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ON DIHEDRAL GALOIS COVERINGS 

HIRO-0 TOKUNAGA 

ABSTRACT. In this paper, we shall give a method in constructing dihedral Galois 
covering with prescribed branch locus. As an application, we shall look into dihedral 
Galois covering of P2, where torsion elements of the Mordell-Weil group of an elliptic 
surface play key roles in constructing coverings. 

Introduction. The main purpose of this article is to give an explicit method for con
structing finite dihedral Galois coverings. As an application, we shall look into dihedral 
Galois coverings of P2. 

We shall start with the definition of dihedral Galois coverings of a smooth projective 
variety. 

DEFINITION 0.1. Let y be a smooth projective variety, and let X be a normal variety 
with a finite morphism 7r: X —• Y. The fields of rational functions of X and Y are denoted 
by C(X) and C(Y)9 respectively. Then 7r induces the inclusion map n*: C(Y) C—> C(X), 
and C(Y) is identified with a subfield of C(X) by this map. We call X a dihedral (Din 
covering of Y if C(X) is a Galois extension of C(Y) having dihedral group, ©2n, of the 
order In as its Galois group. 

Our study on dihedral (Din coverings is motivated by the following problem, which 
was one of the main subjects discussed in Namba [11]. 

PROBLEM 0.2. Let Y be a smooth projective variety and let B be a reduced divisor 
on Y. Give a necessary and sufficient condition and (Y,B) for the existence of a finite 
Galois covering, X, of Y with the covering morphism TT: X —• Y such that B is the branch 
locus A(X/Y) := {y G Y | tt(^_1(y)) < degTr}. 

Answers to this problem may be divided into two steps: 
(I) to give a general existence theorem on coverings, 

(II) to construct Galois coverings having the prescribed Galois groups as well as the 
prescribed branch locus. 

For (I) one investigates an open variety Y \ B. In fact, many answers to (I) have been 
obtained as applications of the study of the fundamental group TT\(Y\B). They are given 
in terms of topology and do not seem to give constructive answers to Problem 0.2. On 
the other hand, (II) takes care of this missing part. The step (II) resembles the situation of 
constructive aspects of the inverse problem of Galois theory: to construct a field extension 
of Q having a prescribed group as its Galois group over Q. 
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For abelian coverings, there are satisfactory answers in both (I) and (II) by several 
authors, e.g., Namba [11] for (I), and Pardini [12] for (II). In his book [11], Namba also 
discusses general Galois coverings, and gives an answer for (I). However, he does not 
seem to give any explicit method for constructing Galois coverings. At the moment, 
(II) for non-abelian Galois coverings seems to be missing. Therefore, it is worthwhile 
to consider a constructive step for the simplest non-abelian Galois coverings such as 
dihedral (Din coverings. 

Now we shall explain our strategy. Let F be a smooth variety, X a normal variety with 
a finite morphism IT: X —• F. The field of rational functions C(X) gives a finite field ex
tension of C(F). Conversely, given a finite extension, K, of C(F), the AT-normalization, 
X\, of F (see Iitaka [7], §2.14 for normalization of varieties) is a normal variety satisfying 
(i) C(X\ ) is K, and (ii) there is a finite morphism 1T\ : X\ —• Y determined by the inclu
sion map C(F) °—> K. In this way, we have a correspondence between finite coverings 
of Y and finite field extensions of C(F). Using this correspondence, we shall translate 
elementary Galois theory of function fields into geometry of varieties. Let X be a dihe
dral (Din covering of Y with the covering morphism w. X —• Y. Then, C(X) is a Galois 
extension of C(F) with the Galois groups (Din. We choose generators a, r of (Din as fol
lows: (Din = (v2 = T* = (ar)2 = e). The invariant subfield, C{X)\ of C(X) by r is a 
quadratic extension of C(Y). Let D(X/ Y) be the C(X)r-normalization of Y. Then D(X/ Y) 
is a finite double covering of Y canonically determined by X and we denote the covering 
morphism by /3\. Also, as C(X) is a cyclic extension of C(D(X/Y)) of degree n, X is an 
n-fo\d cyclic covering of D(X/ Y). We denote the covering morphism from X to D(X/ Y) 
by /?2. These varieties satisfy the following commutative diagram 

x Pi 

\ 
I* D(X/Y). 

/ 
Y * 

In this way, we reduce the study of the dihedral (Din covering TT: X —• Y to that of 
the two cyclic coverings j3\ : D(X/ Y) —• Y and #2: X —• D(X/ Y). We now formulate our 
problem in terms of these coverings. 

PROBLEM 0.3. Let/: Z —• Y be a finite smooth double covering of Y and let D be a 
divisor on Z. Give a necessary and sufficient condition on D and (F, Z,f) for the existence 
of a finite dihedral (Din covering X such that 

(i) D(X/Y) = Z, and 

(ii) the branch locus of fo- X —• Z is SuppD. 
Once this problem is settled, we shall then consider Problem 0.2 with dihedral (Din 

coverings. Now we shall state our results. The first results are the following two propo
sitions which we will prove in §2. (For the notation, see Notation and Conventions.) 
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PROPOSITION 0.4. Letf: Z-^Ybe a smooth finite double covering of a smooth pro
jective variety Y. Let a be the involution on Z determined by the covering transformation 
off. Let D\, D2 and D3 be effective divisors on Z and let n be an odd integer with n>3. 
Suppose that D[ (i = 1,2,3) satisfy the following properties: 

(a) D\ and a*D\ have no common component. 
(b) IfD\ = £/#/£>• ' denotes the decomposition into irreducible components, then 

0 <di < - ^ for every i, and the greatest common divisor of the at 's and n is 1. 
(c) Dx + nD2 ~ o*Di + nD3. 
Then, there exists a dihedral ©2„ covering, X, of Y such that (i) the variety D(X/ Y) 

is Z and (ii) A(X/ Y) = A(Z/ Y) U/(Supp(Di )). • 

Note that the condition (b) in Proposition 0.4 is automatically satisfied if there is an 
irreducible component of D\ whose coefficient is 1. 

