Bull. Austral. Math. Soc. Vol. 65 (2002) [191-197]

AMENABILITY AND TOPOLOGICAL CENTRES OF THE SECOND DUALS OF BANACH ALGEBRAS

F. GHAHRAMANI AND J. LAALI

Let \mathfrak{A} be a Banach algebra and let $\mathfrak{A}^{\star\star}$ be the second dual algebra of \mathfrak{A} endowed with the first or the second Arens product. We investigate relations between amenability of $\mathfrak{A}^{\star\star}$ and Arens regularity of \mathfrak{A} and the rôle of topological centres in amenability of $\mathfrak{A}^{\star\star}$. We also find conditions under which weak amenability of $\mathfrak{A}^{\star\star}$ implies weak amenability of \mathfrak{A} .

INTRODUCTION AND PRELIMINARIES

Let \mathfrak{A} be a Banach algebra and $\mathfrak{A}^{\star\star}$ be the second dual space of \mathfrak{A} endowed with the first or the second Arens product. In [2] the first author, Loy and Willis studied some implications of amenability and weak amenability of $\mathfrak{A}^{\star\star}$; special emphasis was put on the case when \mathfrak{A} was a Banach algebra related to a locally compact group. These studies have lead to the work done in [1, 4, 7, 8, 9]. In this paper we consider the following two questions

- 1. Is \mathfrak{A} Arens regular when $\mathfrak{A}^{\star\star}$ is amenable?
- 2. Is \mathfrak{A} weakly amenable when $\mathfrak{A}^{\star\star}$ is weakly amenable?

For the origin of these questions see [2, 3]. We show that under certain additional assumptions on \mathfrak{A} or $\mathfrak{A}^{\star\star}$ the answer to either one of these questions is positive. We also explore the rôle of the topological centres in amenability of $\mathfrak{A}^{\star\star}$.

Throughout this paper, the first (second) Arens product is denoted by \Box (respectively \Diamond). These products can be defined by

$$F \square G = \operatorname{weak}^* \lim_i \lim_j \widehat{f}_i \, \widehat{g}_j$$
 and $F \Diamond G = \operatorname{weak}^* \lim_i \lim_j \widehat{f}_i \, \widehat{g}_j$,

where (f_i) and (g_j) are nets of elements of \mathfrak{A} such that $\widehat{f_i} \to F$ and $\widehat{g_i} \to G$, in the weak^{*} topology. The first topological centre of \mathfrak{A}^{**} is

$$Z_1 = \{ y \in \mathfrak{A}^{\star\star} : x \mapsto y \Box x \text{ is weak}^* \text{ continuous } \}$$
$$= \{ y \in \mathfrak{A}^{\star\star} : y \Box x = y \Diamond x, \text{ for all } x \in \mathfrak{A}^{\star\star} \},\$$

Received 26th April, 2001.

The first author's research was supported by NSERC grant 36640-98.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

and the second topological centre is defined by

$$Z_2 = \{ y \in \mathfrak{A}^{\star\star} : x \mapsto x \Diamond y \text{ is weak}^{\star} \text{ continuous } \}.$$

We note that \mathfrak{A} is Arens regular if and only if $Z_1 = \mathfrak{A}^{\star\star}$, or $Z_2 = \mathfrak{A}^{\star\star}$. See [2] and [7] for properties of Arens products and topological centres.

A Banach algebra \mathfrak{A} is amenable if every continuous derivation $D: \mathfrak{A} \to X^*$ is inner, for every Banach \mathfrak{A} -bimodule X. If all the continuous derivations from \mathfrak{A} into \mathfrak{A}^* (the special case of $X = \mathfrak{A}$) are inner, then \mathfrak{A} is weakly amenable. There are alternative formulations of the notion of amenability, of which we need the following two, first introduced in [6]. The Banach algebra \mathfrak{A} is amenable if and only if either, and hence both, of the following hold,

