ON O. BONNET III-ISOMETRY OF SURFACES IN THREE DIMENSIONAL EUCLIDEAN SPACE

WENMAO YANG

(Received 23 January 1989)

Communicated by K. C. H. Mackenzie

Abstract

In this paper we consider O. Bonnet III-isometry (or BIII-isometry) of surfaces in 3-dimensional Euclidean space E^{3}. Suppose a map $F: M \rightarrow M^{*}$ is a diffeomorphism, and $F^{*}($ III* $)=1 I I$, $\kappa_{i}(m)=\kappa_{i}^{*}\left(m^{*}\right), i=1,2$, where $m \in M, m^{*} \in M^{*}, m^{*}=F(m), \kappa_{i}$ and κ_{i}^{*} are the principal curvatures of surfaces M and M^{*} at the points m and m^{*}, respectively, III and III* are the third fundamental forms of M and M^{*}, respectively. In this case, we call F an O. Bonnet III-isometry from M to M^{*}. O. Bonnet I-isometries were considered in references [1]-[5].

We distinguish three cases about BIII-surfaces, which admits a non-trivial BIII-isometry. We obtain some geometric properties of BIII-surfaces and BIII-isometries in these three cases; see Theorems 1, 2, 3 (in Section 2). We study some special BIII-surfaces: the minimal BIIIsurfaces; BIII-surfaces of revolution; and BIII-surfaces with constant Gaussian curvature; see Theorems 4, 5, 6 (in Section 3).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 53 A 05, 53 B 20.

0. Introduction

O. Bonnet [1] was the first to study the isometric deformations of surfaces in 3-dimensional Euclidean space E^{3} which preserve mean curvature. Also W. C. Graustein [4] and E. Cartan [2] did some work in this area. Recently, S. S. Chern [3] obtained an interesting result about the surfaces with mean curvature $H \neq$ constant. After that, I. M. Roussos [5] got some detailed results. In this paper, a more general definition of O. Bonnet deformations is given.
(C) 1990 Australian Mathematical Society $0263-6115 / 90 \$ A 2.00+0.00$

Let M and M^{*} be two surfaces in the Euclidean space E^{3}. Suppose I, II, III are the first, second, third fundamental forms of the surface M, respectively. We shall denote the quantities pertaining to M^{*} by the same symbols with asterisks "*".

Definition. Suppose $F: M \rightarrow M^{*}$ is a diffeomorphism, and $F^{*}\left(\mathrm{I}^{*}\right)=\mathrm{I}$ or $F^{*}\left(\mathrm{II}^{*}\right)=\mathrm{II}$ or $F^{*}\left(\mathrm{III}^{*}\right)=\mathrm{III}$, where F^{*} represents F 's cotangent map. Then we call F a I- or II- or III-isometry of M and M^{*}, respectively. Moreover, suppose F preserves the principal curvatures at the corresponding points:

$$
\kappa_{i}(m)=\kappa_{i}^{*}\left(m^{*}\right), \quad m^{*}=F(m), i=1,2,
$$

where $m \in M, m^{*} \in M^{*}, \kappa_{i}$ and κ_{i}^{*} are the principal curvatures of M and M^{*}. In this case, we call F an O. Bonnet I or II or III-isometry, denoted by BI or BII or BIII-isometry, respectively. If a surface M admits a non-trivial BI or BII or BIII-isometry, we call M a Bonnet I or II or III-surface, respectively.

Isometric deformations which were considered in [1]-[5] are BI-isometries, because an isometric deformation preserves Gaussian curvature K, so if the map preserves mean curvature H, then it preserves the two principal curvatures κ_{1} and κ_{2}, and hence it is a BI-isometry.

In the present paper we shall study BIII-isometries and obtain some results given in Theorems 1-6, which are shown to be similar to the case of BIisometries.

1. Lemmas and formulas

We shall let $\omega=\omega_{1}+i \omega_{2} \quad\left(i^{2}=-1\right)$ be the complex structure of the metric $\mathrm{I}=\left(\omega_{1}\right)^{2}+\left(\omega_{2}\right)^{2}$ and let ω_{12} be the connection form associated to I, which is determined by the structural equations

$$
d \omega_{1}=-\omega_{2} \wedge \omega_{12}, \quad d \omega_{2}=\omega_{1} \wedge \omega_{12}
$$

or

$$
d \omega=i \omega \wedge \omega_{12}
$$

where ω_{1} and ω_{2} are two real linearly independent forms.
Lemma 1. Suppose ω is a complex structure.
(i) If $\omega^{*}=\omega$, then $\omega_{12}^{*}=-\omega_{12}$.
(ii) If $\omega^{*}=e^{i \tau} \omega$, then $\omega_{12}^{*}=\omega_{12}-d \tau$.
(iii) If $\omega^{*}=A \omega$, then $\omega_{12}^{*}=\omega_{12}+* d \log A$.

Here τ, A are functions, and "*" is the Hodge *-operator with

$$
* \omega_{1}=\omega_{2}, \quad * \omega_{2}=-\omega_{1} .
$$

We consider a piece of an oriented surface M in E^{3}, which we assume to be sufficiently differentiable and with no umbilic points and non-zero Gaussian curvature. Over M there is a field of orthonormal frames $m e_{1} e_{2} e_{3}$, such that $m \in M$, where unit vectors e_{1} and e_{2} are the principal directions of M at m, and e_{3} is the unit normal vector to M at m. Suppose ω_{1} and ω_{2} are a basis of the 1 -forms of M dual to the field of principal frames. Set $a>c$, and

$$
\begin{align*}
\omega_{1} & =a \omega_{13}, \quad \omega_{2}=c \omega_{23}, \quad a c \neq 0, \tag{1}\\
\omega_{12} & =h \omega_{13}+k \omega_{23} . \tag{2}
\end{align*}
$$

The mean curvature and the Gaussian curvature of M are

$$
\begin{equation*}
H=\frac{1}{2}\left(a^{-1}+c^{-1}\right), \quad K=(a c)^{-1} . \tag{3}
\end{equation*}
$$

The structural equations of M are

$$
\begin{align*}
d \omega_{1} & =-\omega_{2} \wedge \omega_{12}, \quad d \omega_{2}=\omega_{1} \wedge \omega_{12} \tag{4}\\
d \omega_{12} & =-K \omega_{1} \wedge \omega_{2}=-\omega_{13} \wedge \omega_{23} \tag{5}\\
d \omega_{13} & =-\omega_{23} \wedge \omega_{12}, \quad d \omega_{23}=\omega_{13} \wedge \omega_{12} . \tag{6}
\end{align*}
$$

The metric of the Gaussian image $g(M)$ of M is

$$
\begin{equation*}
I_{g}=\left(\omega_{13}\right)^{2}+\left(\omega_{23}\right)^{2} \tag{7}
\end{equation*}
$$

The complex structure of this metric is

$$
\begin{equation*}
\omega=\omega_{13}+i \omega_{23} . \tag{8}
\end{equation*}
$$

From (6), we have

$$
\begin{equation*}
d \omega=i \omega \wedge \omega_{12} \tag{9}
\end{equation*}
$$

We denote

$$
\begin{equation*}
f=a-c>0, \quad g=a+c=2 H K^{-1} . \tag{10}
\end{equation*}
$$

Taking exterior derivatives of (1) and using (4) and (6), we get the existence of functions $\alpha, \beta, \nu, \delta$, such that

$$
\begin{align*}
d a & =\alpha \omega_{13}+\beta \omega_{23}=\alpha \omega_{13}+f h \omega_{23}, \\
f \omega_{12} & =\beta \omega_{13}+\nu \omega_{23}, \quad \beta=f h, \quad \nu=f k, \tag{11}\\
d c & =\nu \omega_{13}+\delta \omega_{23}=f k \omega_{13}+\delta \omega_{23} .
\end{align*}
$$