Now we see that this construction is universal in the following sense. 

PROPOSITION 0.5. Let ir:X—*Ybea dihedral ©?„ (n > 3 : odd) covering such that 
D(X/Y) is smooth, and let o be the involution on D(X/Y) determined by the covering 
transformation offi\. Then, there exist three effective divisors D\, D2 andD3 on D(X/ Y) 
satisfying the following three conditions: 

(i) D\ and cr*D\ have no common component, 
(ii) If D\ = 52/Û;D| denotes the decomposition into irreducible components, then 

0 < at < ^ for every i. 
(Hi) D\ + nD2 ~ o*D\ + nD3, andD2 + o*D2 ~ D3 + <J*Z)3. 

(iv) Supp(Z>i + cr*D\) is the branch locus of/32. m 

Propositions 0.4 and 0.5 deal only with the case of odd n. In §3, we shall also con
sider the case of even n. In the even cases, we need four divisors on D(X/Y) to describe 
dihedral (Din coverings as well as more complicated conditions on these divisors. 

PROPOSITION 0.6. Letf: Z—>Ybea smooth finite double covering of a smooth pro
jective variety Y. Let a be the involution on Z determined by the covering transformation 
off. LetD\, D2, D3, andD/[ be effective divisors on Z and let n be an even integer with 
n>4. Suppose that D( (i = 1,2,3,4) satisfy the following properties: 

(a) D\ and cr*D\ have no common component. 
(b) If D\ — Z)/«/Z)| denotes the decomposition into irreducible components, then 

0 < ai < nY~ for every i, and the greatest common divisor of the ai 's and n is 1. 
(c) D2 is either a reduced positive divisor, or D2 = 0. In the former case, if D2 = 

^2j D^ ' denotes the decomposition into irreducible components, then for every 

Df\ there exists divisor Bf* on Y such thatfBf = Df\ 
(d) A + \D2 + nD3 ~ a*Dx + nD*. 
(e) There exist an odd integer ro dividing n and a rational function b E C(Y) such 

that 

(f*b) = r0(D2 + D3 + a*D3) - r0(D4 + a*D4) 
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Then, there exists a dihedral (Din covering, X, of Y such that (i) the variety D(X/ Y) 
is Z and (ii) A(X/ Y) = A(Z/ Y) Uf(Supp(Dl + D2)). m 

The "converse" of the assertion in Proposition 0.6 also holds and is formulated in the 
following proposition. 

PROPOSITION 0.7. Let ix:X —• Y be a dihedral (Din (n > 4 : even) covering of 
which D(X/ Y) is smooth, and let a be the involution on D(X/ Y) determined by the cov
ering transformation of'/3\. Then there exist four effective divisors D\, D2, D3 andD4 on 
D(X/Y) satisfying the following four conditions: 

(i) D\ and cr*D\ have no common component, 
(ii) If D\ = YtiGiDi denotes the decomposition into irreducible components, then 

0 < tf/ < *—- for every i. 
(Hi) D2 is either a reduced positive divisor, or D2 = 0. In the former case, ifD2 = 

^2j Dj denotes the decomposition into irreducible components, then for every 

D{2), there exists divisor B{2) on Y such thatf*B(2) = D{2\ 
j J J J J 

(iv) Dx + \D2 + nD3 ~ o*Dx + nD4, and D2+D3 + a*D3 ~D4 + a*D4. 
(v) Supp(Z)i + o*D\ + D2) is the branch locus of ji2. m 
Note that Proposition 0.6 is still unsatisfactory, as it does not cover the case that r^ is 

even. 
The conditions on the divisors in Propositions 0.4,0.5,0.6 and 0.7 are so complicated 

that it seems intractable to find divisors satisfying those conditions. In other words, di
hedral ©2rt coverings seem to exist rather rarely. Indeed, this is the case for dihedral ©2n 

covering of P2. Because, if a plane curve C is the branch locus of a dihedral (Din covering 
of P2, then the fundamental group 7Ti(P2 \ C) is non-abelian. But, we have the following 
theorem. 

THEOREM 0.8 (DELIGNE [3], FULTON [4]). Let C c P 2 be a plane curve, which has 
only nodes as its singularities. Then 7Ti(P2 \ C) is abelian. 

Therefore, if a plane curve C is the branch locus of the dihedral ©2n covering of P2, 
it must have singularities other than node (e.g., cusps and triple points.) In particular, 
if n is an odd prime a curve C has degree < 4, we can characterize C in terms of its 
singularities. Now we state our result which we will prove in Section 4 and Section 5. 

THEOREM 0.9. Let tr. S —• P2 be a dihedral (Dip (p : odd prime) covering ofP2, 
and let A(S/P2) be the branch locus of n. Then, degA(5/P2) > 3. Furthermore if 
degA(S/P2) < 4, then possibilities for A(S /P2) are listed as follows: 

(a) IfdegA(S/I*2) = 3, then, for arbitrary p, A(S/P2) is three distinct lines inter
secting at one point. 

(b) 7/degA(S/P2) = 4 andA[D(S/P2)/P) is a conic, then, for arbitrary p, 
(i) A(S/P2) is two distinct smooth conies tangent at two points, 

(ii) A(S/P2) is two distinct smooth conies tangent at one point, 
(Hi) A(S/P2) is a smooth conic and two distinct lines tangent to the conic, or 
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(iv) A(S/P2) is four distinct lines intersecting at one point, 
(c) ifdegA(S/P2) = 4andA(D(S/P2)/P2) = A(S/P2), then 

(i) p = 3, and A(S/P2) is an irreducible quartic curve with three cusps, 
(ii) p = 3, and A(S/P2) is a cubic curve with a cusp and a line; here the line 

is tangent to the cubic curve at an inflection point, or 
(Hi) p is arbitrary, and A(S/P2) is four distinct lines intersecting at one point. 