- (i) \mathfrak{A} has an approximate diagonal, that is a bounded net $(m_i) \subset (\mathfrak{A} \widehat{\otimes} \mathfrak{A})^{\star\star}$ such that for each $x \in \mathfrak{A}$, $x \cdot m_i - m_i \cdot x \to 0$, $\pi(m_i)x \to x$;
- (ii) \mathfrak{A} has a virtual diagonal, that is an element $M \in (\mathfrak{A}\widehat{\otimes}\mathfrak{A})^{\star\star}$ such that for each $x \in \mathfrak{A}, x \cdot M = M \cdot x$, and $(\pi^{\star\star}M) \cdot x = \hat{x}$; here $\pi : \mathfrak{A}\widehat{\otimes}\mathfrak{A} \to \mathfrak{A}$ is specified by $\pi(a \otimes b) = ab$ $(a, b \in \mathfrak{A})$.

1. Amenability of certain subalgebras of $\mathfrak{A}^{\star\star}$

In [2, Theorem 1.8] it was shown that if $\mathfrak{A}^{\star\star}$ is amenable (with either one of the Arens products), then \mathfrak{A} is amenable. In the following proposition we strengthen the above cited result. We have assumed that $\mathfrak{A}^{\star\star}$ has first Arens product. The image of \mathfrak{A} in $\mathfrak{A}^{\star\star}$ under the canonical mapping is denoted by $\widehat{\mathfrak{A}}$.

PROPOSITION 1.1. Let B be a closed subalgebra of $\mathfrak{A}^{\star\star}$ such that $\mathfrak{A} \subseteq B$. If B is amenable, then \mathfrak{A} is amenable.

PROOF: By [2, Lemma 1.7] there is a continuous linear mapping $\psi : \mathfrak{A}^{**} \widehat{\otimes} \mathfrak{A}^{**} \rightarrow (\mathfrak{A} \widehat{\otimes} \mathfrak{A})^{**}$ such that for $a, b, x \in \mathfrak{A}$ and $m \in \mathfrak{A}^{**} \widehat{\otimes} \mathfrak{A}^{**}$ the following hold.

- (i) $\psi(\widehat{a} \otimes \widehat{b}) = (a \otimes b)^{\wedge};$
- (ii) $\psi(m) \cdot x = \psi(m \cdot x);$
- (iii) $x \cdot \psi(m) = \psi(x \cdot m);$
- (iv) $(\pi_{\mathfrak{A}})^{\star\star}(\psi(m)) = \pi_{\mathfrak{A}^{\star\star}}(m).$

From the definition of projective tensor norm we see that when both $B \widehat{\otimes} B$ and $\mathfrak{A}^{\star\star} \widehat{\otimes} \mathfrak{A}^{\star\star}$ are equipped with the projective tensor norm, then the mapping $J : B \widehat{\otimes} B \to \mathfrak{A}^{\star\star} \widehat{\otimes} \mathfrak{A}^{\star\star}$ specified by $J(b_1 \otimes b_2) = b_1 \otimes b_2$, $(b_1, b_2 \in B)$ is norm decreasing. Let (m_i) be an approximate diagonal for B, and set $\Phi = \psi \circ J$. Then for all $x \in \mathfrak{A}, \Phi(m_i) \cdot x - x \cdot \Phi(m_i) \to 0$ and $\pi_{\mathfrak{A}}^{\star\star}(\Phi(m_i)) \cdot x \to x$. If M is a weak*-cluster point of $(\Phi(m_i))$ in $(\mathfrak{A} \widehat{\otimes} \mathfrak{A})^{\star\star}$, then, for each $x \in \mathfrak{A}, M \cdot x = x \cdot M$ and $\pi_{\mathfrak{A}}^{\star\star}(M) \cdot x = x$, and so M is a virtual diagonal for \mathfrak{A} .

COROLLARY 1.2. Suppose that Z_1 (or Z_2) is amenable. Then \mathfrak{A} is amenable.

For a Banach algebra \mathfrak{A} , let \mathfrak{A}^{op} be the Banach algebra with underlying Banach space same as \mathfrak{A} and with product \circ given by $a \circ b = ba$.