Taking exterior derivatives of (11) and using (5), (6) and (11), we get the existence of A, B, \ldots, E, such that

$$
\begin{align*}
d \alpha & =3 \beta \omega_{12}+A \omega_{13}+B \omega_{23}=\left(A+3 f h^{2}\right) \omega_{13}+(B+3 f h k) \omega_{23}, \\
d \beta & =-(\alpha+2 \nu) \omega_{12}+B \omega_{13}+(C+a) \omega_{23} \\
& =\left[B-f h\left(\alpha f^{-1}-2 k\right)\right] \omega_{13}+\left[C+a-f h\left(\alpha f^{-1}-2 k\right)\right] \omega_{23}, \tag{12}\\
d \nu & =(\delta+2 \beta) \omega_{12}+(C+c) \omega_{13}+D \omega_{23} \\
& =\left[C+c+f h\left(\delta f^{-1}-2 h\right)\right] \omega_{13}+\left[D+f k\left(\delta f^{-1}-2 h\right)\right] \omega_{23}, \\
d \delta & =-3 \nu \omega_{12}+D \omega_{13}+E \omega_{23}=(D-3 f h k) \omega_{13}+\left(E-3 f k^{2}\right) \omega_{23} .
\end{align*}
$$

Using (10) and (11), we get

$$
\begin{align*}
d g & =2 d\left(H K^{-1}\right)=f\left(u \omega_{13}+v \omega_{23}\right), \tag{13}\\
d f & =f\left[(u-2 k) \omega_{13}-(v-2 h) \omega_{23}\right] \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
f u=\alpha+\nu, \quad f v=\beta+\delta . \tag{15}
\end{equation*}
$$

Then we can determine the following 1 -forms. By using u, v in (15), let

$$
\begin{array}{ll}
\theta_{1}=u \omega_{13}+v \omega_{23}, & \theta_{2}=* \theta_{1}=-v \omega_{13}+u \omega_{23}, \\
\alpha_{1}=u \omega_{13}-v \omega_{23}, & \alpha_{2}=* \alpha_{1}=v \omega_{13}+u \omega_{23} . \tag{17}
\end{array}
$$

If $H K^{-1}=$ constant, then $\theta_{i}=\alpha_{i}=0$; if $H K^{-1} \neq$ constant, θ_{1} and θ_{2}, or α_{1} and α_{2} are linearly independent. From (13) and (14), it follows that

$$
\begin{align*}
& d g=f \theta_{1} \tag{18}\\
& d \log f=\alpha_{1}+2 * \omega_{12} . \tag{19}
\end{align*}
$$

According to (3),

$$
\begin{equation*}
4 K^{-1}=g^{2}-f^{2} . \tag{20}
\end{equation*}
$$

Taking derivatives of (20) and using (18) and (19), we have

$$
\begin{equation*}
2 f^{-1} d\left(K^{-1}\right)=g \theta_{1}-f\left(\alpha_{2}+2 * \omega_{12}\right) . \tag{21}
\end{equation*}
$$

Suppose $H K^{-1} \neq$ constant. We denote

$$
\begin{align*}
& u+i v=L e^{i \psi} \tag{22}\\
& L^{2}=u^{2}+v^{2}=f^{-2}\left[\alpha^{2}+\beta^{2}+\nu^{2}+\delta^{2}+2(\alpha \nu+\beta \delta)\right] \\
& \cos \psi=u L^{-1}, \quad \sin \psi=v L^{-1} .
\end{align*}
$$

Let

$$
\begin{align*}
& \theta=\theta_{1}+i \theta_{2}, \tag{25}\\
& \alpha=\alpha_{1}+i \alpha_{2} . \tag{26}
\end{align*}
$$

Using (8), (16), (17), and (22), we get

$$
\begin{equation*}
\theta=L e^{-i \psi} \omega, \quad \alpha=L e^{i \psi} \omega, \quad \theta=e^{-2 i \psi} \alpha \tag{27}
\end{equation*}
$$

$$
\theta_{1}=\alpha_{1} \cos 2 \psi+\alpha_{2} \sin 2 \psi=L\left(\omega_{13} \cos \psi+\omega_{23} \sin \psi\right)
$$

$$
\begin{equation*}
\theta_{2}=-\alpha_{1} \sin 2 \psi+\alpha_{2} \cos 2 \psi=L\left(-\omega_{13} \sin \psi+\omega_{23} \cos \psi\right) \tag{27}
\end{equation*}
$$

$$
\alpha_{1}=L\left(\omega_{13} \cos \psi-\omega_{23} \sin \psi\right), \quad \alpha_{2}=L\left(\omega_{13} \sin \psi+\omega_{23} \cos \psi\right)
$$

From (10), (20), (23) and (13), it follows that

$$
f^{2}=4\left[\left(H K^{-1}\right)^{2}-K^{-1}\right], \quad[\operatorname{grad}(g)]^{2}=4\left[\operatorname{grad}\left(H K^{-1}\right)\right]^{2}=f^{2} L^{2}
$$

SO

$$
\begin{equation*}
L^{2}=4 f^{-2}[\operatorname{grad}(g)]^{2}=\frac{\left[\operatorname{grad}\left(H K^{-1}\right)\right]^{2}}{\left(H K^{-1}\right)^{2}-K^{-1}} \tag{28}
\end{equation*}
$$

We now consider a metric which is conformal to $I_{g}($ see (7))

$$
\begin{equation*}
\widehat{I}=\left(\alpha_{1}\right)^{2}+\left(\alpha_{2}\right)^{2}=L^{2} I_{g} \tag{29}
\end{equation*}
$$

Let θ_{12} and α_{12} be the connection forms associated to complex structures θ and α, respectively. From (27), using Lemma 1, we have

$$
\begin{align*}
\theta_{12} & =\omega_{12}+d \psi+* d \log L \tag{30}\\
\alpha_{12} & =\omega_{12}-d \psi+* d \log L \tag{31}\\
\theta_{12} & =\alpha_{12}+2 d \psi \tag{32}
\end{align*}
$$

We rewrite (2) as

$$
\begin{equation*}
\omega_{12}=h^{\prime} \alpha_{1}+k^{\prime} \alpha_{2} \tag{2}
\end{equation*}
$$

From (2) ${ }^{\prime}$ and (27), we have

$$
\begin{align*}
& f L h^{\prime}=f^{-1}(h \cos \psi-k \sin \psi)=\alpha \beta-\nu \delta \tag{33}\\
& f L k^{\prime}=f^{-1}(h \sin \psi+k \cos \psi)=\alpha \nu+\beta \delta+\beta^{2}+\nu^{2}
\end{align*}
$$

Taking derivatives of (23) and using (11), (12), (18) and (19), we get

$$
\begin{equation*}
d \log L=-\alpha_{1}-2 * \omega_{12}+* \Omega+\rho \theta_{1} \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
2 f L^{2} \Omega & =2(B+D) \alpha_{1}-(A-E-f) \alpha_{2} \tag{35}\\
2 f L^{2} \rho & =A+2 C+E+2 H K^{-1} \tag{36}
\end{align*}
$$

From (24), it can be seen that

$$
\begin{equation*}
u \sin \psi-v \cos \psi=0 \tag{24}
\end{equation*}
$$

Taking derivatives of (24) ${ }^{\prime}$, using (11) and previous formulas, we get

$$
\begin{equation*}
d \psi=-\omega_{12}+\Omega+\rho \theta_{2} . \tag{37}
\end{equation*}
$$

Inserting (34) and (37) into (30) and (31), we get

$$
\begin{align*}
& \theta_{12}=2 \omega_{12}-\alpha_{2}+2 \rho \theta_{2}, \tag{38}\\
& \alpha_{12}=4 \omega_{12}-\alpha_{2}-2 \Omega=2 \omega_{12}-\alpha_{2}-2 d \psi+2 \rho \theta_{2} . \tag{39}
\end{align*}
$$