Conversely, for each curve described above, there exists a dihedral (Dip covering of 
P2 branched along it. m 

REMARK. The case (i) in (c) in Theorem 0.9 is consistent with Zariski's result [15]. 
For irreducible plane quartic curves, a quartic curve Q with three cusps is the only 

one having non-abelian 7Ti(P2 \ Q). Furthermore, the group TTI(P2 \ Q) is a non-abelian 
group of order 12. 

As a corollary of Theorem 0.9, we have 

COROLLARY 0.10. Let C be a quartic curve described in Theorem 0.9. Then, 
7T\ (P2 \ C) is non-abelian. m 

Now we shall sketch a proof of Theorem 0.9. All the cases except for cases (c)(i) and 
(ii) are straightforward from Propositions 0.4 and 0.5. To prove the remaining two cases, 
we shall make use of the following fact (cf. Miranda and Persson [9]): For any double 
covering, W, ofP2 branched along a quartic curve, there exista rational elliptic surface, 
£, and a birational morphismfrom £ to W. 

The composite morphism from the elliptic surface £ to P2 is degree 2. But it is not 
finite. So we can not apply our results on dihedral coverings to this composite morphism 
of degree 2. However, blowing up P2 several times, we get a surface, X, which has the 
following properties: (i) X is birational to P2 and (ii) the elliptic surface £ is a finite 
double covering of X. Let S be the C(S)-normalization of X. We denote the covering map 
by ft. In this way, we get a dihedral (Dip covering of X with D(5/X) = £ Conversely, 
once we construct a dihedral (Dip covering, S\, of X which is birational to S, then the Stein 
factorization of the composite morphism S\ —• X —• P2 is nothing but S. Therefore, it 
is enough to consider the dihedral (Dip covering S in order to investigate the original 
covering S. 

In order to show that only the cases (c)(i) and (ii) can occur, we shall apply Propo
sition 0.5 to the covering if: S —• X. Then we have the three divisors on £ described 
in Proposition 0.4. We shall translate the conditions on these divisors into an arithmetic 
property of the Mordell-Weil group, MW(£), of £ and show that MW(£) has a torsion 
of order three. This determines the configuration of the singular fibers. Singular fibers of 
Ecorne from singularities of D(S/V2). Hence, once we get the configuration of the sin
gular fibers of £, we can determine the singularities of A(D(S/P2)/Py and ultimately 
prove Theorem 0.9. 

Our proof of Theorem 0.9 gives a relation between dihedral (Dip coverings of P2 

branched along quartic curves and the Mordell-Weil groups of rational elliptic surfaces. 
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While the former is a purely geometric object, the latter is an arithmetic object which 
has been studied by many mathematicians ([1], [2], [10]). 

During the course of this work, the author held a postdoctoral fellowship at Queen's 
University under supervision of Professor N. Yui. He thanks her for her encouragement 
and patience, and Queen's University for its hospitality. The author also thanks the ref
eree for his/her valuable comments and suggestions. This work was supported in part by 
NSERC (through Professor Yui's research grant), Kochi University and Japan Associa
tion for Mathematical Sciences. 

Notation and conventions. Throughout the paper, the ground field will always be 
the complex number field C. However, with great care, C may be replaced by the alge
braic closure of Q. 

C(X) := the rational function field of X. 
Let (f be an element of C(X). We denote the zero divisor and the polar divisor of ip by 

(</?)o and ((/?)oo, respectively. Also, (ip) means a divisor defined by (ip) = ((p)o — (^)oo-
Let X be a normal variety, Y a smooth variety and let TT: X —-*• Y be a finite morphism 

from X to Y. We define the branch locus of/, which we denote by A(X/Y), as follows: 

A(X/y)={y€F| l l (7r- 1 (y))<deg7r}. 

For a divisor D on F, TT~X (D) denotes the set-theoretic inverse image of D, while n*(D) 
denotes the ordinary pullback. Also, SuppD means the supporting set of D. 

For a divisor R on X, TT*R denotes the push-forward of R defined in Fulton [5], 1.4. 
Let TT: X —• F be a dihedral Galois covering of Y. Morphisms /3\, /?2 and the variety 

D(X/Y) always mean those defined in the introduction. 
Let S be a finite double covering of a smooth projective surface X. The "canonical 

resolution" of S always means the resolution given by Horikawa in [5]. 
Let S be an elliptic surface over C. We call S minimal if the fibration is relatively 

minimal. In this paper, we always assume that an elliptic surface is minimal. For singular 
fibers of an elliptic surface, we use the notation of Kodaira [7]. 

Let D\, £>2 be divisors. 
D\ ~ D2'. linear equivalence of divisors. 
D\ & D2: algebraic equivalence of divisors. 
D\ &Q D^. Q-algebraic equivalence of divisors. 

By a (p, q) cusp, we mean a curve singularity which is isomorphic to one defined by 
a local equation xP + yq = 0. For simplicity, a (2,3) cusp is called a cusp. 

1. Preliminaries. In this section, we shall review some elementary results from 
Galois theory. 

LEMMA 1.1. Let F be afield of characteristic zero containing all the n-th roots of 
unity (n > 3), and let E be a quadratic extension of F. Let a denote the non-trivial 
element ofGd\(E/F). Let K be a cyclic extension of degree n ofE: K = 2s(£), £n = (p 
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where <p is an element in E satisfying (i) (pa ^ <p, and (ii) there exists an element b in 
F such that tp(pa = bn. Then K is a dihedral Galois extension of F having Galois group 
(Din, and E is the invariant subfield of the cyclic subgroup of order n of (Din. 

PROOF. Put (p + (pa = a. Then £ satisfies an equation x2n —axn+bn = 0 over F. Since 
E = F(ip) and K = F(£), this polynomial is the minimal polynomial of £ over F. As all 
conjugate elements of £, which are e'£, eJb/^ (ij = 1, . . . , n — 1) where 6 is a primitive 
n-th root of unity, are in K, K is a Galois extension of F. Let (Din = (o"i, T | cr\ = Y1 = 
{(T\T)2 = e). We define an action of ©2„onAroverFasfollows:0"i:£ H-+ & / £ , T : £ I—>e£. 
Since <Ti induces o" on E and r is trivial on E, we have KT — E. m 

LEMMA 1.2. Let F be as above and let K be a dihedral Galois extension of F with 
Gal(K/F) = (Din = ((T,T | o2 = T" = (ar)2 = e) (n > 3). Then there exist 0 E K and 
b E F such that (i) K = F(6) and (ii) the action of (Din on K is given by a: 0 »—• b / 6, 
T:0\-> eO. 

