Existence of a bounded approximate identity in a tensor product

David A. Robbins

It has been shown that the existence of a (left) approximate identity in the tensor product $A \bigotimes_{\alpha} B$ of Banach algebras Aand B, where α is an admissible algebra norm on $A \bigotimes B$, implies the existence of approximate identities in A and B. The question has been raised as to whether the boundedness of the approximate identity in $A \bigotimes_{\alpha} B$ implies the boundedness of the approximate identities in A and B. This paper answers the question affirmatively with α being the greatest cross-norm.

Loy has shown [1] that, for arbitrary Banach algebras A and B, if $A \otimes_{\alpha} B$ has a left (right) approximate identity, then so do A and B, where α is any admissible algebra norm on $A \otimes B$. He raises the question of whether existence of a bounded approximate identity in $A \otimes_{\alpha} B$ would ensure the boundedness of the approximate identities in A and B.

We are able to answer this question affirmatively when α is the greatest cross-norm (which we denote by γ), as follows:

THEOREM. Let A and B be Banach algebras, and let $A \otimes_Y B$ have a bounded (left) approximate identity. Then both A and B have bounded

Received 10 November 1971. The author was partially supported by a National Science Foundation Traineeship during this research. An addendum to the original paper was received 1 February 1972, and has been used by the Editor to shorten the paper, by substituting most of the addendum for most of the original paper.

(left) approximate identities.

Proof. Let
$$\left\{\sum_{i=1}^{\infty} a_i^{(j)} \otimes b_i^{(j)}\right\}_{j \in J}$$
 be a bounded left approximate identity in $A \bigotimes_{Y} B$, with $\left\|\sum_{i=1}^{\infty} a_i^{(j)} \otimes b_i^{(j)}\right\| \leq C$ for all $j \in J$.

Fix $b \in B$ such that ||b|| = 1. Choose $G \in B^*$ such that ||G|| = G(b) = 1. By properties of the norm γ [2, p. 36], we have that $\sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right)a_i^{(j)} \in A$ for all $j \in J$, and, moreover, that the net $\left\{\sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right)a_i^{(j)}\right\}_{j \in J}$ is bounded in A, for $\left\|\sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right)a_i^{(j)}\right\| \le \|G\| \left\|\sum_{i=1}^{\infty} a_i^{(j)} \otimes b_i^{(j)}b\right\|$ $\le \|b\| \left\|\sum_{i=1}^{\infty} a_i^{(j)} \otimes b_i^{(j)}\right\| \le C$.

We claim that $\left\{\sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right)a_i^{(j)}\right\}_{j \in J}$ is a left approximate identity in A: let $a \in A$. Then, again depending on the properties of γ , we have

$$\begin{aligned} \left\| \sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right) a_i^{(j)} a - a \right\| &= \left\| \sum_{i=1}^{\infty} G\left(b_i^{(j)}b\right) a_i^{(j)} a - G(b) a \right\| \\ &\leq \left\| \sum_{i=1}^{\infty} a_i^{(j)} a \otimes b_i^{(j)} b - a \otimes b \right\| \\ &= \left\| \left(\sum_{i=1}^{\infty} a_i^{(j)} \otimes b_i^{(j)} \right) (a \otimes b) - a \otimes b \right\| \xrightarrow{j} 0 \end{aligned}$$

so that our net is a left approximate identity in A .

The situation is obviously symmetric with respect to B .

444

References

- [1] R.J. Loy, "Identities in tensor products of Banach algebras", Bull. Austral. Math. Soc. 2 (1970), 253-260.
- [2] Robert Schatten, A theory of cross-spaces (Annals of Mathematics Studies, 26. Princeton University Press, Princeton, New Jersey, 1950).

Durham, North Carolina, USA.