PROPOSITION 1.3. Let \mathfrak{A} be a Banach algebra. Then

- (i) \mathfrak{A} is amenable if and only if \mathfrak{A}^{op} is amenable.
- (ii) Let A be commutative. Then (A^{**},□) is amenable if and only if (A^{**},◊) is amenable.

Proof:

- (i) This is trivial.
- (ii) Take $F, G \in \mathfrak{A}^{\star\star}$, and let $(f_i), (g_j)$ be nets in \mathfrak{A} such that $w^{\star} \lim_i \widehat{f}_i = F$ and $w^{\star} - \lim_i \widehat{g}_j = G$. Then

$$F \square G = w^* - \lim_i w^* - \lim_j \widehat{f_i} \widehat{g_j} = w^* - \lim_i w^* - \lim_j \widehat{g_j} \circ \widehat{f_i} = G \Diamond F,$$

and so $(\mathfrak{A}^{\star\star}, \Box) = (\mathfrak{A}^{\star\star}, \diamond)^{op}$. By (i), $(\mathfrak{A}^{\star\star}, \Box)$ is amenable if and only if $(\mathfrak{A}^{\star\star}, \diamond)$ is amenable.

PROPOSITION 1.4. Let \mathfrak{A} be a Banach algebra with a continuous anti-isomorphism $\lambda : \mathfrak{A} \to \mathfrak{A}$. Then, $(\mathfrak{A}^{\star\star}, \Box)$ is amenable if and only if $(\mathfrak{A}^{\star\star}, \Diamond)$ is amenable. A similar conclusion holds if λ is a continuous involution.

PROOF: Let $\lambda : \mathfrak{A} \to \mathfrak{A}$ be a continuous anti-isomorphism. Set $(\mathfrak{A}^{\star\star}, \Box) = A$ and $(\mathfrak{A}^{\star\star}, \Diamond) = B$. Take F, G in A and let (f_i) and (g_j) be nets in \mathfrak{A} such that weak^{*} - $\lim_i \widehat{f_i} = F$, weak^{*} - $\lim_i \widehat{g_j} = G$.

Let $\lambda^{\star\star}: A \to B$, be the second adjoint of λ . Then

$$\lambda^{\star\star}(F \Box G) = w^{\star} - \lim_{i} w^{\star} - \lim_{j} \lambda^{\star\star}(\widehat{f}_{i}\widehat{g}_{j})$$

$$= w^{\star} - \lim_{i} w^{\star} - \lim_{j} (\lambda(f_{i})\lambda(g_{j}))^{\wedge}$$

$$= w^{\star} - \lim_{i} w^{\star} - \lim_{j} \lambda^{\star\star}(\widehat{g}_{j})\lambda^{\star\star}(\widehat{f}_{i})$$

$$= \lambda^{\star\star}(G) \Diamond \lambda^{\star\star}(F).$$

Hence λ^{**} is an isomorphism from A onto B^{op} and so by Proposition 1.3 (i) B is amenable.

The proof in the case when λ is an involution follows similar lines.

Recall that \mathfrak{A}^* is said to *factor on the left* if $\mathfrak{A}^* \cdot \mathfrak{A} = \mathfrak{A}^*$, [10]. When \mathfrak{A} has a bounded approximate identity and \mathfrak{A}^{**} has an identity, \mathfrak{A}^* factors on the left [10].

THEOREM 1.5. Suppose that $(\mathfrak{A}^{\star\star}, \Box)$ is amenable and $\widehat{\mathfrak{A}} \Box \mathfrak{A}^{\star\star} \subset Z_1$. Then \mathfrak{A} is Arens regular.