PROOF. Let Kr be the invariant subfield of K by r. Then K is a cyclic extension of 
degree n of Kr. Since F contains all the n-th roots of unity, there exists an element 0 € K 
such that the minimal polynomial of 0 is of form x11 — a for some a G KT. For this 0, the 
action of r is given by r: 0 i—• e# where e is a primitive n-th root of unity. Put b = 06P. 
Then as b is an invariant element of Th.n ,b € F. Now we shall show that F(0) = K. To see 
this, it is enough to show that a ^ F. Assume that a £ F. Then F(0) C K, [F(0) : F] = n 
and F(0)/F is a cyclic extension of degree n. This shows that 2>2n has a normal subgroup 
TV of order 2 with ®2„ /N = Z/nZ; but this impossible. • 

2. Construction of dihedral Galois coverings for (Din, n: odd. In this section, we 
shall prove Propositions 0.4 and 0.5. 

PROOF OF PROPOSITION 0.4. By the assumption (c), there exists a rational function 
(f G C(Z) satisfying (</?)o = D\ +nDi and ((p)oo = (T*D\ +nD^. Then we have ((pa*ip) = 
rc(Z)2 + cr*Di) — n(Di + tf*/^). Put (p = (ip^ipfr if- Then we have 

CLAIM. 77ze polynomial x*1 — (p is irreducible over C(Z). 

PROOF OF CLAIM. Suppose that x*1 - (p = hi(x)h2(x), deg A,-(JC) > 0 (/ = 1,2) over 
C(Z). As roots of the equation xn — (p = 0 are el(^/7p) (i = 0 , . . . , n — 1) where e is a 
primitive n-th root of unity, the constant term of h\(x) is of form em(tfip)k, (0 < m < 
n — 1, deg/zi(;c) = &). Let d be the greatest common divisor of k and M, and let s, t be 
integers such that sn + tk = d. Then, we have 

(<fc)d = ((^)*)V € C(Z). 

Putting (tfip)d = 17, we get (/? = 77a. From this equality, we have 

Di - a*D! = ^(</D3 - dD2 + Wo - Woo). 

Therefore |̂<2/ for every /. But this contradicts to the assumption (b) as ~d > 1. 
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Let K = C(Z)(£), where £ is an n-th root of (p. By the Claim, K is a cyclic extension 
of degree n, and we have a*(p = ((pa*(p)n/(p. Therefore, by Lemma 1.1, AT is a dihedral 
Galois extension of C(F) with Gal(#/C(F)) = 2^n. 

Let X be the ^-normalization of Y. Then, it is a Galois covering of Y with the Galois 
group ©2„ and, by Lemma 1.1, D(X/ Y) = Z. The statement A(X/ Y) = A(Z/ Y) U/(£>i ) 
easily follows from the assumption (a) and 

(<p) = (Pi - o*Dx) + n(D2 - D3) + n(n~l)(D2 + a*D2 - D3 - a*D3). • 

PROOF OF PROPOSITION 0.5. Applying Lemma 1.2 to the case F = C(Y), E = 
C(D(X/Yj) and K = C(X), we have 6 e C(X) and b € C(Y) such that 

0n = ip e C(D(X/YJ) and ipa*? = fi\bn, b E C(Y). 

In order to find the three divisors stated in Proposition 0.5, we shall look into the divisors 

(</?)o and (</?)oo- Let (<̂ )o = £/ faDf* and (</?)oo = £/ vj^>f°) denote the decomposition 

into irreducible components of (y?)o and (</?)oo> respectively. Put /x/ = /x- + n[^] and 

i/y = i/j + /?[^] where 0 < /i-, i/j < n — 1. (Here [ ] means the greatest integer function.) 

We shall first investigate the divisor ((/OO

LEMMA 2.1. Let Df^ be an irreducible component of (ip)o such that p\ ^ 0. Then 

PROOF. Suppose a*Df = Df\ Then, as (<pa"»o = £,- /i/(DJ0)+a*DJ0)) = n((3*b)0, 
we have 2plx = 0 (mod n). Hence we have 2p\ = n; but this is impossible because n is 
odd. • 

LEMMA 2.2. Let D-0) be the same as above. Then <j*D.0) is either an irreducible 

component of ((p)o, or that o/(< )̂oo- Moreover, (i) ifcr*D\ ) is an irreducible component 

of((p)o, then its coefficient, pi2, satisfies p'ix + p\2 = 0 (mod n), and (ii) ifa*D) is an 

irreducible component of '(<p)oo, then its coefficient, i//,, satisfies pn = vlx (mod n), that 

is, p'h = v'ix. 

PROOF. Assume that a*Df) is neither an irreducible component of (</?)o nor of (<p)oo> 
Then the coefficients of the divisors Df^ and o*Df* in (ipo* <p)o are both equal to pt. Since 
(<pcr*ip) — n(/3*b), we have pix = 0 (mod n). But this contradicts our choice of Df\ 
Therefore a*Df^ is either an irreducible component of (< )̂o, or of (^)oo- The statement 
on the coefficients easily follows from the identity (if(T*(p) — n(J3*b). m 

For any irreducible component D-0^ of (</?)oo with non-zero i/j, similar results to those 
in Lemmas 2.1 and 2.2 hold. Furthermore, since n is odd and a2 = id, we may assume 
M/t < ^ r - (Just replace Df] by a*D^\ if necessary.) Also, if DJoo) with non-zero i/j is 
the image of some Z^0) by <r*, we rewrite DJoo) by o-*D^0). 
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Combining all results so far, we rewrite (</?)o and (<p)oo as follows: 

(¥>>„= E ^,(0,+ E ( ^ + ( » - f t V i f ) + » E ( ( f . 
o * ^ ^ h o*Df®C{tp)o 

(̂ )oo=a* ( E M;A(O)) + E (^r+ (n - ̂ Df»)+* E ^ r -

Now, we define three effective divisors D\, D2, and D3 as follows: 

z>,= E M^,(0,+ E («-/4)<r*z>f>+ E ^*^0O). 

