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Abstract

In this paper we consider O. Bonnet IH-isometry (or BHI-isometry) of surfaces in 3-dimensional
Euclidean space £ 3 . Suppose a map F: M —> M* is a diffeomorphism, and F*(III*) = III,
Kjim) = K*(m*), i = l , 2 , where m e M, m' e M* , m* = F(m), Kt and /c* are the
principal curvatures of surfaces M and M* at the points m and m* , respectively, III and
III* are the third fundamental forms of M and M* , respectively. In this case, we call F an
O. Bonnet III-isometry from M to M* . O. Bonnet I-isometries were considered in references
[1W5].

We distinguish three cases about Bill-surfaces, which admits a non-trivial BHI-isometry.
We obtain some geometric properties of BIH-surfaces and BIH-isometries in these three cases;
see Theorems 1, 2, 3 (in Section 2). We study some special Bill-surfaces: the minimal BIH-
surfaces; BIH-surfaces of revolution; and BIH-surfaces with constant Gaussian curvature; see
Theorems 4, 5, 6 (in Section 3).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 53 A 05, 53 B 20.

0. Introduction

O. Bonnet [1] was the first to study the isometric deformations of surfaces
in 3-dimensional Euclidean space E3 which preserve mean curvature. Also
W. C. Graustein [4] and E. Cartan [2] did some work in this area. Recently,
S. S. Chern [3] obtained an interesting result about the surfaces with mean
curvature H ^ constant. After that, I. M. Roussos [5] got some detailed
results. In this paper, a more general definition of O. Bonnet deformations
is given.
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[2] On O. Bonnet IH-isometry in E3 91

Let M and M* be two surfaces in the Euclidean space E3. Suppose
I, II, III are the first, second, third fundamental forms of the surface M,
respectively. We shall denote the quantities pertaining to M* by the same
symbols with asterisks " * ".

DEFINITION. Suppose F: M -* M* is a diffeomorphism, and F*(V) = I
or F*(II*) — II or F*(IH*) — III, where F* represents F 's cotangent map.
Then we call F a I- or II- or Ill-isometry of M and M*, respectively.
Moreover, suppose F preserves the principal curvatures at the corresponding
points:

Ki(m) = K*(m*), m*=F(m), i=l,2,

where m e M, m* e M*, K( and K* are the principal curvatures of
M and M*. In this case, we call F an O. Bonnet I or II or Ul-isometry,
denoted by BI or BH or BHI-isometry, respectively. If a surface M admits
a non-trivial BI or BII or BHI-isometry, we call M a Bonnet I or II or
Ill-surface, respectively.

Isometric deformations which were considered in [ 1 ]-[5] are Bl-isometries,
because an isometric deformation preserves Gaussian curvature K, so if the
map preserves mean curvature H, then it preserves the two principal curva-
tures K, and K2 , and hence it is a Bl-isometry.

In the present paper we shall study Blll-isometries and obtain some results
given in Theorems 1-6, which are shown to be similar to the case of Bl-
isometries.

1. Lemmas and formulas

We shall let co = col + ico2 (i2 = -1 ) be the complex structure of the
metric I = («y,) + (w2) and let co{2 be the connection form associated to
I, which is determined by the structural equations

dcol = -a>2Acon, dco2 = co{ A(oi2

or

dco = ico A a)l2,

where a){ and (o2 are two real linearly independent forms.

LEMMA 1. Suppose co is a complex structure.
(i) If co* = 0), then co*i2 — -con.
(ii) If co* = e"co, then co*2 = con - dx.
(iii) If co* = Aco, then co*n = col2 + *d\ogA.
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Here r, A are functions, and " • " is the Hodge ^-operator with

*coi—co2, *<o2 = —<Oj.

We consider a piece of an oriented surface M in E3, which we assume to
be sufficiently differentiable and with no umbilic points and non-zero Gauss-
ian curvature. Over M there is a field of orthonormal frames mele2e3, such
that m e M, where unit vectors ex and e2 are the principal directions of
M at m, and e3 is the unit normal vector to M at m. Suppose col and
co2 are a basis of the 1-forms of M dual to the field of principal frames. Set
a > c, and

(1) o)x=aoixi, w2 = c(o23, ac^Q,

(2) u>n = hcol3 + kco2J.

