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Abstract. Here we investigate longitudinal waves in non-isothermal hot (T � 5.0 MK) coronal
loops. Motivated by SOHO SUMER and Yohkoh SXT observations and taking into account
gravitational stratification, thermal conduction, compressive viscosity, radiative cooling, and
heating, the governing equations of 1D hydrodynamics is solved numerically for standing wave
oscillations along a magnetic field line. A semicircular shape is chosen to represent a coronal
loop. It was found that the decay time of standing waves decreases with the increase of the
initial temperature and the periods of oscillations are affected by the different initial velocities
and loop lengths studied by the numerical experiments. The predicted decay times are within
the range of values inferred from Doppler-shift oscillations observed by SUMER in hot coronal
loops.
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1. Introduction
Recent observations by high-resolution imaging space telescopes and spectrometers

have revealed a variety of coronal oscillation modes. Such oscillations are important
because of their potential for the diagnostics of solar atmospheric magnetic structures
(magnetic field strength, gas density, etc.) through solar magneto-seismology (Erdélyi
2006a,b). In particular, applications to the corona, using the methods of coronal seismo-
logy (proposed by Roberts et al. 1984), help us understanding the heating of the corona.
For the most recent review on the topic see e.g. Banerjee et al. (2007). Standing longitu-
dinal slow magnetoacoustic waves have been detected in hot (T � 6 MK) loops using the
SUMER spectrometer on board the SOHO satellite (Kliem et al. 2002; Wang et al. 2002,
2003). These oscillations are excited impulsively, as evidenced by the presence of large
initial Doppler shifts and impulsive profiles of intensity and line width. However, unlike
the transverse loop oscillations observed by TRACE, the SUMER hot loop oscillations
are usually not associated with large flares. They are believed to be excited in the lower
parts of the atmosphere near the footpoints (for more details on the excitation see e.g.
Taroyan et al. 2007).

Ofman & Wang (2002) found that thermal conduction is the primary dissipation me-
chanism of the observed slow waves in hot coronal loops, and Mendoza-Briceño et al.
(2004) showed that the inclusion of gravitational stratification results in a further 10-
20 percent reduction of the damping time. Moreover, Taroyan et al. (2005) considered
the additional effect of temperature inhomogeneities on the dissipation of standing slow
waves, including thermal conduction and optically thin radiative losses. They found the
decay time is proportional to the wave period and the oscillations are rapidly damped
mainly due to thermal conduction as in the isothermal loops.
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Figure 1. Wave period P (left panel) and decay time τd (right panel) as functions of α1
parameter, as obtained from the simulations of stratified loops of initial velocity amplitude of
v0 = 87 km/s and T0 = 10 MK varying the length from 200 to 400 Mm.

Sigalotti et al. (2007) considered the dissipation of standing slow MHD waves in isother-
mal, hot (T > 6 MK) coronal loops, including the effects of gravitational stratification,
thermal conduction, compressive viscosity, radiative cooling and heating. They found the
decay times are determined mainly by compressive viscosity. Under only thermal con-
duction, stratification leads to an additional increase of the wave period compared to the
homogeneous case, and nonlinearlity, significantly reduced the decay time.

In this paper we reconsider the dissipation of standing slow MHD waves including gra-
vitational stratification, thermal conduction, compressive viscosity, heating, and optically
thin radiation losses in non-isothermal hot (T � 5 MK) coronal loops, solving numeri-
cally the (M)HD equations using a 1D, finite-difference code based on a temporally and
spatially second order accurate, semi-implicit, Lagrangian solver (Sigalotti & Mendoza-
Briceño (2003)). In particular, the effects of different initial temperature profiles with
maximum temperature at the loop apex up to 20 MK is investigated.