Let

$$
\begin{equation*}
\alpha_{12}=P \alpha_{1}+Q \alpha_{2}, \tag{40}
\end{equation*}
$$

where P, Q are two functions. Using (39), (35), (36), (2)' and (33) gives

$$
\begin{align*}
& P=-2(f L)^{-2}[f(B+D)+2(\alpha \beta-\gamma \delta)] \\
& Q=1+(f L)^{-2}\left[f(A-E-f)-2\left(\alpha^{2}-\beta^{2}-\nu^{2}+\delta^{2}\right)\right] \tag{41}
\end{align*}
$$

By solving (39), we have

$$
\begin{equation*}
\Omega=2 \omega_{12}-\frac{1}{2}\left[P \alpha_{1}+(Q+1) \alpha_{2}\right] . \tag{39}
\end{equation*}
$$

Inserting (39) ${ }^{\prime}$ into (34) and (37), we get

$$
\begin{align*}
& 2 d \log L=(Q-1) \alpha_{1}-P \alpha_{2}+2 \rho \theta_{1}, \tag{42}\\
& 2 d \psi=2 \omega_{12}-\left[P \alpha_{1}+(Q+1) \alpha_{2}\right]+2 \rho \theta_{2} . \tag{43}
\end{align*}
$$

Set

$$
\begin{equation*}
d P=P_{i} \alpha_{i}, \quad d Q=Q_{i} \alpha_{i}, \quad d \rho=\rho_{i} \alpha_{i}, \quad i=1,2 . \tag{44}
\end{equation*}
$$

Taking exterior derivatives of (42), we have

$$
\begin{equation*}
\left(d \rho-\rho * \theta_{12}\right) \wedge \theta_{1}+J \theta_{1} \wedge \theta_{2}=0 \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
-2 J=P+P_{1}+Q_{2} . \tag{4}
\end{equation*}
$$

Taking exterior derivatives of (43), we have

$$
\begin{equation*}
\left(d \rho-\rho * \theta_{12}\right) \wedge \theta_{2}-I \theta_{1} \wedge \theta_{2}=0 \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
2 I=\widehat{K}-Q-2 L^{-2} \tag{48}
\end{equation*}
$$

and \widehat{K} is the Gaussian curvature of the metric \widehat{I} (see (29)) so that

$$
\begin{equation*}
d \alpha_{12}=-\widehat{K} \alpha_{1} \wedge \alpha_{2}, \quad \widehat{K}=-P^{2}-Q^{2}+P^{2}-Q_{1} . \tag{49}
\end{equation*}
$$

From (45) and (47), we obtain

$$
\begin{equation*}
d \rho-\rho * \theta_{12}=-I \theta_{1}+J \theta_{2} \tag{}
\end{equation*}
$$

or, by (32) and (48),

$$
\begin{align*}
d \rho & =\rho * \theta_{12}-I \theta_{1}+J \theta_{2} \tag{50}\\
& =\rho\left(* \alpha_{12}+2 * d \psi\right)+\left[L^{-2}-\frac{1}{2}(\widehat{K}-Q)\right] \theta_{1}+J \theta_{2}
\end{align*}
$$

Taking exterior derivatives of [19] and using (40), we get

$$
\begin{equation*}
d * \omega_{12}=-\frac{1}{2} P \alpha_{1} \wedge \alpha_{2} \tag{51}
\end{equation*}
$$

Applying the *-operator and taking exterior derivatives of (40), we get

$$
\begin{equation*}
d * \alpha_{12}=\left(P_{1}+Q_{2}\right) \alpha_{1} \wedge \alpha_{2} \tag{52}
\end{equation*}
$$

Similarly, from (31), using (51) and (52), we get

$$
\begin{equation*}
d * d \psi=\left(2 J+\frac{1}{2} P\right) \alpha_{1} \wedge \alpha_{2} \tag{53}
\end{equation*}
$$

and from (30) and (19), we have

$$
\begin{equation*}
d * d \log f=\left(Q+2 L^{-2}\right) \alpha_{1} \wedge \alpha_{2} \tag{54}
\end{equation*}
$$

Applying the *-operator to (34) and using (37), we get

$$
\begin{equation*}
* d \log L=-\omega_{12}+\alpha_{12}+d \psi \tag{56}
\end{equation*}
$$

Taking exterior derivatives of the above equation,

$$
\begin{equation*}
d * d \log L=\left(L^{-2}-\widehat{K}\right) \alpha_{1} \wedge \alpha_{2} \tag{57}
\end{equation*}
$$

We denote
(58) $\quad d \psi=\psi_{i} \alpha_{i}, \quad d J=J_{i} \alpha_{i}, \quad d(\widehat{K}-Q)=(\widehat{K}-Q)_{i} \alpha_{i}, \quad i=1,2$.

Taking exterior derivatives of (50) gives

$$
\begin{align*}
& \left(-I \theta_{1}+J \theta_{2}\right) \wedge * \theta_{12}+\left(I \theta_{2}+J \theta_{1}\right) \wedge \theta_{12}+I\left(d * \alpha_{12}+2 d * d \psi\right) \tag{59}\\
& \quad-\left[\frac{1}{2} d(\widehat{K}-Q)-d L^{-2}\right] \wedge \theta_{1}+d J \wedge \theta_{2}=0
\end{align*}
$$

Let us compute the left side in (59).
(a) The sum of the first two terms is

$$
\begin{align*}
& \left(-I \theta_{1}+J \theta_{2}\right) \wedge\left(* \alpha_{12}+2 * d \psi\right)+\left(I \theta_{2}+J \theta_{1}\right) \wedge \theta_{12} \tag{60}\\
& \quad=\left\{\left[-I\left(P+1 \psi_{1}\right)+J\left(Q+2 \psi_{2}\right)\right] \cos 2 \psi\right. \\
& \left.\quad-\left[I\left(Q+2 \psi_{2}\right)+J\left(P+2 \psi_{1}\right)\right] \sin 2 \psi\right\} \alpha_{1} \wedge \alpha_{2}
\end{align*}
$$

(b) The third term is

$$
\begin{equation*}
I\left(d * \alpha_{12}+2 d * d \psi\right)=2 \rho J \alpha_{1} \wedge \alpha_{2} \tag{61}
\end{equation*}
$$

(c) The sum of the last two terms is

$$
\begin{align*}
& -\left[\frac{1}{2} d(\widehat{K}-Q)-d L^{-2}\right] \wedge \theta_{1}+d J \wedge \theta_{2} \tag{62}\\
& =-2 L^{-2} d \log L \wedge \theta_{1}-\frac{1}{2} d(\widehat{K}-Q) \wedge \theta_{1}+d J \wedge \theta_{2} \\
& =\left\{\left[\frac{1}{2}(\widehat{K}-Q)_{2}+J_{1}\right] \cos 2 \psi-\left[\frac{1}{2}(\widehat{K}-Q)_{1}-J_{2}\right] \sin 2 \psi\right. \\
& \\
& \left.\quad-L^{-2}[P \cos 2 \psi+(Q-1) \sin 2 \psi]\right\} \alpha_{1} \wedge \alpha_{2}
\end{align*}
$$

Inserting (60)-(62) into (59), we get

$$
\begin{align*}
\rho J & -\frac{1}{2} L^{-2}\left[P \cos 2 \psi_{+}(Q+1) \sin 2 \psi\right] \tag{63}\\
& +\left\{-I\left(P+2 \psi_{1}\right)+J\left(Q+2 \psi_{2}\right)+\frac{1}{2}\left[\frac{1}{2}(\widehat{K}-Q)_{2}+J_{1}\right]\right\} \cos 2 \psi \\
& -\left\{J\left(P+2 \psi_{1}\right)+I\left(Q+2 \psi_{2}\right)+\frac{1}{2}\left[\frac{1}{2}(\widehat{K}-Q)_{1}-J_{2}\right]\right\} \sin 2 \psi=0 .
\end{align*}
$$

We need the following lemma.
Lemma 2. A necessary and sufficient condition for a surface M with $H K^{-1}$ \neq constant to be a Weingarten-surface is

$$
\begin{equation*}
\left(P+2 \psi_{1}\right) \cos 2 \psi+\left(Q+2 \psi_{2}\right) \sin 2 \psi=0 \tag{64}
\end{equation*}
$$

Proof. According to (10), (18) and (21), a necessary and sufficient condition for M to be a W-surface is $d a \wedge d c=0$, which can be written as

$$
\begin{equation*}
\left(\alpha_{1}+2 * \omega_{12}\right) \wedge \theta_{1}=0 \tag{65}
\end{equation*}
$$

Applying the $*$-operator to (39), we get

$$
\alpha_{1}+2 * \omega_{12}=* \alpha_{12}+2 * d \psi+2 \rho \theta_{1}
$$

Using the above equation from (65), we have

$$
*\left(\alpha_{12}+2 d \psi\right) \wedge \theta_{1}=0
$$

or

$$
\left(\alpha_{12}+2 d \psi\right) \wedge \theta_{2}=0
$$

Using (40), (58), (27) ${ }^{\prime}$ and rewriting the above equation, we see that (64) follows.