^2= E ^(0)+ E ^ + E ^ , 

D3= E ^ r * E ^Df+E^r» 

Since (<p) = (£>i -\-nD2) — (0"*Z>i + nD>}), it is clear that these three divisors satisfy the 
conditions (i), (ii), (iii) and (iv). • 

COROLLARY 2.3. Let X be a dihedral (Dip (p : odd prime) covering of Y with the 
covering morphism 7r: X —• K Suppose that variety D(X/ Y) is smooth. Then we can 
choose the divisor D\ witha\ = 1. 

PROOF. Let D\ = J2i aiD^\ As p is prime, there exists m with 1 < m <p — 1 such 
that max = 1 (mod p). Since C(D(X/Y))(9) = C(D(X/Y))(0m), we can replace 6 and 
</? by 6m and </?m, respectively. Then we get new three effective divisors D[, D'2 and D'3 

satisfying the three properties in Proposition 0.5. This D[ is the desired divisor. • 

COROLLARY 2.4. Let J. be a smooth projective surface. Let S be a dihedral (Din (n : 
odd) covering ofY, with n: S —• X. Let D be an irreducible component of 'A(S/£) such 
thatD <j£ A(D(S/II)/I,\ Then there exists an irreducible divisor D' on D(S/Z) such that 
(i) D' and cr*D' have no common component, and (ii) (3*D = D' + a*Df. 

This corollary is straightforward from Proposition 0.5. 

COROLLARY 2.5. Using the same notation as in Corollary 2.4y any intersection point 
between D and A (£>(£/E)/X) has the multiplicity > 2. 

PROOF. Assume that D meets A ( D ( S / E ) / Z ) at a point P transversely. Then fi*D is 
smooth around /?_1 (P); but this contradicts Corollary 2.4. • 
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3. Construction of dihedral Galois coverings for 2^rt, n : even. 

PROOF OF PROPOSITION 0.6. By the assumption (d), there exists a rational function 
(f E C(Z) which satisfies (</?)o = £>i + \D2 + nD3 and (ip)oo = a*D\ + nD4. Let b be the 

n(rQ-l) 

rational function in the assumption (e), and put (p = f*b 2ro (p. Then we have 

CLAIM. The polynomial JC" — (p is irreducible over C(Z). 

PROOF OF CLAIM. Suppose that x? — (p = h\(x)h2(x), deg/z,(x) > 1. By the similar 
argument to that of the proof of Claim in Proposition 0.4, there exists a rational function 
7] € C(Z) such that (p = rfd, d — the greatest common divisor of deg h\(x) and n. From 
this equality, we have 

Dx-o*Dx + ^D2 = ^L)+d(D4-D3) + d(r°~ l){(D2+D3+c7*D3)-(D, + a*D4)}^ 

Hence, ^ | | and ^\ai for every /, but this contradicts to the assumption (b) as -d > 1. 
Let K = C(Z)(£) where £ is an n-th root of (p. Since <7*<£ =f*bn/(p, by Lemma 1.1, 

£ is a dihedral Galois extension of C(Y) with the Galois group 2)?n. 
Let X be the ^-normalization of Y. It is a finite Galois covering of Y with the Galois 

group (Din and by Lemma 1.1, D(X/ Y) = Z. The statement on the branch locus easily 
follows from the assumptions (a), (c) and 

(<£) = (£! - a ^ O + ^ + r c ^ - ^ ^ • 

REMARK 3.1. If F is simply connected, the condition (e) of Proposition 0.6 is auto
matically satisfied for ro = 1. 

PROOF. Let Bx and B2 be divisors on Y such thdXf*Bx = D2 +D3 +a*D3 and/*£2 = 
D\ + a*Z>4, respectively. Then nf*Bx — nf*B2 ~ 0. Taking the push-forward, this implies 

MnfBx - nf*B2) = 2n(Bx - B2) ~ 0. 

As Y is simply connected, the Picard group, Pic(y), has no torsion. Hence B\ — B2 ~ 0, 
and there exists a rational function b E C( Y) such that (f*b) = f*B\ -f*B2 = (£>2 +£>3 + 
a*D3) - (D4 + o-*D4). • 

Next we shall prove Proposition 0.7. 

PROOF OF PROPOSITION 0.7. By Lemma 1.2, there exists an element 8 e C(X) such 
that 

en = tpe C(D(X/Y)) and 0n(a*6)n = ftbn, b e C(Y). 

Let ((/?)o = E/ M/^/0) a nd (^)oo = £/ VjDf°* denote the decomposition into irre
ducible components, respectively. We rewrite these decompositions in the following way. 

The notations \i\ and v\ are the same as those in the proof of Proposition 0.5. Let £>J0) be 
an irreducible component of O) 0 such that a*Df = Df\ If SuppD|0) (jt 

Supp^*A(Z)(X/F)/F)V then there exists an irreducible divisor Bf] on Y such that 
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PXBf = Df\ while if SuppDf C Supp((5*lA(D(X/Y)/Y)\ then there exists an ir

reducible divisor B?0) on Y such that j5\B'^ = 2Df\ Since both of Bf} and #'(0) are 

irreducible components of (è)o, comparing the coefficients of both sides of ((f(T*<p) = 

n{fi\b), we have \i\ = | or 0 for the former case, and \i\ = 0 for the latter case. 

For an irreducible component D.00^ with o*D^ = D^°°\ there are also two cases: 

(i) SuppZ)]0^ £ SuppftA(D(X/Y)/Y or (ft) SuppDJ^ C Supp P*A(D(X / Y) / Y). 