П

[3]

PROOF: Since $(\mathfrak{A}^{\star\star}, \Box)$ is amenable it has an identity [2]. Also, amenability of $\mathfrak{A}^{\star\star}$ necessitates amenability of \mathfrak{A} , ([2]), and so \mathfrak{A} has a bounded approximate identity. Hence \mathfrak{A}^{\star} factors on the left; $\mathfrak{A}^{\star} \cdot \mathfrak{A} = \mathfrak{A}^{\star}$. Let $f \in \mathfrak{A}^{\star}$. Then $f = g \cdot a$, for some $g \in \mathfrak{A}^{\star}$ and $a \in \mathfrak{A}$. Let $m, n \in \mathfrak{A}^{\star\star}$, and $f \in \mathfrak{A}^{\star}$. Then, since $\widehat{a} \Box m \in Z_1$ and $\widehat{a} \Box m = \widehat{a} \Diamond m$, we have

and so $m \Box n = m \Diamond n$, showing that \mathfrak{A} is Arens regular.

2. Weak amenability of $\mathfrak{A}^{\star\star}$

Let $\mathfrak{A}^2 = \operatorname{span}\{ab: a, b \in \mathfrak{A}\}.$

It is known that if the Banach algebra \mathfrak{A} is weakly amenable, then \mathfrak{A}^2 is dense in \mathfrak{A} . The following is a positive result in the direction of answering the question of whether weak amenability of $\mathfrak{A}^{\star\star}$ implies weak amenability of \mathfrak{A} .

PROPOSITION 2.1. Suppose that \mathfrak{A}^{**} is weakly amenable. Then \mathfrak{A}^2 is dense in \mathfrak{A} .

PROOF: Let $a \in \mathfrak{A}$. Since $\mathfrak{A}^{\star\star}$ is weakly amenable $\mathfrak{A}^{\star\star}$ is equal to the closure of $(\mathfrak{A}^{\star\star})^2$. Hence there exists a sequence $(s_n) \subset (\mathfrak{A}^{\star\star})^2$ such that $s_n = \sum_{k=1}^{K(n)} M_{n,k} \Box N_{n,k}$ and norm-lim $s_n = \hat{a}$.

On the other hand, for each n and k, there exist nets $\{a_{n,k,i}: i \in I\}$ and $\{b_{n,k,j}: j \in J\}$ such that weak^{*} $-\lim_{i} \widehat{a}_{n,k,i} = M_{n,k}$ and weak^{*} $-\lim_{i} \widehat{b}_{n,k,j} = N_{n,k}$. Hence

$$M_{n,k} \square N_{n,k} = w^{\star} - \lim_{i} w^{\star} - \lim_{j} \widehat{a}_{n,k,i} \square \widehat{b}_{n,k,j}$$

and so

$$\widehat{a} = \operatorname{norm} - \lim_{n} w^{\star} - \lim_{i} w^{\star} - \lim_{j} \widehat{a}_{n,k,i} \square \widehat{b}_{n,k,j}$$

This shows that \hat{a} belongs to the weak^{*} closure of the set $\widehat{\mathfrak{A}} \Box \widehat{\mathfrak{A}}$; this means that *a* belongs to the weak closure of $\mathfrak{A}\mathfrak{A}$. Hence *a* is in the weak closure of span($\mathfrak{A}\mathfrak{A}$). Since span($\mathfrak{A}\mathfrak{A}$) is convex, it follows that *a* belongs to the norm-closure of span($\mathfrak{A}\mathfrak{A}$).

Recall that a Banach algebra \mathfrak{A} is a *dual Banach algebra* if $\mathfrak{A} = X^*$ for some Banach space X and \widehat{X} is a submodule of the dual \mathfrak{A} -bimodule \mathfrak{A}^* .

THEOREM 2.2. Suppose that \mathfrak{A} is a dual Banach algebra. If $\mathfrak{A}^{\star\star}$ is weakly amenable then \mathfrak{A} is weakly amenable.

