
2

Control Crash Course

A single chapter can hardly do justice to the amazing universe of control theory and practice.
The textbook [15] gives an accessible introduction to the philosophy and practice of control,
and is also full of history. I was fortunate to be at the Simons Institute at Berkeley, California,
when one of the authors presented a two-part survey of ideas in the book.1 These lectures
are a great starting point if you are new to control systems and will inspire many old-timers.

2.1 You Have a Control Problem

You surely have encountered control problems in your daily life. If you know how to drive,
then you know what it is like to be part of a control system:

y The observations (also called the “output”) refers to the data you process in order to
effectively maneuver the car through traffic: this includes your view of the streets and
lights, and the sounds of angry drivers pleading with you to adjust your speed.

u You apply inputs to the system: steering wheel, brakes, and gas pedal are continuously
adjusted based on your observations.

φ This symbol will be used to denote an algorithm that takes in the observations y and
produces the response u. This mapping from y to u is known as a policy, and sometimes
called a feedback law (the Greek letter is pronounced “fee”).2

ff You are not simply reacting to horns and lights and the lines on the road. You started off
with a plan: get to the farmers’ market by 9 a.m. while avoiding the traffic downtown due
to the demonstration. This planning is an example of feedforward control. Planning is
based on forecasts, so inevitably plans will change as you gather information en route:
traffic updates, or an invitation from a close friend to park your car and join the
protest.

The feedforward component is typically defined with attention to a reference signal r.
The primary control objective is the tracking problem: construct a policy so that some object
of interest z(k) is approximately equal to r(k) for all k ≥ 0 (in control courses, it is often
assumed that z = y).

The yelling and bumps on the road are collectively known as disturbances. Along with
the reference signal, partial measurements of disturbances and their forecasts are taken into

1 https://simons.berkeley.edu/talks/murray-control-1.
2 My apologies to those accustomed to the symbol π. This is reserved for the irrational number.

9

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://simons.berkeley.edu/talks/murray-control-1
https://doi.org/10.1017/9781009051873.004

10 Control Crash Course

u

Trajectory

generation State

feedback
Process

Environment
Observer

ΣΣΣΣ
yue

wd

xref ufb

ff

−+

x̂

More feedback

r
Δ

n
Hidden state x

Figure 2.1 Control systems contain purely reactive feedback, as well as planning
that is regularly updated. This represents two layers of feedback, differentiated in
part by speed of response to new observations. These observations are often limited,
so that we require estimates x̂ of a partially “hidden” state process x.

account in both the feedforward and the feedback components of the control system. The
final input is often defined as the sum of two components:

u(k) = uff(k) +ufb(k), (2.1)

where in the shopping problem, uff quantifies the results of planning before heading to the
market (perhaps with updates every 20 minutes), and ufb is the second-by-second operation
of the automobile.

The dream of RL is to mimic and surpass the skill using which humans create an internal
algorithm φ to skillfully navigate through complex and unpredictable environments.

Figure 2.1 shows a block diagram typically used in model-based control design and
illustrates a few common design choices: there is a state to be estimated using an observer,
with state estimates denoted x̂. The block denoted trajectory generation constructs two
signals: the feedforward component of the control, and also a reference xref that an internal
state should track (the state is associated with the physical process). It is designed so that
x(k) = xref(k) for all k implies that the tracking problem is solved. The state feedback is
designed to achieve this ideal.

There is a larger “world state” labeled environment, for which partial measurements are
available, and forecasts of future events. Forecasts are of course important in the planning
process that is part of trajectory generation.

The design of the three gray blocks is based on models of the process, the measurement
(or sensor) noise w, the disturbances (such as the “input disturbance” d indicated in the
figure), and a model of the environment. The “Δ-feedback loop” is a standard way to
represent model uncertainty associated with the process to be controlled. This feature may
be motivated by an unfortunate story.

2.1.1 Failure of an Adaptive Control System

Beginning in the 1950s, control theorists in partnership with the US Air Force looked for
model-free approaches to flight control. From this came the “MIT rule,” which may be
regarded as an early attempt at adaptive control or “actor-only” reinforcement learning.
Analysis of the MIT rule in [240] is based on techniques similar to the ODE method that
is a foundation of this book. See [280] for a more recent study.

Preliminary simulations showed promise, as did field tests on the X-15 airplane. Some
quotes from the 1970 report [300] hint at the enthusiasm of scientists and pilots involved:

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.2 What to Do about It? 11

1) Nearly invariant response was provided at essentially all aerodynamic flight conditions
2) accurate a priori knowledge of aircraft aerodynamic characteristics was not required to
design a satisfactory system 3) aircraft configuration changes were adequately compen-
sated for 4) the dual redundant concept provided a reliable and fail-safe system.