2. Model and Governing Equations
Since the plasma dynamics in a coronal loop is dominated by the magnetic field, a usual

assumption is made, i.e. the plasma motion takes place primarily along the magnetic field
lines, which in turn determines the loop geometry . The energy conservation reads as
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where t is time, s denotes the position along a loop of constant cross-section, ρ is the
plasma mass density, v is the fluid velocity, T is the plasma temperature, p is the gas
pressure, Q(T ) = χTα is the optically thin radiation-loss function with χ and α the
Hildner’s (1974) cooling coefficient and exponent respectively, H0 is the constant coronal
heating function, γ(= 5/3) is the ratio of specific heats, µ̄ is the mean molecular weight,
κ = 10−6T 5/2 ergs cm−1s−1K−1 is the coefficient of thermal conductivity parallel to the
magnetic field, and η is the coefficient of compressive viscosity (Braginskii 1965, Erdélyi
& Goossens 1995). Equation (2.1) together with the continuity and momentum equations
are closed by assuming p = Rg ρT/µ̄, where Rg is the gas constant.

We consider a stratified loop with non-uniform temperature defined as

T (s) = T0

(
1 + α1 sin

(πs

L

))
, (2.2)
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Figure 2. Same as Fig. 1, but obtained from the simulations of stratified loops of length
L = 400 Mm and with velocity amplitude v0 = 87 km/s, for the cases of T0 = 5 and 10 MK.

Figure 3. Same as Fig. 1, but obtained from the simulations of stratified loops of length L = 400
Mm and T0 = 10 MK, for a series of initial velocity amplitude varying from 50 to 150 km/s.

where T0 is the loop footpoint temperature and α1 ε [0, 1] is a dimensionless parameter,
controlling the maximum temperature at the apex of the loop.

3. Results and Discussion
The set of governing equations are solved numerically. The hydrodynamical variables

ρ, v, and T obtained from the Lagrangian step are remapped onto an Eulerian mesh,
which is reset after each timestep so that the adaptive nature of the Lagrangian solver
is preserved. A standing wave problem can be modelled by setting v = 0 at both ends of
the loop along with flow-through boundary conditions for the rest of the variables.

A standing slow wave is modelled by the initial velocity dependence on position of the
form v (s, 0) = v0sin(πsk/L), where v0 is the amplitude of the wave at t = 0 and k is
the mode number taken to be unity.

The decay time of the velocity perturbation defined by τd = P/ln(v0/v1), is plotted as
function of α1 in the right panel of Figs. 1, 2 and 3. In the above relation, P denotes
the first complete period of oscillation (left panel of Figs. 1, 2 and 3), while v0 and v1
are, respectively, the velocity amplitudes at the beginning and after completion of the
first cycle of oscillation. These plots are derived from numerical simulations of stratified
loops keeping two parameters and varying the remaing one; the parameters are the initial
velocity, initial temperature and the loop length. In general, the period of oscillation of
standing waves increases and the damping time decreases when α1 parameter rises.
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The period and decay time both increase with the loop length when α1 � 1 and de-
crease when α1 ≈ 1 (very hot loop with Tapex = 20 MK). The decay time decreases when
the initial footpoint temperature T0 increases. The period of standing modes decreases
with T0 for α1 � 0.8 and increases for α1 > 0.8. When the initial temperature and length
are maintained at T0 = 10 MK and L = 400 Mm the period and damping time both
decrease with the initial velocity amplitude v0 for α1 � 0.8 and increase for α1 > 0.8
(see Table 1.).

These predicted decay times are within the range of Doppler-shifts inferred from osci-
llations observed by SUMER in hot coronal loops (Wang et al. 2003). However, there are
not yet enough observations about how the damping time scales with apex temperature.

Table 1. Summary of variation of the period and decay time with the length, initial
temperature and initial velocity increase

Period (P ) Decay time (τd)

Lenght (L) increases for α1 � 1 increases for α1 � 1
and decreases for α1 ≈ 1 and decreases for α1 ≈ 1

Temperature (T ) decreases for α1 � 0.8 decreases for 0 < α1 < 1
and increases for α1 > 0.8

Velocity (v0) decreases for α1 � 0.8 decreases for α1 � 0.8
and increases for α1 > 0.8 and increases for α1 > 0.8
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