By using the same equality (<po*ip) = n((3*b), we also get z/j = | or 0 and if z/j = | , 

there exists a divisor Bf* such that ̂ ^ = Df°\ 

For any irreducible component Df (resp. DJ00^ of O) 0 (resp. y ^ ) with a*DJ0 } ^ Z)f} 

(resp. o^D^ ^ D-00^), the similar results to those in Lemma 2.2 hold. Therefore we can 

rewrite (ip)o and (ip)oo as follows: 

(^)o= E M,'̂ 0)+ E (M^ + Cn-^V^) 

(fDfïfttph a*D(0)C(^)o 
a * D ( 0 ) _ ^ D ( 0 ) 

+ ? E DT+«EMW. 

^Dftiifh (fD^CMoo 
a*D ( o oVD ( o o ) 

(j*D(0O)=D(0o) 

Now we define effective divisors as follows: 

CASE (A). There exists no irreducible component Z)|0) (resp. D.00^) satisfying 
a*Df} = Df (resp. a^Df* = DJ00^ with ^ = n/2 (resp. uj = n/2). In this case, 
we set D2 = 0, and let D3 (resp. D4) be the divisor as D2 (resp. D3) in Proposition 0.5. 

CASE (B). There exist some irreducible components Z)-0) (resp. D.00^) satisfying 
a*Df} = Df» (resp. a*/)]^ = Dy

(oo)) with [i\ = n/2 (resp. uj = n/2). In this case, 
we define four divisors D\, £>2, D3, andD4 as follows: 

vja*Df°\ Dx = - E n'fiF>+ E («-M,Vz)f> + 

ff*Z>fV(vOo 

E 

^2= E ^ 0 ) + £ 
a*D^=LP CT*D(OO)=D(OO) 

j^ioo) 
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D3= E £f+ E ^ ! 0 )
+ E ^ 0 ) , 

D4 = £ ^ ( 0 0 ) + S ^ l 0 ) + E ^ ( 0 0 ) + E v'jDf*. 
^DJo o )C((^)oo cTD^CLitph (fD^Df» 

Since (</?) = (£>i + ftD2) - (p*D\ + nD3) (resp. (£>i + \D2 + ft£>3) - (o*Dx + nD4)) for 
Case (A) (resp. Case (B)), it is clear that these divisors satisfy the required conditions. • 

4. Dihedral (Dip (p : odd prime) coverings of P2 branched along curves of degree 
< 4. The purpose of this section is to study dihedral (Dip coverings of P2. Let IT: S —•> P2 

be a dihedral ©^ covering and let A(S/P2) be the branch locus. We shall consider the 
cases degA(5/P2) < 4. As the fundamental group 7i*i(P2 \ C) is an abelian group for a 
plane curve of degree < 2, our problem is the cases deg A(S/P2) = 3,4. 

4.1. We shall first consider the case degA(5/P2) = 3. As the branch locus 
À ( D ( 5 / P 2 ) / P 2 ) of /?i is a curve of even degree, À ( Z ) ( S / P 2 ) / P 2 ) is a smooth conic or 
two distinct lines. Hence, for the former case, A(S/P2) is a smooth conic and a tangent 
line to it by Corollary 2.5. For the latter case, by considering the canonical resolution of 
D(S/P2), we can apply Corollary 2.5 to this case. Looking into the inverse process of 
the canonical resolution, we know that A(S/P2) is three distinct lines intersecting at one 
point. 

In case that A(D(S/P2)/P2) is a smooth conic, D(S/P2) is isomorphic to P1 x P 1 . 
Let / be the line component of A(S/P2). Then /?*/ has two irreducible components l\ 
and a*l\ generating NS(Z)(S/P2)). By Proposition 0.5(iii), l\ — a*l\ is /^-divisible in 
NS^D^S/P2)); but this is impossible. Therefore, this case does not occur. 

In case that A(S/P2) is distinct three lines intersecting at one point, we can replace 
our problem by that of dihedral Th.p covering of P1 branched at three points by blowing 
up the intersecting point. Using well-known results on coverings of P1 {cf. Namba [11] 
pp. 29-31), we can easily show that there exists the desired covering. 

4.2. Now we go on to the problem on dihedral Œhp coverings of P2 branched along 
quartic curves. Our problem is divided in two cases as follows: 

(A) A(£>(S/P2)/P2) is a conic, 

(B) A(£>(S/P2)/P2) is a quartic. 

For the Case (A), A(D(S/P2)/P2) is either a smooth conic or two distinct lines. In 
either case, using Proposition 0.5 and Corollary 2.5, it is straightforward to show that 
A(S/P)2 is one of the following: 

(i) A(S/P2) is two smooth conies tangent at two points, 
(ii) A(S/P2) is two smooth conies tangent at one point, 

(iii) A(S/P2) is a smooth conic and two distinct lines tangent to the conic; 
A(D(S/P2)/P2) is the smooth conic, 
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(iv) A(S/P2) is a smooth conic and two distinct lines tangent to the conic; 
A(D(S/P2)/P2) is the two lines, or 

(v) A(S/P2) is four distinct lines; A ( D ( S / P 2 ) / P 2 ) is two of the four lines. 
The Case (B) is rather complicated. In case that A(S/P2) is four distinct lines intersect

ing at one point, we can reduce our problem to that of P1 by blowing up at the intersection 
point, and we can easily show the existence of the covering. Therefore, in what follows, 
we always assume that 

(*) A(S/P2) is not four distinct lines intersecting at one point. 
We choose a smooth point x on A(S/J*2) such that 
(a) if A(S/P2) is not distinct four lines, then the tangent line, lx, at x intersects A(S/P2) 

at two other distinct points, 
(b) if A(S/P2) is four distinct lines, then the line component passing through x, which 

we denote by lx, intersects other components at three distinct points. 
Let /ii : P2 —• P2 be a blowing-up at x, and let B and E denote the proper transform of 

A{S/P2) and the exceptional divisor, respectively. Next let ^2'- P2 —• P* ̂ e a blowing-up 
at B H E, and let B\, E\ and £2 denote the strict transform of B, E and the exceptiona[di-
visor of/i2, respectively. LetZ)(S/P2) be the C(l>(S/P2))-normalization of P2. D(S/P2) 
is a finite normal double covering of P2 branched along #1 +E\. Let £ be the canonical 
resolution of D(S/P2). Then £ satisfies the following: 

(i) £ is a finite double covering of a smooth surface X obtained from P2 by a succes
sion of blowing-ups. We denote the covering morphism and one from X to P2 by /5i and 
g, respectively. 