It was also noted that the adaptive control system “inspired confidence and allowed the
pilot to spend time cross-checking flight instruments, checking subsystems, and ‘sight-
seeing.”’

These observations followed 65 test flights.
The control system was not robust enough to provide stable control in all situations

encountered. Sadly, a pilot died in a crash attributed to oscillations induced by the adaptive
system. The research program was shut down, but the tragedy inspired greater attention to
robustness in control design.

It should go without saying that every control engineer or practicing economist must study failures.
Airplanes and economies inevitably crash. In the long run, it is a greater tragedy if the experts do
not bother to learn from disaster.

2.2 What to Do about It?

The vast literature on control solutions is built upon a model of input–output behavior that
is used to design the policy φ. Modeling and control design are each an art form, with many
possible solutions from vast statistics and control tool chests.

When we say model, we mean a sequence of mappings from inputs to outputs:

y(k) = Gk(u(0),u(1),u(2), . . . ,u(k)) , k ≥ 0. (2.2)

Each of the functions Gk may also depend on exogenous variables (outside of our control),
such as the weather and traffic conditions. And here we come to one of the most vital
principles of control design: the model must capture essential properties of the system to
be controlled, and simultaneously be simple enough to be useful.

For example, aerospace engineers will create absurdly simple models for the design of
flight control systems and from this create a policy φ designed to work well for the model.
Of course, they do not stop there. The next step is to create an entirely new model for
validation and simulate under a range of scenarios in order to answer a range of questions:
What happens when the plane is full, empty, or flying through a thunderstorm? How does the
control system perform after an engine detaches from a wing? If one of these tests fails, then
the control engineer goes back to either improve the model, improve the policy, or improve
the airplane. That’s right, we may require additional sensors to measure pitch angles, or
more powerful motors to control ailerons, flaps, or elevators.

I am writing without any knowledge of aerospace engineering. I am describing general
principles for anyone interested in control design:

(1) Create a model for control.
(2) Design the policy φ based on the model.
(3) Simulate based on a high-fidelity model, and then revisit steps 1 and 2.

The success of this approach has been tremendous, as seen in the history recounted in [15].

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

12 Control Crash Course

Linear and Time Invariant Model. The most successful class of absurdly simple models are linear
and time invariant (LTI). The general scalar LTI model is defined by a sequence of scalars {bi} (the
impulse response), and for a given scalar input sequence u, the model defines y(k) as the sum

y(k) =

k∑
i=0

biu(k − i) , k ≥ 0. (2.3)

This is in fact too complex in many situations. A more tractable subclass of LTI models are auto-
regressive moving-average (ARMA): for scalar coefficients {ai,bi},

y(k) = −
N∑
i=1

aiy(k − i)+
M∑
i=0

biu(k − i) , k ≥ 0. (2.4)

A linear input–output model motivates the design of a policy φ that has a similar linear
form. A common design technique based on optimization will be described in the following
chapters, beginning in Section 3.6.

2.3 State Space Models

2.3.1 Sufficient Statistics and the Nonlinear State Space Model

In statistics, the term sufficient statistic is used to denote a quantity that summarizes all past
observations. The state plays an analogous role in control theory.

A state space model requires the following ingredients: the state space X on which the
state x evolves, and an input space (or action space) denoted U on which the input u evolves.
We may have additional constraints coupling the state and the input, which is modeled via

u(k) ∈ U(x) , when x(k) = x ∈ X, (2.5)

with U(x) ⊆ U for each x. We might also want to model an observation process y evolving
on a set Y. In the control theory literature, it is common to assume that X, U, and Y are
subsets of Euclidean space, while in operations research and reinforcement learning it is
more common to assume these are finite sets. Whenever possible, in this book we prefer the
control perspective so that we can more easily search for structure of control solutions: For
example, is an optimal input a continuous function of the state?

Next we require two functions F : X×U→ X and G : X×U→ Y that define the following
state equations:

x(k+ 1) = F(x(k),u(k)), x(0) = x0, (2.6a)

y(k) = G(x(k),u(k)). (2.6b)

An LTI model can often be transformed into a state space model in which the two functions
F,G are linear in (x,u).

We might also allow F,G to depend upon the time variable k. It is argued in Section 3.3 that
it is often more convenient to simply assume that the state x(k) includes k as one component.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.3 State Space Models 13

However, there is one example of a time-dependent model that highlights the role of
state as a sufficient statistic. The general input–output model (2.2) always has a state space
description, in which the state is the full history of the following inputs:

x(k+ 1) = [u(0),u(1),u(2), . . . ,u(k)]ᵀ. (2.7)

We have x(k+ 1) = Fk(x(k),u(k)), defined by concatenation, and y(k) = Gk(x(k),u(k))
is a restatement of (2.2). For this deterministic model in which the input fully determines the
output, (2.7) is called the (full) history state. A practical state space model can be regarded
as a compression of the history state.3

In many cases, we can construct a good policy via state feedback, u(k) = φ(x(k)), for
some φ : Rn → R; in stochastic control, it is typical to say that φ is a Markov policy in
this case. However, the power of this approach is fully realized only if we are flexible in our
definition of the state. We won’t be using the full history state because of complexity; what’s
more, the “full history” may not be nearly rich enough.