The mean curvature and the Gaussian curvature of M are

(3) H=\(a'l+c-x), K = {ac)-\

The structural equations of M are

(4)

(5)

(6)

The

(7)

The

(8)

dcoi -

dcol2--

dcol3--

= -co2 A co

= -Kcol A

1 2 , dco2 = co• , A O > 1 2 ,

co2 = -col3Aco23,

= -co23 A con , dco23 -

metric of the Gaussian image

complex structure (

From (6), we have

(9)

We denote

' * = (<

g{M) of M

y1 3)2 + {co23f.

if this metric is

CO =

dco

col3 + ico23.

— ico A col2.

co13Acoi2.

is

(10) f=a-c>0, g = a + c = 2HK~\

Taking exterior derivatives of (1) and using (4) and (6), we get the existence
of functions a , /?, v , 8, such that

da = acol3 + fi(o23 = acol3 + fhco23 ,

(11) fcon = pton + vco23, fi = fh, v = fk,

dc = vcol3 + Sco23 — fko)x3 + Sco23.
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Taking exterior derivatives of (11) and using (5), (6) and (11), we get the
existence of A, B, ... , E, such that

da = 3>p<on + Acol3 + Bco2i = (A + 3fh2)col3 + (B + 3fhk)co23,

dp = -(a + 2v)a)n + B(ol3 + (C + a)to23

(12) =[B
d (d

= [C + c + fh(df~l - 2h)]cou + [D + fk{5f-x - 2h)]<o2},

dd = -3VCD12 + Z)ftj,3 + Ew2J = {D - 3fhk)con + (E - 3fk2)co2r

Using (10) and (11), we get

(13) dg = 2d(HK~i) = f(uco13 + vo)23),

(14) df = f[(u-2k)co13-(v-2h)(o23],

where

(15) fu = a + v, fv = p + 5.

Then we can determine the following 1-forms. By using w, v in (15), let

(16) 6{ = uu>i3 + vco23, 62 = *6{ =-va>l3 + uco23,

(17) a , = ucol3 - vco23, a2 = *al = vcol3 + U(O23.

If HK~X = constant, then 0, = a, = 0; if HK~* ^ constant, dl and Q2,
or a, and a2 are linearly independent. From (13) and (14), it follows that

(18) dg = fdl,

(19) dlogf^ai +2*wn.

According to (3),

(20) 4/rW-/2.
Taking derivatives of (20) and using (18) and (19), we have

(21) l l

Suppose HK l ^ constant. We denote

(22) u + iv = Leiv,

(23) L2 = u + v2 = f~2[a2 + 02 + v2 + S2 + 2{av + 03)].

(24) cos i// = uLT , sin i// = vL~ .

Let

(25) 0 = 0, + id2,
(26) a = a, + ia2.
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Using (8), (16), (17), and (22), we get

(27) 6 = Le-ivoi, a = Leiva>, 0 = e " 2 ' V

d{ = ax cos 2y/ + a2 sin 2yi — L(coxi cos y/ + (o2i sin y/),

(27)' 02 = - a , sin 2y + a2 cos 2y/ = L(-(Ol3 sin y/ + a>23 cos v ) ,

Q, = L(W 1 3 COS ^ - G>23 S^n ̂ ) » a 2 = ^ ( W 1 3 s i n V + ^23 C O S ^ ) -

From (10), (20), (23) and (13), it follows that

f2 = 4[(HAT"' )2 - K~l ],

so

(28, L>-4r'
(HK~l)2-K-1'

We now consider a metric which is conformal to / (see (7))

CyQ\ f (n, \ 4_ (ni i T T

Let 012 and a12 be the connection forms associated to complex structures
6 and a , respectively. From (27), using Lemma 1, we have

(30) 012 = (ol2 + dyi + *d\ogL,

(31) a12 = coi2-dy/ + *d\ogL,

(32) 012 = a12 + 2dy/.