(ii) Let a be the involution coming from the covering transformation of /3\ on D(S/P2). 
Then /5i is the quotient morphism by a. 

By Miranda and Persson [10], §6, £ is a rational elliptic surface with a section s$ 
coming from E\. Its elliptic fibration comes from the family of lines passing through the 
point x. For this reason, x is called the distinguished point. Note that £ has a singular fiber 
of type I2 ifx satisfies the condition (a), while £has a singular fiber of type 7J if* satisfies 
the condition (b). In either case, the singular fiber is determined by g* ( ((/zi O/X2)*/JC) \E\ ). 

Other singular fibers of £ arise from the singularities of D{S/P2). They are determined 
by the singularities of B\. (For explicit relations between singular fibers and singularities 
of B\, see Miranda and Persson [10], §6). 

Let S be the C^-normalization of X. Then S is a dihedral Thp covering with D(S/T) = 
£ We denote the covering morphism from S to X and one from S to £ by it and 2̂» re
spectively. Now the branch locus of it consists of B\, E\ and some of exceptional divisors 
of g. Thus, S is the Stein factorization of the composite morphism from S to P2. There
fore, it suffices to study the covering it: S —• X to investigate IT: S —• P2. 

Under these circumstances, using Proposition 0.5 and the fact that a rational elliptic 
surface is simply connected, we find three effective divisors D\, D2 and D^ on £ such 
that 

(i) all coefficients of the irreducible components of D\ are positive and < ^ - , 
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(ii) Dl-â*Dl^p(D2-D3). 
(iii) Supp(Di + â*D\) is the branch locus of ^2-

The branch locus of ff consists of B\, E\ and some of the exceptional divisors of g, 
and Supp(Z?i + E\) is the branch locus of J3\. Hence, the branch locus of fi2 consists 
of the inverse images of exceptional divisors of g, which are irreducible components of 
singular fibers not intersecting so- Therefore, the condition (iii) means that all irreducible 
components of D\ and â*D\ are irreducible components of singular fibers not intersecting 
the section so. Under these circumstances, we have 

CLAIM. Let T be a subgroup of the Néron-Severi group, NS(£), generated by s$ and 
all irreducible components of fibers. Then, D2 —D3 is a divisor satisfying thatD2—D3 fi 
T;p(D2-D3)eT. 

PROOF OF CLAIM. By Shioda [14], Proposition 2.3, T is a torsion free group gener
ated by so, the class of a fiber, F, of the elliptic fibration, and all irreducible components 
of the singular fibers not intersecting so, which we denote by 0/, 1 < / < rkT — 2. 
Suppose that D2—D3 € T. Then we have 

D2—D3& mso + nF + "}T Q0/-

where m, n and c/'s are integers. 
On the other hand, as every irreducible component of D\ and â*D\ is one of 0,'s, we 

can rewrite D\ — â*D\ as follows: 

£>i-<7*£i=£^<3>/ 

where a- are integers with 1 < \a't\ < ^ by the condition (i). Using these expressions, 
by the condition (ii), we have 

pmso + pnF + Yl(Pci ~ fl/)®/ ^ 0-
i 

Since pc[ — a\ ^ 0, this gives a non-trivial relation for divisors, so> F and 0;'s. But this 
is a contradiction as these divisors form a basis of T. 

By Shioda [14], Theorem 1.3, the Claim means that the rational elliptic surface £ 
has a/7-torsion elements in its Mordell-Weill group, MW(£). In our case,/? is an odd 
prime, and £ is a rational elliptic surface with at least one singular fiber of type I2 or /Q. 
Therefore, by Persson [13], it follows that/? = 3 and the configuration of the singular 
fibers is one of the following: 

/V,/3,/3,/2, h,h,h,I2,I\, or I6J3J2J\. 

Looking into the inverse process of the canonical resolution, we have 
A(S/P2) is irreducible and has three (2,3) cusps for the first two cases of p = 3, 
A(S/P2) is a cubic with one cusp and a line, and the line is the tangent at an 
inflection point of the cubic for the last case of p = 3. 

We summarize the above discussion with the following theorem. 

https://doi.org/10.4153/CJM-1994-074-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-074-4


DIHEDRAL GALOIS COVERINGS 1313 

THEOREM 4.3. Let TT:S —» P2 be a dihedral (D^ (p : odd prime) covering ofP2, 

and let A(S/P2) be the branch locus of IT. Then, degA(S/P2) > 3. Furthermore, if 

deg A(S/P2) < 4, A(S/P2) is one of the following : 

IfdegA(S/P2) = 3, A(S/P2) is three distinct lines intersecting at one point. 

//deg A(S/P2) = 4 and A(D(S/P2)/P2) is a conic, 

(i) A(S/P2) is two distinct smooth conies tangent at two points, 

(ii) A(S/P2) is two distinct smooth conies tangent at one point, 

(Hi) A(S/P2) is a distinct smooth conic and two distinct lines tangent to the conic, or 

(iv) A(S/P2) is four distinct lines intersecting at one point. 

7/degA(5/P2) = 4 and A(D(S/P2)/P2) = A(S/P2) 

(v) p = 3 and A(S/P2) is an irreducible quartic curve with three cusps, 

(vi) p = 3 and A(S/P2) is a cubic curve with a cusp and a line; the line is the tangent 

line at an inflection point of the cubic curve, or 

(vii) p is arbitrary and A(S/P2) is four distinct lines intersecting at one point. 

