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Abstract

We extend known results concerning crossing numbers by giving the crossing number of the join product
G + Dn, where the connected graph G consists of one 4-cycle and of two leaves incident with the same
vertex of the 4-cycle, and Dn consists of n isolated vertices. The proofs are done with the help of software
that generates all cyclic permutations for a given number k and creates a graph for calculating the distances
between all (k − 1)! vertices of the graph.
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1. Introduction

The problem of reducing the number of crossings in a graph has applications in
many areas, the most prominent being very large scale integration (VLSI) technology.
The lower bound on the chip area is determined by the crossing number and the
number of vertices of the graph. Reducing the crossing number is also important
when considering the aesthetics of a graph because the graph should be easy to read
and understand. Investigation of the crossing number of graphs is a classical and very
difficult problem. In general, computing the crossing number of a given graph is an
NP-complete problem.

The purpose of this article is to extend the known results in [2, 7–11] and [12] by
adding another graph. The methods are based on combinatorial properties of cyclic
permutations. Somewhat similar ideas were used in [4] and [11]. In [2, 3] and [12],
properties of cyclic permutations were also verified with the help of software.

Let G be the graph consisting of one 4-cycle and two leaves incident with the same
vertex of the 4-cycle. We consider the join product of G with the discrete graph on n
vertices denoted by Dn. The graph G + Dn consists of one copy of the graph G and of n
vertices t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of
G. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with the
vertex ti. Thus, T 1 ∪ · · · ∪ T n is isomorphic with the complete bipartite graph K6,n.
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354 M. Staš [2]

Figure 1. Two planar drawings of G and six drawings of G with crD(G) = 1.

We will use definitions and notation of the crossing numbers of graphs from [6].
Some of our calculations are based on Kleitman’s result on crossing numbers of
complete bipartite graphs [5]. More precisely, he proved that

cr(Km,n) =

⌊m
2

⌋⌊m − 1
2

⌋⌊n
2

⌋⌊n − 1
2

⌋
for m ≤ 6.

2. Cyclic permutations and configurations

We will use the same definitions and notation for cyclic permutations and the
corresponding configurations for a good drawing D of the graph G + Dn as in [12].
The proofs are done with the help of software that generates all cyclic permutations
(see [1]; the C++ version of the program is also located on the web site http://web.tuke.
sk/fei-km/coga/). The list with the short names of 6!/6 = 120 cyclic permutations on
six elements are collected in [12, Table 1].

We will only consider drawings of the graph G for which there is a possibility of
the existence of a subgraph T i ∈ RD, because of arguments in the proof of Theorem 3.4
below. Assume a good drawing D of the graph G + Dn in which the edges of G do not
cross each other. In this case, without loss of generality, from the drawings in Figure 1
we can choose the vertex notation of the graph as shown in Figure 1(a). Our aim is to
list all possible rotations rotD(ti) which can appear in D if the edges of T i do not cross
the edges of G. Let us start with the subdrawing F i induced by the edges incident with
the vertices v1 and v5. These two edges separate the vertices v6 and v2, v4 into two
regions with unique incidences of these vertices. Since there are three possibilities for
the subdrawing of F i induced by the edges incident with the vertices v1, v5 and v3, we
obtain three different possible configurations of F i denoted by A1, A2 and A3. For our
purposes, it does not matter which of the regions is unbounded, so we can assume that
the drawings are as shown in Figure 2.
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[3] Crossing numbers of graphs of order six 355

Figure 2. Drawings of three possible configurations fromM of the subgraph F i.

We represent a cyclic permutation by the permutation with 1 in the first position.
Thus, the configurations A1, A2 and A3 are represented by the cyclic permutations
P111 = (136542), P120 = (165432) and P96 = (165423), respectively. We denote by
MD the set of all configurations for the drawing D belonging to M = {A1, A2, A3}.
The unique drawing of F i contains six regions with the vertex ti on its boundary. For
example, if F i has the configuration A1, we can denote these six regions by ω1,2,3,
ω2,3,4, ω4,5, ω5,6, ω3,6 and ω1,3 depending on which of the vertices are located on
the boundary of the corresponding region.