We rewrite (2) as

(2)' a>n = h'a, +k'a7.
\ / 12 1 2

From (2)' and (27), we have

fLh' = f~ (h cos y/ - k sin y/) — a/3 - ud,

fLk' — f~ (h sin y/ + k cos y/) - av + fid + /? + v .

Taking derivatives of (23) and using (11), (12), (18) and (19), we get

(34) </logL = - a , -2*col2 + *£l + pdl,

where

From (24), it can be seen that

(24)' u sin y/ - v cos y/ = 0.
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Taking derivatives of (24)', using (11) and previous formulas, we get

(37) dy/ = -(on + Q + pd2.

Inserting (34) and (37) into (30) and (31), we get

(38) en = 2(Ol2-a2 + 2p62,

(39) a12 = 4<w12 - a2 - 2Q = 2eo12 - a2 - 2dy/ + 2pd2.

Let

(40) an = Pax+Qa2,

where P, Q are two functions. Using (39), (35), (36), (2)' and (33) gives

P = -2{fL)-\f{B + D) + 2(afi - yd)],

Q = l + (fLf2[f(A -E-f)- 2(a2 - fi1 - v2 + S2)].

By solving (39), we have

(39)' n = 2«1 2-$[/><*,+ ( G + l ) a 2 ] .

Inserting (39)' into (34) and (37), we get

(42) 2dlogL = (Q-l)ai-Pa2 + 2p6i,

(43) 2dy/ = 2(on - [Pa{ +{Q+ l)a2] + 2pd2.

Set

(44) dP = P i U i , dQ = QiCli, dp = p i a i , / = 1 , 2 .

Taking exterior derivatives of (42), we have

(45) (dp-p*6l2)A6l+JdlAd2 = 0,

where

(46) - 2 7 = P + />, + Q2.

Taking exterior derivatives of (43), we have

(47) (dp-p*el2)Ad2-iel A02 = O,

where

(48) 2 / = K - Q - 2L~2

and K is the Gaussian curvature of the metric / (see (29)) so that

(49) dan = -Ka1/\a2, K =-P2 - Q2 + P2 - Qy

From (45) and (47), we obtain
(50)' dp-p*dn = -70, + J62
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or, by (32) and (48),

(50) dp = p*dl2-iei+J62

= p(*al2 + 2*dy/) + [L-2 - {(K - Q)]d{ + J62.

Taking exterior derivatives of [19] and using (40), we get

(51) d *(On =-jPal Aa2.

Applying the *-operator and taking exterior derivatives of (40), we get

(52) d * a12 = (/», + Q2)ax A a2.

Similarly, from (31), using (51) and (52), we get

(53) d*dy/= ( 2 / + ±P) a, A a2

and from (30) and (19), we have

(54) d *6n = 2Jal Aa2,

(55) i 2

Applying the *-operator to (34) and using (37), we get

(56) *dlogL = -col2 + an + dy.

Taking exterior derivatives of the above equation,

(57) d * dlagL = (L~2 - K)ax Aa2.

We denote

(58) dyf=yf,at, dJ = JiOti, d(K - Q) = (K - Q),.a,., i = 1, 2.

Taking exterior derivatives of (50) gives

(59) (-70, + Jd2) A *6n + (I62 + J6X) A en + I(d * al2 + Id * dy/)

- [\d{K -Q)- dL~2] A 0, + dJ A 02 = 0.

Let us compute the left side in (59).
(a) The sum of the first two terms is

(60) (-70, + 702) A (*a12 + 2*dy/) + (702 + 70,) A 012

x) + J(Q+ 2v2)]cos2y,

2i//2) + J{P + 2ij/l)]sin2<t/}al Aa2.