0

[4]

PROOF: Let $\mathfrak{A} = B^*$, for some Banach space B, such that \widehat{B} is a submodule of the dual module \mathfrak{A}^* . Let $i: B \to \mathfrak{A}^*$ be the canonical mapping and let i^* be the adjoint of *i*. First we show that i^* is a homomorphism from $(\mathfrak{A}^{**}, \Box)$ onto \mathfrak{A} . If $a \in \mathfrak{A}$, then for $b \in B$, we have

$$\langle i^{\star}(\widehat{a}), b \rangle = \langle \widehat{a}, i(b) \rangle = \langle a, b \rangle.$$

Hence $i^*(\widehat{a}) = a$. Now for $F, G \in \mathfrak{A}^{\star\star}$, take two nets (f_{α}) , (g_{β}) of \mathfrak{A} such that $F = \operatorname{weak}^{\star} - \lim_{\alpha} \widehat{f}_{\alpha}, G = \operatorname{weak}^{\star} - \lim_{\beta} \widehat{g}_{\beta}$. Then

$$i^{*}(F \Box G) = i^{*}(w^{*} - \lim_{\alpha} w^{*} - \lim_{\beta} \widehat{f_{\alpha}}\widehat{g_{\beta}}) = w^{*} - \lim_{\alpha} w^{*} - \lim_{\beta} i^{*}((f_{\alpha} g_{\beta}))$$
$$= w^{*} - \lim_{\alpha} w^{*} - \lim_{\beta} (f_{\alpha} g_{\beta}) = w^{*} - \lim_{\alpha} f_{\alpha} w^{*} - \lim_{\beta} g_{\beta}$$
$$= w^{*} - \lim_{\alpha} (i^{*}(f_{\alpha}) w^{*} - \lim_{\beta} i^{*}(g_{\beta})) = w^{*} - \lim_{\alpha} (f_{\alpha})i^{*}(G))$$
$$= i^{*}(F) i^{*}(G).$$

Hence i^* is an algebra homomorphism from \mathfrak{A}^{**} onto \mathfrak{A} .

Now let $D : \mathfrak{A} \to \mathfrak{A}^*$ be a derivation. Then $\overline{D} = i^{\star\star} \circ D \circ i^{\star} : \mathfrak{A}^{\star\star} \to \mathfrak{A}^{\star\star\star}$ is a derivation. In fact, let $m, n, p \in \mathfrak{A}^{\star\star}$. Then

$$\begin{split} \langle \overline{D}(m \Box n), p \rangle &= \langle (i^{\star \star} \circ D \circ i^{\star})(m \Box n), p \rangle \\ &= \langle D(i^{\star}(m) i^{\star}(n)), i^{\star}(p) \rangle \\ &= \langle D(i^{\star}(m)) i^{\star}(n) + i^{\star}(m) D(i^{\star}(n)), i^{\star}(p) \rangle \\ &= \langle D(i^{\star}(m)), i^{\star}(n) i^{\star}(p) \rangle + \langle D(i^{\star}(n)), i^{\star}(p) i^{\star}(m) \rangle \\ &= \langle D(i^{\star}(m)), i^{\star}(n \Box p) \rangle + \langle D(i^{\star}(n)), i^{\star}(p \Box m) \rangle \\ &= \langle i^{\star \star} (D(i^{\star}(m)))n \Box p \rangle + \langle i^{\star \star} (D(i^{\star}(n))), p \Box m \rangle \\ &= \langle (i^{\star \star} \circ D \circ i^{\star})(m) \cdot n + m \cdot i^{\star \star} D(i^{\star}(n)), p \rangle \\ &= \langle \overline{D}(m) \cdot n + m \cdot \overline{D}(n), p \rangle. \end{split}$$

Hence \overline{D} is a derivation, and so from the assumption of weak amenability of $\mathfrak{A}^{\star\star}$, there exists $F \in \mathfrak{A}^{\star\star\star}$ such that

$$\overline{D}(m) = m \cdot F - F \cdot m \quad (m \in \mathfrak{A}^{\star\star}).$$