5. Existence of coverings. The notation of §4 is utilized in the following. In The
orem 4.3, we have characterized all possible curves of degree 3 and 4 that can be the 
branch loci of dihedral Th.p coverings of P2. For any curve described in Theorem 4.3 
except for the cases (v) and (vi), we have already seen that there exists a dihedral (Dip 
covering branched along it. The goal of this section is to show that, using the results in 
§2, there exists a dihedral ©6 covering for the remaining cases. Here we recall that, in 
order to get the desired covering S, it suffices to show that there exists S. 

We first consider the case (v). Choosing the distinguished point x such that (i) no line 
that meets A(5/P2) at a cusp with multiplicity 3 passes through x, and (ii) the tangent line 
at x intersects A(S/P2) at two other distinct points, we may assume that the configuration 
of the singular fibers of the elliptic surface T.hh.h.h^h^h- We label the irreducible 
components of each singular fiber as in Figure 1. 
Consider two sections l\, h as above. To get these sections, choose two lines each of 
which pass through two of the three cusps of A(5/P2) and take two suitable sections 
determined by these two lines. Let ijj: NS(£) —•* MW(£) be the group homomorphism 
from the Néron-Severi group to the Mordell-Weil group introduced by Shioda [14] and 
let (, ) be Shioda's height pairing on MW(£). (For the definition of the pairing, see 
Shioda [13].) For the sections l\, k, we have ((l\ — h)^(h — h)) = 0- Therefore, by 
Shioda [14] Lemma 8.1 and Theorem 8.4, we have 

h ~ h ^ Q | (ô*0i - 0 i ) - ^(202 +<T*02) + ^ (0 3 + 2(j*03). 

This means 

(01 + (7*02 + <7*03) - (7*(01 + (7*02 + (7*03) « 3(/2 + <T*03) ~ 3(/i + 02). 

https://doi.org/10.4153/CJM-1994-074-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-074-4


1314 HIRO-0 TOKUN AG A 

/ / / 

h 

Y 01 \ / © 2 \ / 0 3 

3 
ôf*e,\ <7*02\ 

\ 

&*e\ 

\ 

h 

*0 

FIGURE 1 

As a rational elliptic surface is simply connected, we can replace algebraic equiva

lence by linear equivalence. Now we put 

D{ = 0 ! +(J*02+<J*03 , 

D2 = h+ 02, 

D 3 = /2+<T*03, 

and apply Proposition 0.4 in case of n = 3 to these three divisors on £ . In this way, we 

obtain the desired covering. 

Next we consider the case (vi). Choosing a general point on the cubic curve as the 

distinguished point x, we may assume that the configuration of the singular fibers of the 

elliptic surface £ is 4 , h, h, h • We label the irreducible components of each singular 

fiber as in Figure 2. 

Consider a section s as above. This section comes from the line passing through the cusp 

and the intersection point of the cubic and the line component of the branch locus. Using 

the same notation as in the case (v), we have (ip(s), I)J(S)} = 0. Therefore, by Shioda [14] 

Lemma 8.1 and Theorem 8.4, we have 

snQ so + F - I t f e ï » + 4 © 2
, ) + 3©(31}+2#0<

2
1) + of©Î") - \(2®f+<T*0(,2)) - l-e?K 

where F is a fiber of the elliptic fibration. This means 

ÇB™ + a*G(
2
i} + <x*0(,2)) - ô*(S\l) + â*e(V + â*0(!2)) « 3{s + 0(V) - 3(j*(s + 0e,"). 
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FIGURE 2 

As a rational elliptic surface is simply connected, we can replace algebraic equiva
lence by linear equivalence. Now we put 

Dx=e\l)
 + a*e^ + a*ef\ 

D2 = a*(s + e\]\ 

and apply Proposition 0.4 in case of n = 3 to these three divisors on £. Then we have 
the desired covering. Summing up the results in this section, we have 

THEOREM 5.1. For each case in Theorem 4.3, there exists a dihedral (Dip covering 
of?2. 

Combining Theorem 4.3 and Theorem 5.1, we have Theorem 0.9. 

6. Further examples. In this section, we shall give examples of dihedral (Din 
(n : even) covering of P2. Here a torsion element of the Mordell-Weil group of an elliptic 
surface also plays an important role. We shall use the same notation as in §4 and §5. In 
particular, the surfaces S, T, and X mean the same surfaces as in §4. 

EXAMPLE 6.1. Let Q be a reducible quartic in P2 consisting of two smooth conies, 
and the two components of Q tangent at two different points. Choose a smooth point x on 
Q in such a way that the tangent line at x intersects Q at two other points distinct from x. 
Let/: Z —• P2 be a double covering branched along Q. Choosing x as the distinguished 
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point, we get a rational elliptic surface £ birationally equivalent to Z. The configuration 
of the singular fibers of £ is U, U.hJx- We label the irreducible components of singular 
fibers as in Figure 3. 
Consider a section s coming from the line passing through two singularities of Q. Then 
we have (V>(s)> ^(s)) = 0. Therefore, by the same Shioda result as before, 

s *Q So + F - I(3e(i) + 20(» + <?&») - i(30f> + 20<2) + â*0(2)) - ^©f , 

where F is a fiber of the elliptic fibration. Therefore we have 

As a rational elliptic surface is simply connected, we can replace algebraic equiva
lence by linear equivalence. Also, the number ro in Proposition 0.6 is 1 by Corollary 3.1. 
Therefore we can apply Proposition 0.6 in case of n = 4 to the following divisors D\, 
D 2 ,D 3 andD 4 on £. 

D3 = 5 + e(
1
1) + ef ) , 

£>4 = S0 + F. 

In this way, we obtain a dihedral 2% covering S of E and this gives a dihedral 2% 
covering of P2 branched along Q with A ( D ( S / P 2 ) / P 2 ) = g. 
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EXAMPLE 6.2. Let Q be a quartic curve in the case (vi) in Theorem 0.9. The section 
s which we used in §5 to prove the existence of a dihedral ©6 covering corresponds to 
a torsion element of order 6 in MW(£). Using this section, we obtain a dihedral Œ)\2 
covering of P2 branched along Q satisfying A(Z)(S/P2)/P) = Q. 
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