(b) The third term is

(61)
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(c) The sum of the last two terms is
(62)

- [{d{K -Q)-dL 2] A 0, + dJ A d2

= -2L'2dlogLAd{ - \d{K - Q) A 0, + dJ A 02

{ - Q)2 + $k
— L [Pcosly/ + (Q — 1) sin2y]}a, A a2-

Inserting (60)-(62) into (59), we get

(63) pJ - ± L 2

We need the following lemma.

LEMMA 2. A necessary and sufficient condition for a surface M with HK~X

± constant to be a Weingarten-surface is

(64) (P + 2yx) cos 2y/ + {Q + 2^2) sin 2 ^ = 0.

PROOF. According to (10), (18) and (21), a necessary and sufficient con-
dition for M to be a PF-surface is da A dc = 0, which can be written as

(65) (a, +2*con) A0, = 0 .

Applying the *-operator to (39), we get

a, + 2 * <y,2 = *a12 + 2 * dy/ + 2/70,.

Using the above equation from (65), we have

*(a,2 + 2rf^)A01 = 0

or
(an + 2dy/) A 02 = 0.

Using (40), (58), (27)' and rewriting the above equation, we see that (64)
follows.

2. Blll-isometry

Let F: M —• M* be a III-isometry from M to M, with mexe2e^ and

* * * *mele2ei the fields of principal frames over M and M, respectively. We
have
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Let
(o = co13 + ico23, O) = G>13 + io)2V

Since F is a III-isometry, we have

(2) a) = e"(O

or

(2)' <u13 = w13COST - OJ23sinT, w23 = w13 s inT+ <y23COST,

where T is an angle of rotation of the principal directions during the BIII-
isometric deformation. On the other hand, from the invariance of principal
curvatures, we get

(3) a = a, c = c.

Using (1.10) and (3) gives

(4) / = / , g = g.

From (1.16), (1.33) and (1.24),

(5) el = el

or

which gives, in view of (2)',

(6) M = MCOST — vsinT, v = wsinT + v COST.

Taking derivatives of the first equation in (4) and using (1.19) we get

(7) a , + 2 * w12 = a , + 2 * w 1 2 .

Using Lemma 1 from (2), we have

(8) wl2 = con - T.

Using (7), (8), we have

(9) dx = \{a2 - a2).

From (6) and (1.27)'

(10) a2 — aj sin2T + a2cos2T.

Putting

(11) *
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we get from (9),

(12) dt = tai-a2.

This is the total differential equation satisfied by the angle T . In order that
the BHI-isometry be non-trivial it is both necessary and sufficient that (12)
is integrable. Taking exterior derivatives of (12), in view of (1.40), we get an
integrable condition

(13) tP+l-Q = 0.

Now let us distinguish three cases about Blll-isometry. Similarly, BI-
isometry is classified into three types.

(1) First type, HK~l = constant. Then by (1.13), a, = 0, i = 1, 2 .
(2) Second type, HK~X ^ constant, and P = 0, Q=l. Then (13) holds

identically for all t, and (12) has a continuum of solutions, each depending
on an arbitrary constant. Thus we obtain a one-parameter family of surfaces
Bill-isometric to M.

(3) Third type, HK~l ± constant, and P £ 0, Q £ 1. Then from (13),
we have

(13)' t = (Q-l)p-\

and (12) has a single solution. Thus we obtain a single surface which is
Bill-isometric to M.

THEOREM 1. Any surface with constant HK~l is a Bill-surface of the first
type. In other words, any surface with constant HK~l can be lll-isometrically
deformed, preserving the principal curvatures. During this deformation the
principal directions are rotated by a fixed angle r (= constant).

Since in this case a, = a2 = 0, dt = 0, t = constant, T = constant, The-
orem 1 naturally holds. This theorem is an analogy of O. Bonnet's theorem
for Bl-isometries [1].

THEOREM 2. Let M be a Bill-surface of the second type, that is, HK~X /
cons tant and P = 0 , Q=\.

(i) The me
g(M) ofM,

(i) The metric which is conformal to the metric I of the Gaussian image

has Gaussian curvature equal to - 1 , where H and K are the mean curvature
and Gaussian curvature of M, respectively.