Now $\mathfrak{A}^{\star\star}$ is naturally an \mathfrak{A} -bimodule and the canonical mapping $j : \mathfrak{A} \to \mathfrak{A}^{\star\star}$ is an \mathfrak{A} -bimodule morphism, and hence so is $j^{\star} : \mathfrak{A}^{\star\star\star} \to \mathfrak{A}^{\star}$. Set $f = j^{\star}(F)$. Then if $a, b \in \mathfrak{A}$, we

have

$$\begin{split} \langle D(a), b \rangle &= \left\langle D\left(i^{\star}(\widehat{a})\right), i^{\star}(\widehat{b}) \right\rangle \\ &= \left\langle i^{\star\star} D\left(i^{\star}(\widehat{a})\right), \widehat{b} \right\rangle \\ &= \left\langle \overline{D}(\widehat{a}), j(b) \right\rangle \\ &= \left\langle \widehat{a} \cdot F - F \cdot \widehat{a}, j(b) \right\rangle \\ &= \left\langle j^{\star}(\widehat{a} \cdot F - F \cdot \widehat{a}), b \right\rangle \\ &= \left\langle a \cdot j^{\star}(F) - j^{\star}(F) \cdot a, b \right\rangle. \end{split}$$

Hence $D(a) = a \cdot f - f \cdot a$, and \mathfrak{A} is weakly amenable.

In the proof of the next theorem we adopt the following notation. Let $\mathfrak{A}^{\star\star}$ have the first Arens product \Box . Then for $F \in \mathfrak{A}^{\star\star\star} = (\mathfrak{A}^{\star\star})^{\star}$ and $m \in \mathfrak{A}^{\star\star}, m \boxdot F$ is the element of $\mathfrak{A}^{\star\star\star}$ specified by $\langle m \boxdot F, n \rangle = \langle F, n \sqsupset m \rangle$ $(m \in \mathfrak{A}^{\star\star})$. $F \boxdot m, m \diamond F$ and $F \diamond m$, follow similar convention and should be clear from the context.

THEOREM 2.3. Let \mathfrak{A} be a Banach algebra admitting a continuous anti-homomorphism φ such that $\varphi^2 = 1_{\mathfrak{A}}$. Then $(\mathfrak{A}^{\star\star}, \Box)$ is weakly amenable if and only if $(\mathfrak{A}^{\star\star}, \diamondsuit)$ is weakly amenable.

PROOF: Let $\varphi^{\star\star}: \mathfrak{A}^{\star\star} \to \mathfrak{A}^{\star\star}$ be the second adjoint of φ . For clarity, we introduce the following notation. $A = (\mathfrak{A}^{\star\star}, \Box), A^{op} = (\mathfrak{A}^{\star\star}, \overline{\Box}), B = (\mathfrak{A}^{\star\star}, \Diamond), B^{op} = (\mathfrak{A}^{\star\star}, \overline{\Diamond}),$ so that if $F, G \in \mathfrak{A}^{\star\star}$, then $F \overline{\Box} G = G \Box F$ and $F \overline{\Diamond} G = G \Diamond F$. Using weak^{*} limits we have $(\varphi^{\star\star})^2 = 1_{\mathfrak{A}^{\star\star}}$. Let $F, G \in \mathfrak{A}^{\star\star}$. Then $\varphi^{\star\star}(F \Box G) = \varphi^{\star\star}(F) \overline{\Diamond} \varphi^{\star\star}(G)$. In fact let (f_i) and (g_j) be nets in \mathfrak{A} , such that $w^* - \lim_i \widehat{f_i} = F, w^* - \lim_i \widehat{g_j} = G$. Then

$$\varphi^{\star\star}(F \Box G) = w^{\star} - \lim_{i} w^{\star} - \lim_{j} \varphi^{\star\star}(\widehat{f}_{i} \,\widehat{g}_{j}) = w^{\star} - \lim_{i} w^{\star} - \lim_{j} [\varphi(f_{i} \, g_{j})]^{\wedge}$$
$$= w^{\star} - \lim_{i} w^{\star} - \lim_{j} \varphi(g_{j})^{\wedge} \varphi(f_{i})^{\wedge} = \varphi^{\star\star}(G) \Diamond \varphi^{\star\star}(F)$$
$$= \varphi^{\star\star}(F) \overline{\Diamond} \varphi^{\star\star}(G).$$

