with j[h0] = 0 ∈ σk(X,A, ∗). The identity

j[h0] = 0 implies that there is some m ∈ N and a map H0 : Fk+1
m → X such that the

following conditions are fulfilled:

• for every t ∈ Fk
m we have H0(t × 0) = h0(t) and H0(t ×m) ∈ A;

• if s ∈ Fk+1
m and sk = 0, then H0(s) ∈ A;

• if s ∈ Fk+1
m and (sk −m)(su −m)su = 0 for some u < k, then H0(s) = ∗.

We define a map g : Ik → Ik+1 as follows (and here we consider x to denote a

typical element of Ik−1, and s ∈ I):

g(x, s) =

{
(x, 1, 2s) if s ≤ 1

2
,

(x, 2− 2s, 1) otherwise.

Then g is well defined and by the pasting lemma, g is continuous. Let

W = {y ∈ Ik+1 : yk(yk − 1)yk+1(yk+1 − 1) = 0}.

Let us define a map f0 : W →W by the following formula (and again we consider x

to denote a typical element of Ik−1 while s, t ∈ I):

f0(x, s, t) =





g(x, t) if s = 1,

(x, 0, s) if t = 1,

(x, 0, 0) if s = 0,

(x, s, 0) if t = 0.

Then f0 (is well-defined and continuous, and) can be extended to a map f1 : J∗k → J∗k
which is such that f1( J∗k \W ) ⊆ J∗k \W . Furthermore, f1 admits an extension

f2 : Ik+1 → Ik+1. Let f3 = αk+1
m ◦ ψk+1

m ◦ f2.

By Theorem 4.2 there exists M ∈ N and a map H1 : Ik+1 → Fk+1
m such that H1 is

M-simple, H1 ≤ f3, and H1(Ik × {0, 1}) ⊆ V ⊆ H−1
0 (∗) for some open subset V of

Fk+1
m .
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By Lemma 4.1 there exists a map H2 : Fk+1
M → Fk+1

m such that the following diagram

commutes.

Ik+1
H1

//

Ψ
k+1
M

��

Fk+1
m

F̂k+1
M

αk+1
M

// Fk+1
M

H2

OO

We choose h1 : Fk
M → A to be the map h1 : t 7→ H0 ◦H2(t ×M).

Theorem 5.2 The homotopy sequence of the pair (X,A) of objects in R defined in

(5.2) is exact.

Proof It is not hard to see that the sequence is differential. By Theorem 5.1 it fol-

lows that the sequence is exact at the objects σk(X, ∗). Exactness at the other objects

follows relatively easily.

We noted in Remark 2.2 that for a pair of relational structures (X,A) there is the

barycentric subdivision (see [8]) which gives rise to a pair (X ′,A ′) of posets, and one

can choose a barycentric projection map β : X ′ → X which is consistent with the

pairs, i.e., it actually yields a map β : (X ′,A ′) → (X,A). This idea and notation is

used in the second part of the following theorem.

Theorem 5.3 (i) For a pointed pair of posets, (X,A, ∗), the homomorphism ∆k :

σk(X,A, ∗)→ πk(X,A, ∗) is an isomorphism.

(ii) For a pointed pair of relational structures (X,A, ∗) and a barycentric projection

map β : (X ′,A ′, ∗) → (X,A, ∗), the induced homomorphisms σk(X ′,A ′, ∗) →
σk(X,A, ∗) are isomorphisms.

Proof (i) The homotopy sequence of a pair of spaces is exact and by Theorem 5.2

the σ-homotopy sequence of a pair of posets is exact. Furthermore we note that the

morphisms ∆k(−) are in fact natural transformations in both the absolute and the

relative cases. We thus consider the ladder-shaped diagram formed by the exact (σ−)

homotopy sequence of the poset pair (X,A, ∗), the exact homotopy sequences of the

pair of topological spaces (X,A, ∗) and the homomorphisms ∆k. The assertion of the

theorem follows by application of the 5-lemma since, as proved in [8], the morphisms

∆k : σk(A)→ πk(A) and ∆k : σk(X)→ πk(X) are isomorphisms.