(ii) M is a W-surface.
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(iii) The non-trivial family of Bill-surfaces is a family of surfaces which
depends on six arbitrary constants.

PROOF. Since

(14) P = 0, Q=\,

(1.3) is identically true for all t. Using (1.49), we have

From (14), Pi = (?, = 0 and using (1.46) and (1.48), we get

/ = 0, 7 = - ( l + l T 2 ) , /,. = 0, £ , = 0 .

Inserting the above equations into (1.63) we get

(15) 2

This is exactly (1.64). By Lemma 2, we obtain (ii).
From (15) we have

(16) 2yrl=ps\n2y/, 1 + 2i//2 - -pcosly/,

where p is a function. Taking derivatives of (16), we get, for / = 1, 2,

(17) 2i//u,=/?,. sin 2 ^ + 2pif/jcos2if/, 2t//2i = p.cos2y/ + 2pif/isin2y/.

Inserting (17) into (1.53), using y/n = y/2l plus / = 0, P = 0, and by
solving the equation obtained, we get

(18) px = -2py/2, p2 = 2py/v

It can be verified by differentiating (18) that the integrable condition for p
is satisfied. From our discussion the differentials of the six functions a, c,
log L, p, if/ , p are all determined. Hence our surfaces of non-constant
HK~l, which can be III-isometrically deformed in a non-trivial way pre-
serving the principal curvatures, depend on six arbitrary constants.

REMARK. Theorem 2 is analogous to S. S. Chern's Theorem for BI-
isometry [4].

About the third type of Bill-surfaces, we only consider the case of a surface
satisfying the equation

(19)

First of all, we get the following.
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LEMMA 3. Let M be a Bill-surface, which satisfies (19). Then the follow-
ing differentials satisfy

(20) dy/,dP,dQ,dL,dp,da,dc = O (mod 0,).

PROOF. By solving (13), we get

(21) t = (l-Q)P~\

Inserting (21) into (12).

(22) PdQ -

Taking exterior derivatives of (22), we have

(22) PdQ-{Q-l)dP = P(Q-l)ai-P
2a2.

(23) 2dP AdQ={Q-\)dPAax + PdQ A a, - 2PdP A a2 - P2a{ A a2.

Taking the wedge product of (22) with dP, dQ, a{ and a2, respectively
we obtain

dPAdQ = (Q- \)dP A a, - PdP A a2 ,

(Q -\)dPAdQ = P(Q - \)dQ A a, - P2dQ A a2,

'~4 P2ax Aa2 = -(Q- l)dP Aa{ + PdQ Aal,

P(Q - l)a, A a2 = -(Q - \)dP A a2 + PdQ A a2.

Taking derivatives of (19), we get

(25) dPcos2y/ + dQsin2y/ + 2[-Psin2y/ + (Q- I)cos2y]rfy = 0.

From (19),

(19)' Q~ 1 ^
' - D 2

Using (19)' and (22), we get

(26)

Inserting (26) into (25), we get

(27) 2dy/ = -6xsm

Taking exterior derivatives of (27), we have

02 A 012 sin 2 ^ = 0.

Since P ̂ 0, sin2y ^ 0, and it follows that 02 A 012 = 0, or

(28) (P + 2^,) cos 2 y + (Q + 2^2) sin 2y = 0.
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From (28), using Lemma 2, we have that M is a W-surface. Using (28) and
(19) we get

(29) ,

From (19), (28) and (29),

(30)(30)

Applying the *-operator to (27), we have

(31) 2*dy/ = - 2

Taking exterior derivatives of (31), in view of (27), we get

(32) 2d*dy/ = Pax Aa2.

On the other hand, from (1.53),

2d*dy/ = (4 / + P)a, Aa2.

By the above two equations, we get / = 0, or (see (1.46))

(33) Pl+Q2 + P = 0.

We denote

(34) dP = Piaj, dQ = Qtat, i = l , 2 .