If two different subgraphs F i and F j with configurations from MD cross in a
drawing D of G + Dn, then only the edges of T i cross the edges of T j. Thus, we
will deal with the minimum numbers of crossings between two different subgraphs
F i and F j depending on their configurations. Let X, Y be the configurations from
MD. We denote by crD(X, Y) the number of crossings in D between T i and T j for
different T i,T j ∈ RD such that F i, F j have configurations X, Y , respectively. Finally, let
cr(X,Y) = min{crD(X,Y)} over all good drawings of the graph G + Dn with X,Y ∈MD.
Our aim is to establish cr(X,Y) for all pairs X,Y ∈ M.

By Pi, we will understand the inverse cyclic permutation to the permutation Pi for
i = 1, . . . , 120. Woodall [13] defined the cyclic-ordered graph COG with the set of
vertices V = {P1, P2, . . . , P120} and the set of edges E, where two vertices are joined
by an edge if the vertices correspond to permutations Pi and P j, which are formed by
the exchange of exactly two adjacent elements of the 6-tuple (that is, an ordered set
with six elements). Hence, if dCOG(‘rotD(ti)’, ‘rotD(t j)’) denotes the distance between
two vertices corresponding to the cyclic permutations rotD(ti) and rotD(t j) in the graph
COG, then

dCOG(‘rotD(ti)’, ‘rotD(t j)’) = Q(rotD(ti), rotD(t j)) ≤ crD(T i,T j)

for any two different subgraphs T i and T j.
We are ready to find the necessary numbers of crossings between T i and T j for

the configurations of F i and F j fromM. The configurations A1 and A2 are represented
by the cyclic permutations P111 = (136542) and P120 = (165432), respectively. Since
P120 = (123456) = P1, we have cr(A1, A2) ≥ 4 using dCOG(‘P111’, ‘P1’) = 4. The same
reasoning gives cr(A1, A3) ≥ 5 and cr(A2, A3) ≥ 5. It is also clear that cr(Ai, Ai) ≥ 6 for
i = 1, 2, 3.
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Table 1. The necessary number of crossings between T i and T j for the configurations Xk, Xl.

− X1 X2 X3

X1 6 4 5
X2 4 6 5
X3 5 5 6

Assume a good drawing D of the graph G + Dn with one crossing among edges
of G (in which there is a T i ∈ RD). In this case, without loss of generality, we can
choose the vertex notation of the graph as shown in Figure 1(c). By the arguments
mentioned above, there are three possibilities for the subdrawing of F i induced by
the edges incident with the vertices v1, v5 and v3, that is, we obtain three different
possible configurations of F i, say B1, B2 and B3, with their rotations P111 = (136542),
P120 = (165432) and P96 = (165423), respectively. We denote by ND the set of all
configurations in the drawing D belonging to the setN = {B1, B2, B3}. The verification
of the lower bounds for the number of crossings of two configurations from N
proceeds in the same way as before. The resulting lower bounds for the number of
crossings of configurations fromM and N are summarised in Table 1. (Here, Xk and
Xl are configurations of the subgraphs F i and F j, where k, l ∈ {1, 2, 3}, X = A in case
ofM and X = B in case of N .)

3. The crossing number of G + Dn

For the proof of Theorem 3.4, we need the following statements related to some
restricted drawings of the graph G + Dn. Note that if the edges of G do not cross
each other in D, then crD(T i ∪ T j) ≥ 4 for any two different subgraphs T i, T j ∈ RD by
Table 1.

Lemma 3.1 [12]. Let D be a good and antipodal-free drawing of G + Dn with n > 2.
Suppose that 2|RD| + |S D| > 2n − 2bn/2c and let T i,T j ∈ RD be two different subgraphs
with crD(T i ∪ T j) ≥ 4. If both conditions

crD(G ∪ T i ∪ T j,T l) ≥ 10 for any T l ∈ RD \ {T i,T j}, (3.1)

crD(G ∪ T i ∪ T j,T l) ≥ 7 for any T l ∈ S D (3.2)

hold, then there are at least 6bn/2cb(n − 1)/2c + 2bn/2c crossings in D.

If D is a good and antipodal-free drawing of G + Dn, and T i ∈ RD is such that F i

has configuration A j ∈ MD, then crD(G ∪ T i, T l) ≥ 3 for any T l, l , i (see Figure 2).
Moreover, crD(T i, T k) = 2 with T k ∈ S D can only occur for the configurations A1 and
A2 of F i.