2. BIII-isometry

Let $F: M \rightarrow M^{*}$ be a III-isometry from M to $\stackrel{*}{M}$, with $m e_{1} e_{2} e_{3}$ and $\stackrel{{ }_{m}^{e}}{ }{ }_{1}{ }_{1} \stackrel{*}{e}_{2} \stackrel{\rightharpoonup}{e}_{3}$ the fields of principal frames over M and $\stackrel{*}{M}$, respectively. We have

$$
\begin{equation*}
\omega_{1}=a \omega_{13}, \quad \omega_{2}=c \omega_{23}, \quad \stackrel{*}{\omega}=\stackrel{*}{a} \stackrel{*}{\omega}_{13}, \quad \stackrel{*}{\omega}_{2}=\stackrel{*}{c} \stackrel{*}{23}_{23} \tag{1}
\end{equation*}
$$

Let

$$
\omega=\omega_{13}+i \omega_{23}, \quad \stackrel{*}{\omega}=\stackrel{*}{\omega}_{13}+i \stackrel{*}{\omega}_{23} .
$$

Since F is a III-isometry, we have

$$
\begin{equation*}
\stackrel{*}{\omega}=e^{i \tau} \omega \tag{2}
\end{equation*}
$$

or
(2) ${ }^{\prime} \quad \stackrel{*}{\omega}_{13}=\omega_{13} \cos \tau-\omega_{23} \sin \tau, \quad \stackrel{*}{\omega}_{23}=\omega_{13} \sin \tau+\omega_{23} \cos \tau$,
where τ is an angle of rotation of the principal directions during the BIIIisometric deformation. On the other hand, from the invariance of principal curvatures, we get

$$
\begin{equation*}
\stackrel{*}{a}=a, \quad \stackrel{*}{c}=c \tag{3}
\end{equation*}
$$

Using (1.10) and (3) gives

$$
\begin{equation*}
\stackrel{*}{f}=f, \quad \stackrel{*}{g}=g \tag{4}
\end{equation*}
$$

From (1.16), (1.33) and (1.24),

$$
\begin{equation*}
\stackrel{*}{\theta}_{1}=\theta_{1} \tag{5}
\end{equation*}
$$

or

$$
{\stackrel{*}{u} \stackrel{*}{\omega}_{13}+\stackrel{*}{v} \stackrel{*}{\omega}_{23}=u \omega_{13}+v \omega_{23}, ~ . ~}_{\text {, }}
$$

which gives, in view of $(2)^{\prime}$,

$$
\begin{equation*}
\stackrel{*}{u}=u \cos \tau-v \sin \tau, \quad \stackrel{*}{v}=u \sin \tau+v \cos \tau \tag{6}
\end{equation*}
$$

Taking derivatives of the first equation in (4) and using (1.19) we get

$$
\begin{equation*}
\stackrel{*}{\alpha}_{1}+2 * \stackrel{*}{\omega}_{12}=\alpha_{1}+2 * \omega_{12} \tag{7}
\end{equation*}
$$

Using Lemma 1 from (2), we have

$$
\begin{equation*}
\stackrel{*}{\omega}_{12}=\omega_{12}-\tau \tag{8}
\end{equation*}
$$

Using (7), (8), we have

$$
\begin{equation*}
d \tau=\frac{1}{2}\left(\alpha_{2}-\stackrel{*}{\alpha}_{2}\right) \tag{9}
\end{equation*}
$$

From (6) and (1.27) ${ }^{\prime}$

$$
\begin{equation*}
\stackrel{*}{\alpha}_{2}=\alpha_{1} \sin 2 \tau+\alpha_{2} \cos 2 \tau \tag{10}
\end{equation*}
$$

Putting

$$
\begin{equation*}
t=\operatorname{ctg} \tau \tag{11}
\end{equation*}
$$

we get from (9),

$$
\begin{equation*}
d t=t \alpha_{1}-\alpha_{2} \tag{12}
\end{equation*}
$$

This is the total differential equation satisfied by the angle τ. In order that the BIII-isometry be non-trivial it is both necessary and sufficient that (12) is integrable. Taking exterior derivatives of (12), in view of (1.40), we get an integrable condition

$$
\begin{equation*}
t P+1-Q=0 \tag{13}
\end{equation*}
$$

Now let us distinguish three cases about BIII-isometry. Similarly, BIisometry is classified into three types.
(1) First type, $H K^{-1}=$ constant. Then by (1.13), $\alpha_{i}=0, i=1,2$.
(2) Second type, $H K^{-1} \neq$ constant, and $P \equiv 0, Q \equiv 1$. Then (13) holds identically for all t, and (12) has a continuum of solutions, each depending on an arbitrary constant. Thus we obtain a one-parameter family of surfaces BIII-isometric to M.
(3) Third type, $H K^{-1} \neq$ constant, and $P \not \equiv 0, Q \not \equiv 1$. Then from (13), we have

$$
\begin{equation*}
t=(Q-1) P^{-1} \tag{13}
\end{equation*}
$$

and (12) has a single solution. Thus we obtain a single surface which is BIII-isometric to M.

Theorem 1. Any surface with constant $H K^{-1}$ is a BIII-surface of the first type. In other words, any surface with constant H^{-1} can be III-isometrically deformed, preserving the principal curvatures. During this deformation the principal directions are rotated by a fixed angle τ (= constant).

Since in this case $\alpha_{1}=\alpha_{2}=0, d t=0, t=$ constant, $\tau=$ constant, Theorem 1 naturally holds. This theorem is an analogy of O . Bonnet's theorem for BI-isometries [1].

Theorem 2. Let M be a BIII-surface of the second type, that is, $H K^{-1} \neq$ constant and $P \equiv 0, Q \equiv 1$.
(i) The metric which is conformal to the metric I_{g} of the Gaussian image $g(M)$ of M,

$$
\widehat{I}=\frac{\left[\operatorname{grad}\left(H K^{-1}\right)\right]^{2}}{\left(H K^{-1}\right)^{2}-K^{-1}} I_{g}
$$

has Gaussian curvature equal to -1 , where H and K are the mean curvature and Gaussian curvature of M, respectively.
(ii) M is a W-surface.
(iii) The non-trivial family of BIII-surfaces is a family of surfaces which depends on six arbitrary constants.