2.3.2 State Augmentation and Learning

Tracking and disturbance rejection are two of the basic goals in control design. Here we
provide a brief glimpse of two tricks used to simultaneously track the reference r while
rejecting disturbances:

(i) The definition of state is not sacred; invent a state process that simplifies control design.
(ii) Unknown quantities, including disturbances and even the state space model, can be

learned based on input–output measurements.

Let’s maintain our simplifying assumption that the input and output are scalar valued, and
take X = Rn. The state evolution is also influenced by a scalar disturbance d that is outside
our control, which requires a modification of (2.6a):

x(k+ 1) = F(x(k),u(k),d(k)). (2.8)

The ultimate goal is to achieve these three objectives simultaneously.

(a) Tracking: With ỹ(k) = y(k)− r(k),

lim sup
k→∞

|ỹ(k)| = e∞ , with e∞ = 0, or very small. (2.9)

(b) Disturbance rejection: The error e∞ is not highly sensitive to the disturbance d.
(c) Tuned transient response (you probably know what kind of acceleration “feels right”

when driving a car).

A common special case is when the reference and disturbance are assumed independent of
time (e.g., driving at constant speed with a steady headwind). In this special case, suppose in
addition that the disturbance is known. We might choose u(k) = φ(x(k),r(0),d(0)), where
the policy φ is designed for success: e∞ = 0. Typically, φ is designed so that the state is
also convergent: x(k)→ x(∞) as k →∞. The limiting values must satisfy

3 See [337] and its references.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

14 Control Crash Course

x(∞) = F(x(∞),u(∞),d(0)),

u(∞) = φ(x(∞),r(0),d(0)).

The outcome e∞ = 0 is expressed as the final constraint:

r(0) = y(∞) = G(x(∞),u(∞)).

This approach is thus dependent on an accurate model, as well as direct measurements of d.
Suppose that instead of exact measurements of the disturbance, we have a state space

model whose output is ym(k) = (r(k),d(k))ᵀ:

z(k+ 1) = Fm(z(k)), (2.10a)

ym(k) = Gm(z(k)), (2.10b)

where z evolves on Rp for some integer p≥ 1. The functions Fm : Rp→Rp and Gm : Rp→R

are assumed known. Part of this state description is d(k+ 1) = d(k) if the disturbance is
static.

Given the larger state space model (2.8, 2.10), we might opt for an observer-based
solution:

u(k) = φ(x(k),r(k),d̂(k)),

where {d̂(k)} are estimates of the disturbance, based on input–output measurements up to
time k (we might replace x(k) with x̂(k) if we don’t directly observe the state). Observer
design makes up about 20% of a typical introductory course on state space control systems
[7, 29, 76].

A second option, called the Internal Model Principle, is to create a different state
augmentation that is entirely observed. For the sake of illustration, consider again the case
of constant reference/disturbance. We have (2.10) in this case with z(k) = ym(k), and Fm is
the identity function:

z(k+ 1) = z(k).

State augmentation is performed based on this model: define for each k,

zI(k+ 1) = zI(k) + ỹ(k) , (2.11)

with error ỹ(k+ 1) defined above (2.9). We regard (x(k),zI(k)) as the state for the purposes
of control, and hence state feedback takes the form

u(k) = φ(x(k),zI(k)). (2.12)

The control design (2.12) is an example of integral control, since zI is the sum of errors (the
discrete-time analog of integration).

Suppose that zI(k) converges to some finite limit zI(∞), as k →∞; the value of the limit
is irrelevant. This and (2.11) imply perfect tracking:

lim
k→∞

ỹ(k) = lim
k→∞

[zI(k+ 1)− zI(k)] = 0.

This conclusion is remarkable: to obtain perfect tracking, we only require that the policy φ

is designed so that zI(k) converges to some finite limit. The secret to success is a hidden
element of “learning” that comes with integral control.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.3 State Space Models 15

State augmentation has many other dimensions. If we have forecasts of significant
disturbances, then it may be wise to make use of these data: forecasts can be used in the
design of the feedforward component uff(k) in the decomposition (2.1), or they may be used
for state augmentation.