From (23), (24),_4 and (33), we have

(35) 2(PlQ2 - P2QX) = - « 2 -l)P2- PQ2 - 2PPX - P2,

(Q - l)(PxQ2 - P2QX) = -P[(Q -l)Q2 + PQX],

(Q-l)P2-PQ2 = P2, Px + Q2 = -P.

By solving (35) for Px, ... , Q2 we get

(36) Fi=%=^
or

(37) P , s i n 2 ^ - P 2 c o s 2 ^ = 0, Qx sin2(/ - Q2cos2y/ = 0,

PP, + (Q- l ) /» 2 = 0, PQx + (Q-l)Q2 = 0.

Using (19), (33) and (1.48), from (1.63), we have

(38) [$(K -Q)- L~2][(P + 2^x) cos2¥ + (Q + 2^2) sin2yf]

- Q)2 cos2v/ -{K- Q)x sin 2^] = 0.
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Using (28) and (38) implies

(K - Q)2 cos2y - (K - (?), sin 2y/ = 0.

From (37) and the above equation, we have

(39) £ 2 c o s 2 ^ - £ , sin 2^ = 0.

Using (1.49) and its differential, we get

(40) - K = P2 + Q2 - P2 + Q , ,

Using (40), (19)' and (39) implies

(41) P{Qn2l l 2 2 2
= 2[P(PPl +QQ1)-(Q- l)(PP2 + QQ2)].

Then (11), (19) and (21) imply

/ = ctgr = = -ctg2^.

Hence

(42) T = -2y/ + kn, k = integer.

We wish to express the differentials on the left side of (20) in terms of 0,
and 62 . First, from (37) we have

(43) dP = Plsec2y/6l, dQ = Ql sec2^ • 0,.

Furthermore,

<xn = Pa, + Qa2 =

From (19)', (27), we get

(44) 0,2 = a,2 + 2di// = (-Psi

Using (1.42) gives

(45)

From (1.50),

(46) dp = [L~2 - \{K -Q) + p(P sin 2^ - Qcos2^)]0,.

Using (27) and (45), from (1.38) it follows that

(47) col2 = \ s in2^-0, - {1 + \[Psin2y/ - (Q+ I)cos2y]}02.
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From (1.18), (1.19) and (47), we get

(48) dg = f6l, df = f[2P + Psin2v-(Q-2

Using (1.10) and (48), we see that

2da = f[2p+ 1 + P s i n 2 | p - ( Q - 2 ) cos
( 4 9 ) 2dc = f[-2p + 1 - Psin2^ + (Q - 2)cos2y/]6l.

According to (27), (43), (45), (46) and (49), we obtain (20).
Now we easily obtain the following theorem.

THEOREM 3. Let M be a 'Bill-surface of the third type, and satisfying
equation (19). Then M is a helicoidal surface.

A helicoidal surface in E is a surface which is invariant under a helicoidal
motion:

Ct(x) = X , X = {X1,X2, X3) , X = (x[ , x'2 , Xj) ,

x[ = JC, cos t + x2 sin t,

x'2 = - x , sin t + x2 cos t, -oo < t < +oo,

x'3 - x3 + bt,

where the x3-axis is taken as the axis of a helicoidal motion. Let C be a
curve parametrized by 5:

c(s) = Ox,(s), x2(s), x3(s)).

Any helicoidal surface M may be considered as the one generated by he-
licoidal motion of all the points of C . Thus its parametrization by s, t
is

(50) x(s, t) - (x, (s) cos t + x2(s) sin t,

-xx(s)sint + x2(s)cost, x ^ + bt),

where b — constant. In other words, on a helicoidal surface there exists a
family of helicoidal curves, which have the same helicoidal distance {b =
constant) and helicoidal axis.

PROOF OF THEOREM 3. Let us show that on the surface M the set of
02-curves (the curve along which 0, =0 ) is a family of helicoidal curves.

First of all, from Lemma 3 we conclude that

(51) y/, P, Q, L, p, a, c = constant (mod0,)
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that is, they are all constant along the 62-curves (6{ = 0) . Let us find the
curvature K and torsion T of the 02-curves.