Proof. Since

$$
\begin{equation*}
P \equiv 0, \quad Q \equiv 1 \tag{14}
\end{equation*}
$$

(1.3) is identically true for all t. Using (1.49), we have

$$
\widehat{K}=-\left(P^{2}+Q^{2}-P_{2}+Q_{1}\right)=-1 .
$$

From (14), $P_{i}=Q_{i}=0$ and using (1.46) and (1.48), we get

$$
J=0, \quad I=-\left(1+L^{-2}\right), \quad J_{i}=0, \quad \widehat{K}_{i}=0 .
$$

Inserting the above equations into (1.63) we get

$$
\begin{equation*}
2 \psi_{1} \cos 2 \psi+\left(1+2 \psi_{2}\right) \sin 2 \psi=0 \tag{15}
\end{equation*}
$$

This is exactly (1.64). By Lemma 2, we obtain (ii).
From (15) we have

$$
\begin{equation*}
2 \psi_{1}=p \sin 2 \psi, \quad 1+2 \psi_{2}=-p \cos 2 \psi \tag{16}
\end{equation*}
$$

where p is a function. Taking derivatives of (16), we get, for $i=1,2$,

$$
\begin{equation*}
2 \psi_{1 i}=p_{i} \sin 2 \psi+2 p \psi_{i} \cos 2 \psi, \quad 2 \psi_{2 i}=p_{i} \cos 2 \psi+2 p \psi_{i} \sin 2 \psi . \tag{17}
\end{equation*}
$$

Inserting (17) into (1.53), using $\psi_{12}=\psi_{21}$ plus $J=0, P=0$, and by solving the equation obtained, we get

$$
\begin{equation*}
p_{1}=-2 p \psi_{2}, \quad p_{2}=2 p \psi_{1} . \tag{18}
\end{equation*}
$$

It can be verified by differentiating (18) that the integrable condition for p is satisfied. From our discussion the differentials of the six functions a, c, $\log L, \rho, \psi, p$ are all determined. Hence our surfaces of non-constant $H K^{-1}$, which can be III-isometrically deformed in a non-trivial way preserving the principal curvatures, depend on six arbitrary constants.

Remark. Theorem 2 is analogous to S. S. Chern's Theorem for BIisometry [4].

About the third type of BIII-surfaces, we only consider the case of a surface satisfying the equation

$$
\begin{equation*}
P \cos 2 \psi+(Q-1) \sin 2 \psi=0 \tag{19}
\end{equation*}
$$

First of all, we get the following.

Lemma 3. Let M be a BIII-surface, which satisfies (19). Then the following differentials satisfy

$$
\begin{equation*}
d \psi, d P, d Q, d L, d \rho, d a, d c \equiv 0 \quad\left(\bmod \theta_{1}\right) \tag{20}
\end{equation*}
$$

Proof. By solving (13), we get

$$
\begin{equation*}
t=(1-Q) P^{-1} \tag{21}
\end{equation*}
$$

Inserting (21) into (12).

$$
\begin{equation*}
P d Q-(Q-1) d P=P(Q-1) \alpha_{1}-P^{2} \alpha_{2} \tag{22}
\end{equation*}
$$

Taking exterior derivatives of (22), we have
(23) $2 d P \wedge d Q=(Q-1) d P \wedge \alpha_{1}+P d Q \wedge \alpha_{1}-2 P d P \wedge \alpha_{2}-P^{2} \alpha_{1} \wedge \alpha_{2}$.

Taking the wedge product of (22) with $d P, d Q, \alpha_{1}$ and α_{2}, respectively we obtain
(24) ${ }_{1-4}$

$$
d P \wedge d Q=(Q-1) d P \wedge \alpha_{1}-P d P \wedge \alpha_{2}
$$

$$
(Q-1) d P \wedge d Q=P(Q-1) d Q \wedge \alpha_{1}-P^{2} d Q \wedge \alpha_{2}
$$

$$
P^{2} \alpha_{1} \wedge \alpha_{2}=-(Q-1) d P \wedge \alpha_{1}+P d Q \wedge \alpha_{1}
$$

$$
P(Q-1) \alpha_{1} \wedge \alpha_{2}=-(Q-1) d P \wedge \alpha_{2}+P d Q \wedge \alpha_{2}
$$

Taking derivatives of (19), we get
(25) $\quad d P \cos 2 \psi+d Q \sin 2 \psi+2[-P \sin 2 \psi+(Q-1) \cos 2 \psi] d \psi=0$.

From (19),

$$
\begin{equation*}
\cos 2 \psi=\frac{Q-1}{\sqrt{P^{2}+(Q-1)^{2}}}, \quad \sin 2 \psi=\frac{-P}{\sqrt{P^{2}+(Q-1)^{2}}} \tag{}
\end{equation*}
$$

Using (19) ${ }^{\prime}$ and (22), we get

$$
\begin{equation*}
d P \cos 2 \psi+d Q \sin 2 \psi=-P \theta_{1} \tag{26}
\end{equation*}
$$

Inserting (26) into (25), we get

$$
\begin{equation*}
2 d \psi=-\theta_{1} \sin 2 \psi \tag{27}
\end{equation*}
$$

Taking exterior derivatives of (27), we have

$$
\theta_{2} \wedge \theta_{12} \cdot \sin 2 \psi=0
$$

Since $P \neq 0, \sin 2 \psi \neq 0$, and it follows that $\theta_{2} \wedge \theta_{12}=0$, or

$$
\begin{equation*}
\left(P+2 \psi_{1}\right) \cos 2 \psi+\left(Q+2 \psi_{2}\right) \sin 2 \psi=0 \tag{28}
\end{equation*}
$$

From (28), using Lemma 2, we have that M is a W-surface. Using (28) and (19) we get

$$
\begin{equation*}
2 \psi_{1} \cos 2 \psi+\left(2 \psi_{2}+1\right) \sin 2 \psi=0 \tag{29}
\end{equation*}
$$

From (19), (28) and (29),

$$
\begin{equation*}
\operatorname{tg} 2 \psi=\frac{-P}{Q-1}=\frac{-\left(P+2 \psi_{1}\right)}{Q+2 \psi_{2}}=\frac{-2 \psi_{1}}{2 \psi_{2+1}} . \tag{30}
\end{equation*}
$$

Applying the $*$-operator to (27), we have

$$
\begin{equation*}
2 * d \psi=-\theta_{2} \sin 2 \psi \tag{31}
\end{equation*}
$$

Taking exterior derivatives of (31), in view of (27), we get

$$
\begin{equation*}
2 d * d \psi=P \alpha_{1} \wedge \alpha_{2} \tag{32}
\end{equation*}
$$

On the other hand, from (1.53),

$$
2 d * d \psi=(4 J+P) \alpha_{1} \wedge \alpha_{2}
$$

By the above two equations, we get $J=0$, or (see (1.46))

$$
\begin{equation*}
P_{1}+Q_{2}+P=0 \tag{33}
\end{equation*}
$$

We denote

$$
\begin{equation*}
d P=P_{i} \alpha_{i}, \quad d Q=Q_{i} \alpha_{i}, \quad i=1,2 . \tag{34}
\end{equation*}
$$

From (23), (24) $)_{1-4}$ and (33), we have

$$
\begin{align*}
& 2\left(P_{1} Q_{2}-P_{2} Q_{1}\right)=-(Q-1) P_{2}-P Q_{2}-2 P P_{1}-P^{2} \tag{35}\\
& P_{1} Q_{2}-P_{1} Q_{1}=-(Q-1) P_{2}-P P_{1} \\
& (Q-1)\left(P_{1} Q_{2}-P_{2} Q_{1}\right)=-P\left[(Q-1) Q_{2}+P Q_{1}\right] \\
& \quad(Q-1) P_{2}-P Q_{2}=P^{2}, \quad P_{1}+Q_{2}=-P .
\end{align*}
$$

By solving (35) for P_{1}, \ldots, Q_{2} we get

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\frac{Q_{2}}{Q_{1}}=\frac{-P}{Q-1}=\operatorname{tg} 2 \psi \tag{36}
\end{equation*}
$$

or

$$
\begin{align*}
& P_{1} \sin 2 \psi-P_{2} \cos 2 \psi=0, \quad Q_{1} \sin 2 \psi-Q_{2} \cos 2 \psi=0 \tag{37}\\
& P P_{1}+(Q-1) P_{2}=0, \quad P Q_{1}+(Q-1) Q_{2}=0
\end{align*}
$$