Lemma 3.2. Let D be a good and antipodal-free drawing of G + Dn with n > 2. Let
T i ∈ RD be a subgraph such that F i has configuration A j ∈ MD for j ∈ {1, 2}. If there
is a subgraph T k ∈ S D with crD(T i,T k) = 2, then:

(a) crD(T i ∪ T k,T l) ≥ 3 for any subgraph T l with l , i, k;
(b) crD(G ∪ T i ∪ T k,T l) ≥ 7 for any subgraph T l ∈ S D with crD(T i,T l) ≥ 3.
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Proof. Let us assume the configuration A1 of F i and remark that it is represented by
the cyclic permutation P111 = (136542).

(a) The unique drawing of F i contains six regions with the vertex ti on their
boundaries (see Figure 2). If there is a T k ∈ S D with crD(T n, T k) = 2, then the vertex
tk must be placed in the quadrangular region ω2,3,4 with three vertices of G on its
boundary. Thus, the configuration of the subgraph Fk can only be represented by one
possible cyclic permutation P116 = (154632) and the edge tiv6 crosses the edge v3v4.
By [1], we can verify that there is no cyclic permutation Pm different from P111 and
P116 with dCOG(‘P111’, ‘Pm’) + dCOG(‘P116’, ‘Pm’) < 3. Thus, Woodall’s result implies
that there is no subgraph T l with crD(T i ∪ T k,T l) < 3 for any l , i, k.

(b) Let T k ∈ S D be a subgraph with crD(T i, T k) = 2, so the subdrawing of Fk is
represented by P116 = (154632). If there is a T l ∈ S D with crD(T k, T l) = 1, then the
vertex tl cannot be inside the 4-cycle of the graph G, but must be in the pentagonal
region of D(F l) with four vertices of G on its boundary. Hence, the cyclic permutation
representing the configuration of the subgraph F l is either P105 = (136452) or P55 =

(123654) (see Figure 4). Since P105 = (125463) = P75 and P55 = (145632) = P115, the
distances dCOG(‘P111’, ‘P75’) = 5 and dCOG(‘111’, ‘P115’) = 5 imply that crD(T i, T l) ≥
5. Thus, crD(G ∪ T i ∪ T k,T l) ≥ 1 + 5 + 1 = 7.

Next, assume that crD(T k, T l) ≥ 2 for any T l ∈ S D. Since the case crD(T i, T l) ≥ 4
implies that crD(G ∪ T i ∪ T k, T l) ≥ 1 + 4 + 2 = 7, let us consider a subgraph T l with
crD(T i, T l) = 3. The vertex tl must be in the region ω2,3,4 of the unique drawing of F i.
Consequently, crD(T k,T l) ≥ 3, that is, crD(G ∪ T i ∪ T k,T l) ≥ 1 + 3 + 3 = 7.

From the symmetry of the configurations A1 and A2, we can use the same arguments
for the configuration A2 of F i. This completes the proof. �

Corollary 3.3. Let D be a good and antipodal-free drawing of G + Dn with n > 2 and
letMD be a nonempty set with {A1, A2} ⊆ MD. If T i, T j ∈ RD are different subgraphs
such that F i, F j have configurations from {A1, A2}, then

crD(G ∪ T i ∪ T j,T k) ≥ 7 for any T k ∈ S D.

Proof. Take configurations A1 of F i and A2 of F j. If there is a subgraph T k ∈ S D
with crD(T i, T k) = 2, then the configuration of the subgraph Fk must be represented
by the cyclic permutation P116 = (154632). Note that the configuration A2 is
represented by P120. Using P116 = (123645) = P31 and dCOG(‘P120’, ‘P31’) = 4, we
obtain crD(T j,T k) ≥ 4. Hence, crD(G ∪ T i ∪ T j,T k) ≥ 1 + 2 + 4 = 7. We can apply the
same idea if there is a T k ∈ S D with crD(T j,T k) = 2. Next, assume that crD(T i,T k) ≥ 3
and crD(T j,T k) ≥ 3 for any T k ∈ S D. This forces crD(G ∪ T i ∪ T j,T k) ≥ 1 + 3 + 3 = 7
for any T k ∈ S D. This completes the proof. �

If we consider the set of configurations ND with a subgraph T i ∈ RD, then
a subgraph T k ∈ S D with crD(T i, T k) = 2 can only exist for the configuration
B2 ∈ ND of the subgraph F i (see Figure 3). In this case, the subdrawing of
Fk = G ∪ T k is represented by P103 = (134652). Since P103 = (125643) = P85 and
dCOG(‘P111’, ‘P85’) = 4, we obtain crD(T j, T k) ≥ 4 for any subgraph F j having the
configuration B1. Thus, we can extend Corollary 3.3 for {B1, B2} ⊆ ND.
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Figure 3. Drawings of three possible configurations from N of the subgraph F i.

Figure 4. Two drawings of G ∪ T k ∪ T l with crD(G ∪ T k,T l) = 2 for T k,T l ∈ S D.

Theorem 3.4. If n ≥ 1, then cr(G + Dn) = 6bn/2cb(n − 1)/2c + 2bn/2c.

Proof. In Figure 5(b), there is a drawing of G + Dn with 6 bn/2cb(n − 1)/2c + 2bn/2c
crossings. Thus, cr(G + Dn) ≤ 6bn/2cb(n − 1)/2c + 2bn/2c. We prove the reverse
inequality by induction on n. The graph G + D1 is planar and hence cr(G + D1) = 0. It
is clear from Figure 5(a) that cr(G + D2) ≤ 2. The graph G + D2 contains a subdivision
of K3,4 and therefore cr(G + D2) ≥ 2. So, cr(G + D2) = 2.

Suppose now that, for some n ≥ 3, there is a drawing D with

crD(G + Dn) < 6
⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
and that

cr(G + Dm) ≥ 6
⌊m

2

⌋⌊m − 1
2

⌋
+ 2
⌊m

2

⌋
for any m < n.

We claim that the drawing D must be antipodal-free. For a contradiction suppose,
without loss of generality, that crD(T n−1, T n) = 0. Then crD(G, T n−1 ∪ T n) ≥ 2. Since
cr(K6,3) = 6, it follows that crD(T k,T n−1 ∪ T n) ≥ 6 for k = 1, 2, . . . , n − 2. So,

crD(G + Dn)

= crD (G + Dn−2) + crD(T n−1 ∪ T n) + crD(K6,n−2,T n−1 ∪ T n) + crD(G,T n−1 ∪ T n)

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 2
⌊n − 2

2

⌋
+ 6(n − 2) + 2 = 6

⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
.
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Figure 5. Good drawings of G + D2 and G + Dn.

This contradiction confirms that D is antipodal-free. Our assumption on D together
with cr(K6,n) = 6bn/2cb(n − 1)/2c implies that

crD(G) + crD(G,K6,n) < 2
⌊n
2

⌋
.

If we denote r = |RD| and s = |S D|, then

crD(G) + 0r + 1s + 2(n − r − s) < 2
⌊n
2

⌋
.

Thus, r ≥ 1, 2r + s > 2n − 2bn/2c and r > n − r − s. For T i ∈ RD, we consider the
possible configurations of F i in the drawing D in three cases.

Case 1: crD(G) = 0. Since r ≥ 1, that is, there is a subgraph T i ∈ RD, we can
choose the vertex notation of the graph as shown in Figure 1(a). We now have three
possibilities for the set of configurations belonging toMD.
(a) A3 ∈ MD. Without loss of generality, we can assume that T n ∈ RD with the
configuration A3 of the subgraph Fn. The subdrawing of Fn induced by D can be
obtained from the drawings in Figure 2. It is easy to verify that there is no T k ∈ S D

with crD(T n,T k) ≤ 2. Moreover, crD(T n,T i) ≥ 5 for any T i ∈ RD with i , n by Table 1.
By fixing the graph G ∪ T n,

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1,G ∪ T n) + crD(G ∪ T n)

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(r − 1) + 4s + 3(n − r − s) + 0

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ (2r + s) + 3n − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n − 2

⌊n
2

⌋
+ 1 + 3n − 5 ≥ 6

⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
.

(b) {A1, A2} ⊆ MD. Without loss of generality, fix T n, T n−1 ∈ RD such that Fn, Fn−1

have configurations from {A1, A2}. Then condition (3.1) is true by summing the values
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in all columns in the first two rows of Table 1, and condition (3.2) holds by Corollary
3.3. Consequently, we can apply Lemma 3.1.