According to (1.1) and (1.27), along 02-curves, we have

col — a<w13 = -aL~ d2 sin yi,

co2 = cco2i = cLT 62 cos yi.

Hence the arc length differential of 62 -curves is

(52) ds = \j{ai\ + co2
2) = L ' \Ja2 sin V + c2 cos2 y/ d2.

Since the angle between tangent directions of 62-curves and the first principal
directions (</> = 0) is <f> = y/ + n/2, the normal curvature of 92-curves, by
Euler's theorem is

<5 3> ^ - . • 2 - I 2

= a sin y/ + c cos y.

Along 02-curves, 0, = 0 implies dy/ = 0, d<j> = 0. Using (47), we have
(54) &),2 = - { l + i [ P s i n 2 y - ( G + l)cos2y/]}02.

Using the formula for geodesic curvature Kg = d<f>/ds + col2/ds and (52)
and (54), we obtain the geodesic curvature of a 02-curve

(55) K = ~L =
8 / - > • • > 2 2\Ja2 sin2 y/ + c cos y/

From (51), (53) and (55), Kn and Kg are constant on each 62-curve, so its
curvature

(56) K = JK^ + K2 = constant.

Then the torsion of the 62 -curve is given by

(57) r = rg + d6/ds,

where xg is the geodesic torsion of the 62-curve, 6 is the angle between the
principal space normal of the 82-curve and the normal to the surface. We
have

(58) rg = (c~i-a~l)cos<f>sin<f>= (c~l-a'^siny/cosy/, tg0 = Kg/Kn.

From (51), (57) and (58), torsion x = constant along the 02-curve.
Consequently, we have that the 02-curves are circular helices which are

distinct, in general. Thus the surface M is a helicoidal surface.
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3. Some special BIH-surfaces

1. The minimal BIH-surfaces.

THEOREM 4. Suppose M and M are minimal surfaces, and F: M —> M
is a mapping. Then F is a Bl-isometry if and only if F is a Blll-isometry.

PROOF. For any surface M, we have

where H and K are the mean curvature and Gaussian curvature, respec-
tively, and I , II and III are the three fundamental forms of M. Since M

* * * *«
and M are minimal surfaces, H = H — 0 and so III = -Kl, HI = -Kl.

*
When F is a BI or Blll-isometry, K = K. Thus the above equations imply
the conclusion of Theorem 4.

EXAMPLE. A Blll-isometry between the catenoid and the helicoid.
Catenoid M: m(t, 8) = (cosh t cos 6, cosh/ sin 8, t),

* *
Helicoid M: m(u, v) = (ucosv , usinv, v),

-oc<t<oo, 0<8<2n, u>0, 0<v<2n.

The fundamental forms and curvatures of M:

I = cosh2 t(dt2 + dd2), H = 0,

III = cosh"2 t{dt2 + dd2), K = - cosh"41.

The fundamental forms and curvatures of M:

I = du + (1 + u)dv2, H = 0,

HI = (1 + u2y\du + (1 + u2)dv2], K = -(l+ u2)'2.

The mapping F(t, 6) = {u, v): u — sinh/, v = 6 is both a Bl-isometry and
Blll-isometry:

H = H = 0, K = K.

2. The BIH-surfaces of revolution.
We consider the plane curve x = y{z) > 0, y = 0 and the surface of

revolution

(1) M: m(z, 6) = (y(z)cosd, y(z)sin0, z).
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Thus
m'z - ( / cos 0 , y sin 6, 1), m0 = (y sin 0 , y cos 0, 0).

We choose an orthonormal frame by

(2) e2 = (-sin0,cos0,O),

e3 = l)~1/2(-cos0, -s in0, / ) ,

so that

w, = ( / + 1 ) dz, co2 = yd0,
V */ / / 2 1/2

(Dl2 = h(o{+ kco2, h = 0, k = y (y + 1 ) .