Using (19), (33) and (1.48), from (1.63), we have

$$
\begin{align*}
& {\left[\frac{1}{2}(\widehat{K}-Q)-L^{-2}\right]\left[\left(P+2 \psi_{1}\right) \cos 2 \psi+\left(Q+2 \psi_{2}\right) \sin 2 \psi\right]} \tag{38}\\
& \quad+\frac{1}{4}\left[(\widehat{K}-Q)_{2} \cos 2 \psi-(\widehat{K}-Q)_{1} \sin 2 \psi\right]=0
\end{align*}
$$

Using (28) and (38) implies

$$
(\widehat{K}-Q)_{2} \cos 2 \psi-(\widehat{K}-Q)_{1} \sin 2 \psi=0 .
$$

From (37) and the above equation, we have

$$
\begin{equation*}
\widehat{K}_{2} \cos 2 \psi-\widehat{K}_{1} \sin 2 \psi=0 \tag{39}
\end{equation*}
$$

Using (1.49) and its differential, we get

$$
\begin{align*}
& -\widehat{K}=P^{2}+Q^{2}-P_{2}+Q_{1} \tag{40}\\
& -\widehat{K}_{1}=2\left(P P_{1}+Q Q_{1}\right)-P_{21}+Q_{11} \\
& -\widehat{K}_{2}=2\left(P P_{2}+Q Q_{2}\right)-P_{22}+Q_{12}
\end{align*}
$$

Using (40), (19) ${ }^{\prime}$ and (39) implies

$$
\begin{align*}
& P\left(Q_{11}-P_{21}\right)+(Q-1)\left(Q_{12}-P_{22}\right) \tag{41}\\
& \quad=2\left[P\left(P P_{1}+Q Q_{1}\right)-(Q-1)\left(P P_{2}+Q Q_{2}\right)\right]
\end{align*}
$$

Then (11), (19) and (21) imply

$$
t=\operatorname{ctg} \tau=\frac{Q-1}{P}=-\operatorname{ctg} 2 \psi
$$

Hence

$$
\begin{equation*}
\tau=-2 \psi+k \pi, \quad k=\text { integer } \tag{42}
\end{equation*}
$$

We wish to express the differentials on the left side of (20) in terms of θ_{1} and θ_{2}. First, from (37) we have

$$
\begin{equation*}
d P=P_{1} \sec 2 \psi \cdot \theta_{1}, \quad d Q=Q_{1} \sec 2 \psi \cdot \theta_{1} \tag{43}
\end{equation*}
$$

Furthermore,

$$
\alpha_{12}=P \alpha_{1}+Q \alpha_{2}=\theta_{1}(P \cos 2 \psi+Q \sin 2 \psi)+\theta_{2}(-P \sin 2 \psi+Q \cos 2 \psi)
$$

From (19) ${ }^{\prime}$, (27), we get

$$
\begin{equation*}
\theta_{12}=\alpha_{12}+2 d \psi=(-P \sin 2 \psi+Q \cos 2 \psi) \theta_{2} \tag{44}
\end{equation*}
$$

Using (1.42) gives

$$
\begin{equation*}
d \log L=\left[1+\frac{1}{2}(Q-1) \sec 2 \psi\right] \theta_{1} \tag{45}
\end{equation*}
$$

From (1.50),

$$
\begin{equation*}
d \rho=\left[L^{-2}-\frac{1}{2}(\widehat{K}-Q)+\rho(P \sin 2 \psi-Q \cos 2 \psi)\right] \theta_{1} \tag{46}
\end{equation*}
$$

Using (27) and (45), from (1.38) it follows that

$$
\begin{equation*}
\omega_{12}=\frac{1}{2} \sin 2 \psi \cdot \theta_{1}-\left\{1+\frac{1}{2}[P \sin 2 \psi-(Q+1) \cos 2 \psi]\right\} \theta_{2} \tag{47}
\end{equation*}
$$

From (1.18), (1.19) and (47), we get

$$
\begin{equation*}
d g=f \theta_{1}, \quad d f=f[2 \rho+P \sin 2 \psi-(Q-2) \cos 2 \psi] \theta_{1} \tag{48}
\end{equation*}
$$

Using (1.10) and (48), we see that

$$
\begin{align*}
2 d a & =f[2 \rho+1+P \sin 2 \psi-(Q-2) \cos 2 \psi] \theta_{1} \\
2 d c & =f[-2 \rho+1-P \sin 2 \psi+(Q-2) \cos 2 \psi] \theta_{1} \tag{49}
\end{align*}
$$

According to (27), (43), (45), (46) and (49), we obtain (20).
Now we easily obtain the following theorem.
Theorem 3. Let M be a BIII-surface of the third type, and satisfying equation (19). Then M is a helicoidal surface.

A helicoidal surface in E^{3} is a surface which is invariant under a helicoidal motion:

$$
\begin{aligned}
c_{t}(x) & =x^{\prime}, \quad x=\left(x_{1}, x_{2}, x_{3}\right), \quad x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \\
x_{1}^{\prime} & =x_{1} \cos t+x_{2} \sin t, \\
x_{2}^{\prime} & =-x_{1} \sin t+x_{2} \cos t, \quad-\infty<t<+\infty \\
x_{3}^{\prime} & =x_{3}+b t
\end{aligned}
$$

where the x_{3}-axis is taken as the axis of a helicoidal motion. Let C be a curve parametrized by s :

$$
c(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)
$$

Any helicoidal surface M may be considered as the one generated by helicoidal motion of all the points of C. Thus its parametrization by s, t is

$$
\begin{align*}
x(s, t)=\left(x_{1}(s) \cos t+x_{2}(s)\right. & \sin t \tag{50}\\
& \left.-x_{1}(s) \sin t+x_{2}(s) \cos t, x_{3}(s)+b t\right)
\end{align*}
$$

where $b=$ constant. In other words, on a helicoidal surface there exists a family of helicoidal curves, which have the same helicoidal distance ($b=$ constant) and helicoidal axis.

Proof of Theorem 3. Let us show that on the surface M the set of θ_{2}-curves (the curve along which $\theta_{1}=0$) is a family of helicoidal curves.

First of all, from Lemma 3 we conclude that

$$
\begin{equation*}
\psi, P, Q, L, \rho, a, c=\mathrm{constant}\left(\bmod \theta_{1}\right) \tag{51}
\end{equation*}
$$

that is, they are all constant along the θ_{2}-curves $\left(\theta_{1}=0\right)$. Let us find the curvature κ and torsion τ of the θ_{2}-curves.

According to (1.1) and (1.27), along θ_{2}-curves, we have

$$
\begin{aligned}
& \omega_{1}=a \omega_{13}=-a L^{-1} \theta_{2} \sin \psi, \\
& \omega_{2}=c \omega_{23}=c L^{-1} \theta_{2} \cos \psi .
\end{aligned}
$$

Hence the arc length differential of θ_{2}-curves is

$$
\begin{equation*}
d s=\sqrt{\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}=L^{-1} \sqrt{a^{2} \sin ^{2} \psi+c^{2} \cos ^{2} \psi} \theta_{2} \tag{52}
\end{equation*}
$$

Since the angle between tangent directions of θ_{2}-curves and the first principal directions ($\phi=0$) is $\phi=\psi+\pi / 2$, the normal curvature of θ_{2}-curves, by Euler's theorem is

$$
\begin{align*}
\kappa_{n} & =a^{-1} \cos ^{2} \phi+c^{-1} \sin ^{2} \phi \\
& =a^{-1} \sin ^{2} \psi+c^{-1} \cos ^{2} \psi . \tag{53}
\end{align*}
$$

Along θ_{2}-curves, $\theta_{1}=0$ implies $d \psi=0, d \phi=0$. Using (47), we have

$$
\begin{equation*}
\omega_{12}=-\left\{1+\frac{1}{2}[P \sin 2 \psi-(Q+1) \cos 2 \psi]\right\} \theta_{2} . \tag{54}
\end{equation*}
$$

Using the formula for geodesic curvature $\kappa_{g}=d \phi / d s+\omega_{12} / d s$ and (52) and (54), we obtain the geodesic curvature of a θ_{2}-curve

$$
\begin{equation*}
\kappa_{g}=\frac{-L}{\sqrt{a^{2} \sin ^{2} \psi+c^{2} \cos ^{2} \psi}}\left\{1+\frac{1}{2}[P \sin 2 \psi-(Q+1) \cos 2 \psi]\right\} . \tag{55}
\end{equation*}
$$

From (51), (53) and (55), κ_{n} and κ_{g} are constant on each θ_{2}-curve, so its curvature

$$
\begin{equation*}
\kappa=\sqrt{\kappa_{n}^{2}+\kappa_{g}^{2}}=\text { constant. } \tag{56}
\end{equation*}
$$

Then the torsion of the θ_{2}-curve is given by

$$
\begin{equation*}
\tau=\tau_{g}+d \theta / d s \tag{57}
\end{equation*}
$$

where τ_{g} is the geodesic torsion of the θ_{2}-curve, θ is the angle between the principal space normal of the θ_{2}-curve and the normal to the surface. We have
(58) $\tau_{g}=\left(c^{-1}-a^{-1}\right) \cos \phi \sin \phi=\left(c^{-1}-a^{-1}\right) \sin \psi \cos \psi, \quad \operatorname{tg} \theta=\kappa_{g} / \kappa_{n}$.