(ii) This follows from the 5-lemma applied to the ladder-shaped diagram formed

by the exact (σ)-homotopy sequences of the pairs (X ′,A ′, ∗) and (X,A, ∗) and the

homomorphisms induced by β, using the fact that the induced maps X ′ → X and

A ′ → A are known (by [8]) to be weak equivalences.

6 Weak Equivalences and Quasifibrations

Now that we have the analogues of absolute and relative homotopy groups in the

category R, we can introduce into R certain homotopical terms defined in terms of

homotopy groups such as weak equivalence of a map of pointed objects and weak

equivalence of a map of pointed pairs.
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Definition 6.1 ([9, 13]) A map p : (X,A) → (Y,B) of pairs in R is a 0-equivalence

if the first condition below holds. If n is a positive integer, then f is said to be an n-

equivalence if both conditions hold. (In (i) below, the functions between path com-

ponents are the functions induced by the relevant inclusion maps.):

(i) Im[σ0(A)→ σ0(X)] = p−1
∗

Im[σ0(B)→ σ0(Y )],

(ii) For every a ∈ A, and with b = p(a), the function p∗ : σr(X,A, a)→ σr(Y,B, b)

is bijective whenever r < n and surjective for r = n.

The map p is said to be a weak equivalence if it is a n-equivalence for all n > 0. A

map p : X → Y is said to be a quasifibration if for every y ∈ Y and G = p−1(y), the

induced map of pairs (X,G)→ (Y, y) is a weak equivalence. A relational structure C

is said to be weakly contractible if for any x ∈ C the inclusion map {x} → C is a weak

equivalence.

Quasifibrations were used extensively in topology since the paper [5] of Dold and

Thom. Especially the theorem [5, Satz 2.2] has found numerous applications. The

latter theorem gives a sufficient condition for a map E → B (of topological spaces)

to be a quasifibration in terms of the behaviour of the map with respect to members

of a basis-like collection of subsets of B. J. P. May [9] gave a different approach to

quasifibrations, in terms of weak equivalences between pairs of spaces. The main

theorem of [13] can be regarded as a generalization of [5, Satz 2.2] and the main

theorem of [9].

An important theorem of Quillen [11, Proposition 1.6] is the following, which is

often used to prove (weak) equivalences of posets, especially subgroup posets of finite

groups. We formulate it in the context of this paper.

Theorem 6.2 Let f : X → Y be a map of posets. Suppose that for every y ∈ Y the

subobject {x ∈ X : f (x) ≤ y} is weakly contractible. Then f is a weak equivalence.

We now present a generalization of Theorem 6.2. In the proof of Theorem 6.3 we

use ideas and terminology from [13]. We recall from Section 2 that for an object X

in R, a chain in X is the image in X of a morphism f : T → X where T is a totally

ordered finite set.

Theorem 6.3 Let p : X → Y be a map in R with Y connected. Suppose that the

following condition holds:

(C1) Whenever C is a finite chain in Y and D ⊆ C, then the inclusion map p−1(D)→
p−1(C) is a weak equivalence.

Then for each chain A in Y , the map (X, p−1(A))→ (Y,A) is a weak equivalence.

Proof Let p−1(A) = B. We note that we can choose weak equivalences α : X ′ → X

and β : Y ′ → Y in such a way that β(B ′) = B and α(A ′) = A, and such that the

following square is homotopy commutative. (Recall that we denote the barycentric
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subdivision of a structure Z by Z ′.)

X ′

p ′ (=q)
//

β

��

Y ′

α

��
X

p
// Y

Moreover, then the induced maps A ′ → A and B ′ → B are weak equivalences. The

barycentric subdivision is such that if condition (C1) holds for p, then the following

condition (C2) holds for p ′ (and for convenience we write q = p ′):

(C2) Whenever C ∈ U(Y ′) (see the notation specified in Section 1.1) and D ⊆ C ,

then the inclusion map q−1(D)→ q−1(C) is a weak equivalence.

The morphism q can, of course, be considered a morphism of topological spaces. By

[13] it follows that for every V ∈ U(Y ′), the morphism (X ′, q−1(V ))→ (Y ′,V ) is a

weak equivalence. Since the diagram above is homotopy commutative and since we

have weak equivalences X ′ → X, B ′ → B, Y ′ → Y , and A ′ → A, it follows that

(X,B)→ (Y,A) is a weak equivalence.
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