_ - 1 _ , " N - 1 / ' 2 _ . , 3 / 2 // . „

(5) « 1 3 - f l « , , « - - y j - , y
G>23 = c &>,, c = y(y + 1 ) ,

THEOREM 5. The surfaces of revolution which are Bill-surfaces are exactly
as follows.

(i) Those of the first type (HK~l — constant), which satisfy

(7) (y + 1) (yy - y - 1) = cy , c = constant.

(ii) Those of the second type, which satisfy

(8)
g(y

fy"

(iii) There are no Bill-surfaces of the third type.

PROOF. According to (6) and (1.13), we have

dg = g'dz = f(uwn + vo)2i).

It follows that

(9) u = af~ g'{y +1) , v = 0.

From (1.16) and (1.17), we get

= d2 = ua>23 = -
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Taking exterior derivatives of (10).

(11) rfa,=0, da2 = -

Using (10), we have

(12) a,Aa2 = - U J 7

From (11), (12), (1.9) and (1.40), we get

03) j.-o. e = K + "

For the first type, from a, = a 2 = 0 or u = v = 0, using (9), g" = 0,
g = c = constant, we have that (6)2 becomes (7).

For the second type, from P = 0, Q = 1, using (13), we have (8).
For the third type, P ̂  0, and according to (13) this is not possible. So

there are no surfaces in this case.

3. The Bill-surfaces with constant Gaussian curvature.
Suppose a surface M has non-zero constant Gaussian curvature K and

HK~{ ^ constant. Since dK~x = 0 , from (1.19) and (1.21), we get

(14) df = f(al+2*con) = ge)

or

(15) a, + 2 * tol2 = <70,,

where

(16) o = gr
1*±i-

Note that the inequality in (16) can be concluded from K ^ 0. In fact, if
a = {a + c)/(a - c) = ± 1, we get a = 0 or c = 0, and hence K = ac = 0.
Using (1.2)' and (1.27), rewrite (15) as

(17) 1 — 2k =<TCOS2^, 2h = a sin2y/.

Using (1.38), (1.27) and (15), we get

(18) 6n = {2p-a)62, *6l2 = (<T-2p)dv

Taking derivatives of (16), using (1.18), and (1.19), we have

(19) da = (l-o2)dv

https://doi.org/10.1017/S1446788700030263 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030263


[20] On O. Bonnet Ill-isometry in E3 109

rding to equation (16), 1 - a2 ^ 0 , a
g)/(f-g) = -ale, from (19) we get

According to equation (16), 1 - a2 ^ 0 , and in view of (1 + cr)/(l - a) =

(20)
— o

Applying the *-operator to (15), we get

(21) a2-2wn = od2.

Taking exterior derivatives of (21), from (1.40), (1.5) and (19), we have

(22) « 2 - l ) / 2 = <x(l-<x)-ir2 .

From (1.50) and (18), we obtain

(23) dp = [p(<r - 2p) + L~2 - {{K - Q))9X + J6r

From (1.42), we obtain

(24) 2dlogL = (Q-l)al-Pa2 + 2p6l.

Taking derivatives of (22), using (19), (23) and (24), we get

(25) \dQ = Xdl + H62 + ir\Q - l)a, - Pa2],

where

(26) k = p{\ - 2pa) - 2CT(1 - a2) + L~2{a + 2/>) - \a{K -Q), n = a

THEOREM 6. There does not exist any Bill-surfaces of the second type such
that K — constant ^ 0, H / constant.

PROOF. For the second type of Bill-surface, we have

(27) P = 0, C = l , ^ = - 1 .

Since K = constant ^ 0, HK~X ̂  constant, using (27) and (22), we get

(28) L~2 = o(\-o).

Using (27) and (28), from (23) and (24), we get

(29) dp = {\-[p2 + {\-o)2]}e{,

(30) dlogL = pdv

From (27) it follows that dQ = 0, and from (25) we have X - fi = 0 . Using
(26), we get {a2 - l)(a - 1) = 0 . It follows that a = 1, in view of a2 ± 1.
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From (28) again we have LT1 — 0, contradicting that HK~X ^ constant,
L^O. So the surface cannot exist.
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