From (51), (57) and (58), torsion $\tau=$ constant along the θ_{2}-curve.
Consequently, we have that the θ_{2}-curves are circular helices which are distinct, in general. Thus the surface M is a helicoidal surface.

3. Some special BIII-surfaces

1. The minimal BIII-surfaces.

Theorem 4. Suppose M and $\stackrel{*}{M}$ are minimal surfaces, and $F: M \rightarrow \stackrel{*}{M}$ is a mapping. Then F is a BI-isometry if and only if F is a BIII-isometry.

Proof. For any surface M, we have

$$
\mathrm{III}-2 H \mathrm{II}+K \mathrm{I}=0
$$

where H and K are the mean curvature and Gaussian curvature, respectively, and I, II and III are the three fundamental forms of M. Since M and $\stackrel{*}{M}$ are minimal surfaces, $H=\stackrel{*}{H}=0$ and so $\mathrm{III}=-K \mathrm{I}, \stackrel{*}{\mathrm{II}}=-\stackrel{*}{K} \stackrel{*}{\mathrm{I}}$. When F is a BI or BIII-isometry, $K=\stackrel{*}{K}$. Thus the above equations imply the conclusion of Theorem 4.

Example. A BIII-isometry between the catenoid and the helicoid.
Catenoid $M: m(t, \theta)=(\cosh t \cos \theta, \cosh t \sin \theta, t)$,
Helicoid $\stackrel{*}{M}: \stackrel{*}{m}(u, v)=(u \cos v, u \sin v, v)$,

$$
-\infty<t<\infty, \quad 0 \leq \theta<2 \pi, \quad u \geq 0, \quad 0 \leq v<2 \pi
$$

The fundamental forms and curvatures of M :

$$
\begin{aligned}
\mathrm{I} & =\cosh ^{2} t\left(d t^{2}+d \theta^{2}\right), \quad H=0 \\
\mathrm{III} & =\cosh ^{-2} t\left(d t^{2}+d \theta^{2}\right), \quad K=-\cosh ^{-4} t
\end{aligned}
$$

The fundamental forms and curvatures of $\stackrel{*}{M}$:

$$
\begin{aligned}
\stackrel{*}{\mathrm{I}} & =d u^{2}+\left(1+u^{2}\right) d v^{2}, \quad \stackrel{*}{H}=0, \\
\stackrel{\star}{\mathrm{I}} \mathrm{I} & =\left(1+u^{2}\right)^{-2}\left[d u^{2}+\left(1+u^{2}\right) d v^{2}\right], \quad \stackrel{*}{K}=-\left(1+u^{2}\right)^{-2}
\end{aligned}
$$

The mapping $F(t, \theta)=(u, v): u=\sinh t, v=\theta$ is both a BI-isometry and BIII-isometry:

$$
\begin{gathered}
F^{*}(\mathrm{I})=\mathrm{I}, \quad \stackrel{*}{F}(\mathrm{III})=\mathrm{III} \\
\stackrel{*}{H}=H=0, \quad \stackrel{*}{K}=K
\end{gathered}
$$

2. The BIII-surfaces of revolution.

We consider the plane curve $x=\gamma(z)>0, y=0$ and the surface of revolution

$$
\begin{equation*}
M: m(z, \theta)=(\gamma(z) \cos \theta, \gamma(z) \sin \theta, z) \tag{1}
\end{equation*}
$$

Thus

$$
m_{z}^{\prime}=\left(\gamma^{\prime} \cos \theta, \gamma^{\prime} \sin \theta, 1\right), \quad m_{\theta}^{\prime}=(\gamma \sin \theta, \gamma \cos \theta, 0) .
$$

We choose an orthonormal frame by

$$
\begin{align*}
& e_{1}=\left(\gamma^{\prime 2}+1\right)^{-1 / 2}\left(\gamma^{\prime} \cos \theta, \gamma^{\prime} \sin \theta, 1\right) \\
& e_{2}=(-\sin \theta, \cos \theta, 0) \tag{2}\\
& e_{3}=e_{1} \times e_{2}=\left(\gamma^{\prime 2}+1\right)^{-1 / 2}\left(-\cos \theta,-\sin \theta, \gamma^{\prime}\right)
\end{align*}
$$

so that

$$
\begin{align*}
\omega_{1} & =\left(\gamma^{\prime 2}+1\right)^{-1 / 2} d z, \quad \omega_{2}=\gamma d \theta \tag{4}\\
\omega_{12} & =h \omega_{1}+k \omega_{2}, \quad h=0, \quad k=\gamma^{\prime}\left(\gamma^{\prime 2}+1\right)^{-1 / 2} \\
\omega_{13} & =a^{-1} \omega_{1}, \quad a=-\left(\gamma^{\prime \prime}\right)^{-1}\left(\gamma^{\prime 2}=1\right)^{3 / 2}, \quad \gamma^{\prime \prime} \neq 0 \tag{5}\\
\omega_{23} & =c^{-1} \omega_{2}, \quad c=\gamma\left(\gamma^{\prime 2}+1\right)^{1 / 2}, \\
f & =a-c=-\left(\gamma^{\prime \prime}\right)^{-1}\left(\gamma^{\prime 2}+1\right)^{1 / 2}\left(1+\gamma^{\prime 2}+\gamma \gamma^{\prime \prime}\right) \\
g & =a+c=\left(\gamma^{\prime \prime}\right)^{-1}\left(\gamma^{\prime 2}+1\right)^{1 / 2}\left(-1-\gamma^{\prime 2}+\gamma \gamma^{\prime \prime}\right) \tag{6}
\end{align*}
$$

Theorem 5. The surfaces of revolution which are BIII-surfaces are exactly as follows.
(i) Those of the first type $\left(H K^{-1}=\right.$ constant $)$, which satisfy

$$
\begin{equation*}
\left(\gamma^{\prime 2}+1\right)^{1 / 2}\left(\gamma \gamma^{\prime \prime}-\gamma^{\prime 2}-1\right)=c \gamma^{\prime \prime}, \quad c=\text { constant. } \tag{7}
\end{equation*}
$$

(ii) Those of the second type, which satisfy

$$
\begin{equation*}
\left[\frac{g^{\prime}\left(\gamma^{\prime 2}+1\right)}{f \gamma^{\prime \prime}}\right]^{\prime}=\left(\frac{g^{\prime}}{f}\right)^{2} \frac{\gamma^{\prime 2}+1}{\gamma^{\prime \prime}} \tag{8}
\end{equation*}
$$

(iii) There are no BIII-surfaces of the third type.