Similarly,

$$\varphi^{\star\star}(F \diamond G) = \varphi^{\star\star}(F) \overline{\Box} \varphi^{\star\star}(G) \quad (F, G \in \mathfrak{A}^{\star\star}).$$

Now suppose that $A = (\mathfrak{A}^{\star\star}, \Box)$ is weakly amenable. Then A^{op} is weakly amenable. Let D be a derivation from B into B^{\star} . Then $\overline{D} = \varphi^{\star\star\star} \circ D \circ \varphi^{\star\star}$ is a derivation from A^{op} into $(A^{op})^{\star}$. In fact, for $m, n \in A^{op}$, we have

$$(\varphi^{***} \circ D \circ \varphi^{**})(m \,\overline{\Box} \, n) = \varphi^{***} \Big[D \big(\varphi^{**}(m) \diamond \varphi^{**}(n) \big) \Big]$$

= $\varphi^{***} \Big[D \big(\varphi^{**}(m) \big) \diamond \varphi^{**}(n) + \varphi^{**}(m) \diamond D \big(\varphi^{**}(n) \big) \Big]$
= $\varphi^{***} \Big[D \big(\varphi^{**}(m) \big] \,\overline{\Box} \, n + m \,\overline{\Box} \, \varphi^{***} D \big(\varphi^{**}(n) \big) .$

D

[6]

Banach algebras

Hence there exists an element $\psi \in \mathfrak{A}^{***}$ such that for every $F \in \mathfrak{A}^{**}$

$$(\varphi^{\star\star\star} \circ D \circ \varphi^{\star\star})(F) = F \overline{\boxdot} \psi - \psi \overline{\boxdot} F.$$

Applying $\varphi^{\star\star\star}$ to the two sides of the above equation and using $(\varphi^{\star\star\star})^2 = 1_{\mathfrak{A}}$, we obtain

$$D(\varphi^{\star\star}(F)) = \varphi^{\star\star}(F) \otimes \varphi^{\star\star\star}(\psi) - \varphi^{\star\star\star}(\psi) \otimes \varphi^{\star\star}(F).$$

Since $\varphi^{\star\star}$ is surjective, D is inner.

References

- [1] H.G. Dales, A. Rodriguez-Palacios and M.V. Velasco, 'The second transpose of a derivation', (preprint 2000).
- [2] F. Ghahramani, R.J. Loy and G.A. Willis, 'Amenability and weak amenability of second conjugate Banach algebras', Proc. Amer. Math. Soc. 129 (1996), 1489-1497.
- [3] F. Gourdeau, 'Amenability of the second dual of a Banach algebra', Studia Math. 125 (1997), 75-81.
- [4] E.E. Granirer, 'Amenability and semisimplicity for second duals of quotients of the Fourier algebra', J. Austral. Math. Soc. Ser. A 63 (1997), 289-296.
- [5] B.E. Johnson, 'Cohomology in Banach algebras', Mem. Amer. Math. Soc. 127 (1972).
- [6] B.E. Johnson, 'Approximate diagonals and cohomology of certain annihilator Banach algebras', Amer. J. Math. 94 (1972), 685-698.
- A.T. Lau and R.J. Loy, 'Amenability of convolution algebras', Math. Scand. 79 (1996), 283-296.
- [8] A.T. Lau, R.J. Loy and G.A. Willis, 'Amenability of Banach and C^{*}-algebras on locally compact groups', Studia Math. 119 (1996), 161–178.
- [9] A.T. Lau and R.J. Loy, 'Weak amenability of Banach algebras on locally compact groups', J. Funct. Anal. 145 (1997), 175-204.
- [10] A.T. Lau and A. Ülger, 'Topological centers of certain dual algebras', Trans. Amer. Math. Soc. 348 (1996), 1191-1212.

Department of Mathematics University of Manitoba Winnipeg R3T 2N2 Canada e-mail: fereidou@cc.umanitoba.ca Department of Mathematics Teacher Training University 49 Mofateh Avenue Tehran Iran П

[7]