(c) MD = {A j} for only one j ∈ {1, 2}. Without loss of generality, we can assume
that the configuration of Fn is A1. Write S D(T n) = {T i ∈ S D : crD(Fn, T i) = 3} and
s1 = |S D(T n)|. Note that S D(T n) is a subset of S D and s1 ≤ s, that is, s − s1 ≥ 0. Hence,
there are two possibilities to consider.

(1) Suppose that r > s1, that is, r − 1 ≥ s1. By fixing the graph G ∪ T n,

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1,G ∪ T n) + crD(G ∪ T n)

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 6(r − 1) + 3s1 + 4(s − s1) + 3(n − r − s) + 0

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(r − 1) + 4s + 3(n − r − s)

= 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ (2r + s) + 3n − 5

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n − 2

⌊n
2

⌋
+ 1 + 3n − 5 ≥ 6

⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
.

(2) Suppose that r ≤ s1, that is, r − 1 ≤ s1 − 1. Let T k be a subgraph from the
nonempty set S D(T n). As MD = {A1}, we have crD(G ∪ T n ∪ T k, T i) ≥ 6 + 2 = 8
for any T i ∈ RD with i , n. From the proof of Lemma 3.2, the subgraph Fk can
only have the configuration represented by the cyclic permutation P116 = (154632).
Thus, crD(G ∪ T n ∪ T k, T i) ≥ 1 + 2 + 6 = 9 for any T i ∈ S D(T n) with i , k. Again by
Lemma 3.2, crD(G ∪ T n ∪ T k,T i) ≥ 7 for any T i ∈ S D with crD(Fn,T i) ≥ 4. Moreover,
crD(G ∪ T n ∪ T k, T i) ≥ 2 + 3 = 5 for any T i < RD ∪ S D. Since n − r − s ≤ r − 1 ≤
s1 − 1, by fixing the graph G ∪ T n ∪ T k,

crD(G + Dn) = crD(K6,n−2) + crD(K6,n−2,G ∪ T n ∪ T k) + crD(G ∪ T n ∪ T k)

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 8(r − 1) + 9(s1 − 1) + 7(s − s1) + 5(n − r − s) + 3

≥ 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 8(r − 1) + 7(s1 − 1) + 7(s − s1) + 7(n − r − s) + 3

= 6
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ r + 7n − 12 ≥ 6

⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
.

The same arguments can be used for the caseMD = {A2} due to their symmetry.

Case 2: crD(G) = 1. Since the set RD is nonempty, we only need to consider the two
drawings of G shown in Figure 1(c) and (f).

(a) crD(G) = 1 represented by Figure 1(c). In this case, the configurations belong to
ND and we can use similar subcases to those in Case 1 to obtain a contradiction.

(b) crD(G) = 1 as in Figure 1(f). It is easy to check all possible drawings D for which
the set RD is nonempty and such that, if T i ∈ RD, then crD(G ∪ T i, T j) ≥ 4 for any
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Figure 6. Five possible drawings of G with crD(G) ≥ 2 and RD , ∅.

subgraph T j with j , i. By fixing the graph G ∪ T i,

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1,G ∪ T i) + crD(G ∪ T i)

≥ 6
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1 ≥ 6

⌊n
2

⌋⌊n − 1
2

⌋
+ 2
⌊n
2

⌋
.

Case 3: crD(G) ≥ 2. We can use the same idea as in Case 2(b) for all five possible
drawings of the graph G for which the set RD is nonempty (see Figure 6).

Thus, we have shown that there is no good drawing D of the graph G + Dn with
fewer than 6bn/2cb(n − 1)/2c + 2bn/2c crossings. This completes the proof of the
theorem. �

In Figure 5(b), we can add the edge v2v4 to the graph G without additional crossings.
This recovers an already known result for the crossing number of the graph G1 + Dn

considered in [12].
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[10] M. Klešč and Š. Schrötter, ‘The crossing numbers of join of paths and cycles with two graphs of

order five’, in: Mathematical Modeling and Computational Science, Lecture Notes in Computer
Science, 7125 (Springer, Berlin–Heidelberg, 2012), 160–167.
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