Proof. According to (6) and (1.13), we have

$$
d g=g^{\prime} d z=f\left(u \omega_{13}+v \omega_{23}\right)
$$

It follows that

$$
\begin{equation*}
u=a f^{-1} g^{\prime}\left(\gamma^{\prime 2}+1\right)^{1 / 2}, \quad v=0 \tag{9}
\end{equation*}
$$

From (1.16) and (1.17), we get

$$
\begin{align*}
& \alpha_{1}=\theta_{1}=u \omega_{13}=f^{-1} g^{\prime} d z \tag{10}\\
& \alpha_{2}=\theta_{2}=u \omega_{23}=-\left(f \gamma^{\prime \prime}\right)^{-1} g^{\prime}\left(\gamma^{\prime 2}+1\right) d \theta
\end{align*}
$$

Taking exterior derivatives of (10).

$$
\begin{equation*}
d \alpha_{1}=0, \quad d \alpha_{2}=-\left[\frac{g^{\prime}\left(\gamma^{\prime 2}+1\right)}{f \gamma^{\prime \prime}}\right]^{\prime} d z \wedge d \theta \tag{11}
\end{equation*}
$$

Using (10), we have

$$
\begin{equation*}
\alpha_{1} \wedge \alpha_{2}=-\left[\frac{g^{\prime}}{f}\right]^{2} \frac{\gamma^{\prime 2}+1}{\gamma^{\prime \prime}} d z \wedge d \theta \tag{12}
\end{equation*}
$$

From (11), (12), (1.9) and (1.40), we get

$$
\begin{equation*}
P \equiv 0, \quad Q=\left[\frac{g^{\prime}\left(\gamma^{\prime 2}+1\right)}{f \gamma^{\prime \prime}}\right]^{\prime}\left[\frac{f}{g}\right]^{2} \frac{\gamma^{\prime \prime}}{\gamma^{\prime 2}+1} . \tag{13}
\end{equation*}
$$

For the first type, from $\alpha_{1}=\alpha_{2}=0$ or $u=v=0$, using (9), $g^{\prime \prime}=0$, $g=c=$ constant, we have that (6) ${ }_{2}$ becomes (7).

For the second type, from $P \equiv 0, Q \equiv 1$, using (13), we have (8).
For the third type, $P \neq 0$, and according to (13) this is not possible. So there are no surfaces in this case.

3. The BIII-surfaces with constant Gaussian curvature.

Suppose a surface M has non-zero constant Gaussian curvature K and $H K^{-1} \neq$ constant . Since $d K^{-1}=0$, from (1.19) and (1.21), we get

$$
\begin{equation*}
d f=f\left(\alpha_{1}+2 * \omega_{12}\right)=g \theta_{1} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{1}+2 * \omega_{12}=\sigma \theta_{1} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=g f^{-1} \neq \pm 1 \tag{16}
\end{equation*}
$$

Note that the inequality in (16) can be concluded from $K \neq 0$. In fact, if $\sigma=(a+c) /(a-c)= \pm 1$, we get $a=0$ or $c=0$, and hence $K=a c=0$. Using (1.2) and (1.27), rewrite (15) as

$$
\begin{equation*}
1-2 k^{\prime}=\sigma \cos 2 \psi, \quad 2 h^{\prime}=\sigma \sin 2 \psi \tag{17}
\end{equation*}
$$

Using (1.38), (1.27) and (15), we get

$$
\begin{equation*}
\theta_{12}=(2 \rho-\sigma) \theta_{2}, \quad * \theta 12=(\sigma-2 \rho) \theta_{1} . \tag{18}
\end{equation*}
$$

Taking derivatives of (16), using (1.18), and (1.19), we have

$$
\begin{equation*}
d \sigma=\left(1-\sigma^{2}\right) \theta_{1} \tag{19}
\end{equation*}
$$

According to equation (16), $1-\sigma^{2} \neq 0$, and in view of $(1+\sigma) /(1-\sigma)=$ $(f+g) /(f-g)=-a / c$, from (19) we get

$$
\begin{equation*}
\frac{d \sigma}{1-\sigma^{2}}=\frac{1}{2} d \log \left|\frac{a}{c}\right|=\theta_{1} \tag{20}
\end{equation*}
$$

Applying the *-operator to (15), we get

$$
\begin{equation*}
\alpha_{2}-2 w_{12}=\sigma \theta_{2} \tag{21}
\end{equation*}
$$

Taking exterior derivatives of (21), from (1.40), (1.5) and (19), we have

$$
\begin{equation*}
(Q-1) / 2=\sigma(1-\sigma)-L^{-2} \tag{22}
\end{equation*}
$$

From (1.50) and (18), we obtain

$$
\begin{equation*}
d \rho=\left[\rho(\sigma-2 \rho)+L^{-2}-\frac{1}{2}(\widehat{K}-Q)\right] \theta_{1}+J \theta_{2} \tag{23}
\end{equation*}
$$

From (1.42), we obtain

$$
\begin{equation*}
2 d \log L=(Q-1) \alpha_{1}-P \alpha_{2}+2 \rho \theta_{1} \tag{24}
\end{equation*}
$$

Taking derivatives of (22), using (19), (23) and (24), we get

$$
\begin{equation*}
\frac{1}{2} d Q=\lambda \theta_{1}+\mu \theta_{2}+L^{-2}\left[(Q-1) \alpha_{1}-P \alpha_{2}\right] \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\rho(1-2 \rho \sigma)-2 \sigma\left(1-\sigma^{2}\right)+L^{-2}(\sigma+2 \rho)-\frac{1}{2} \sigma(\widehat{K}-Q), \quad \mu=\sigma J \tag{26}
\end{equation*}
$$

Theorem 6. There does not exist any BIII-surfaces of the second type such that $K=$ constant $\neq 0, H \neq$ constant.

Proof. For the second type of BIII-surface, we have

$$
\begin{equation*}
P \equiv 0, \quad Q \equiv 1, \quad \widehat{K}=-1 \tag{27}
\end{equation*}
$$

Since $K=$ constant $\neq 0, H K^{-1} \neq$ constant, using (27) and (22), we get

$$
\begin{equation*}
L^{-2}=\sigma(1-\sigma) \tag{28}
\end{equation*}
$$

Using (27) and (28), from (23) and (24), we get

$$
\begin{gather*}
d \rho=\left\{1-\left[\rho^{2}+(1-\sigma)^{2}\right]\right\} \theta_{1} \tag{29}\\
d \log L=\rho \theta_{1} \tag{30}
\end{gather*}
$$

From (27) it follows that $d Q=0$, and from (25) we have $\lambda=\mu=0$. Using (26), we get $\left(\sigma^{2}-1\right)(\sigma-1)=0$. It follows that $\sigma=1$, in view of $\sigma^{2} \neq 1$.

From (28) again we have $L^{-2}=0$, contradicting that $H K^{-1} \neq$ constant, $L \neq 0$. So the surface cannot exist.

Acknowledgement

The author is grateful to Professor Hyam Rubinstein for his help and suggestions, and to Professor S. S. Chern for his suggestions and encouragement.

References

[1] O. Bonnet, 'Memoire sur la theorie des surfaces applicables', J. Ecole Polytechnique 42 (1867), 72-92.
[2] E. Cartan, 'Couples des surfaces applicables avec conservation des courbures principales', Bull. Sci. Math. 66 (1942), 55-85.
[3] S. S. Chern, 'Deformation of surfaces preserving principal curvatures', Differential geometry and complex analysis, Springer Verlag, New York, 1985, pp. 155-163.
[4] W. C. Graustein, 'Applicability with preservation of both curvatures', Bull. Amer. Math. Soc. 30 (1924), 19-27.
[5] I. M. Roussos, 'Mean-curvature-preserving isometries of surfaces in ordinary space', to appear.
[6] Wenmao Yang, 'Infinitesimal O. Bonnet-deformations of surfaces in E^{3}, Differential Geometry and Topology, Proceedings, Tianjin 1986-87, edited by Boju Jiang, Chia-Kuei Peng and Zixin Hou, pp. 306-321 (Lecture Notes in Mathematics, no. 1369, Springer Verlag, New York, 1989).

Wuhan University
Wuhan, Hubei
People's Republic of China