2.3.3 Linear State Space Model

When F and G are linear, we obtain the linear state space model:

x(k+ 1) = Fx(k) +Gu(k), x(0) = x0, (2.13a)

y(k) = Hx(k) +Eu(k), (2.13b)

where (F,G,H,E) are matrices of suitable dimension (in particular, F is n × n for an
n-dimensional state space).

The state space model is not unique, in the sense that there are many choices for
(F,G,H,E) that result in the same input–output behavior, even though the definition of
the state process x will change depending on the model. And never forget, we may add
additional components to x(k) as a means to solve a control problem.

Linear State Feedback

The linear model (2.13) is often constructed so that the goal is to keep x(k) near the origin –
the regulation problem; consider, for example, flight control, where we wish to maintain
velocity and altitude at some constant values. We first normalize the problem so that these
constant values are zero. It is then common to apply a linear control law

u(k) = −Kx(k), (2.14)

where K is called the gain matrix. To evaluate choice of gain, we tack on something like a
reference signal:

u(k) = −Kx(k) + v(k).

The closed-loop behavior with new “input v” has a similar state space description:

x(k+ 1) = (F −GK)x(k) +Gv(k), x(0) = x0, (2.15a)

y(k) = (C − EK)x(k) +Ev(k). (2.15b)

The signal v(k) appearing in (2.15a) is viewed as an “input disturbance.” A goal of control
is to choose K so that the closed-loop behavior is not very sensitive to this disturbance while
simultaneously ensuring good tracking.

Realization Theory

The ARMA model (2.4) admits an infinite number of distinct state space descriptions. Let’s
begin with the scalar auto-regressive model:

y(k) = −
N∑
i=1

aiy(k − i) +u(k) , k ≥ 0

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

16 Control Crash Course

which is (2.4), with M = 0 and b0 = 1. We obtain the state space model (2.13) with n = N
by choosing x(k) = (y(k), . . . ,y(k −N + 1))ᵀ, and

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 −a3 · · · · · · −aN
1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

. . .
...

0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.16)

H = [1 , 0 , 0 , . . . ,0], and E = 0.
This construction can be generalized: with M = N − 1 in (2.4), we first define an

intermediate process

z(k) = −
N∑
i=1

aiz(k − i) +u(k) , k ≥ 0. (2.17)

So we arrive at a state space model with state space x(k) = (z(k), . . . ,z(k − N + 1))ᵀ

to describe the evolution of z. We next use the assumption that M =N − 1: setting
u(k) = z(k) = 0 for k < 0, it is possible to show that

y(k) =
N−1∑
i=0

biz(k − i) = Hx(k) +Eu(k),

where

H = [b0 , b1 , . . . , bN−1] , E = 0. (2.18)

The state space description (2.16, 2.18) is known as controllable canonical form. There are
many other “canonical forms,” with special properties you can learn about in a linear systems
course [7, 15, 29, 76, 205].

2.3.4 A Nod to Newton and Leibniz

In many engineering applications, it is best to start off in continuous time, with thanks to
Newton and Leibnitz for bringing us calculus.

Some notational conventions reserved for continuous time: First, time is denoted using
a subscript (such as ut rather than u(t)) as a reminder that time is continuous. Moreover,
it is often convenient to suppress time dependency altogether, so that d

dtu represents the
derivative at an unspecified time.

The state space model in continuous time has the form

d
dtx = f(x,u), (2.19)

where x is the state evolving in Rn, and u the input evolving in Rm. The motion of a typical
solution to a nonlinear state space model in R2 is illustrated in Figure 2.2.

When the function f appearing in (2.19) is linear, then we obtain the linear state space
model in continuous time. As in (2.13), this is accompanied by an observation process y
evolving on Rp:

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 17

d
dtx = f(x, u)

xt

x0

f(xt, ut)

Figure 2.2 Trajectory of a nonlinear state space model in two dimensions: at any
time t, the velocity d

dtxt is a function of the current state xt and input ut.

d
dtx = Ax+Bu, (2.20a)

y = Cx+Du, (2.20b)

and A,B,C,D are matrices of appropriate dimensions.
The geometry illustrated in Figure 2.2 is sometimes valuable in gaining intuition in control

design (note that the vector f(xt,ut) is tangent to the state trajectory). Stability theory and
optimal control theory are most attractive in the continuous time domain because of this
simple geometry, and the simplicity that comes with calculus.

However, in the end we have to sample time to apply our control and learning algorithms.
In this book, we will opt for an Euler approximation. For sampling interval Δ, the discrete
time approximation of (2.19) is of the form (2.6a), with F(x,u) = x+Δf(x,u). For the
linear model (2.20a), this leads to F = I +ΔA.

2.4 Stability and Performance

In this section, we consider the state space model (2.6a) in a closed loop: a policy φ is
chosen, so that u(k) = φ(x(k)) for each k. Since the feedback law is fixed, the state then
evolves as a state space model without control. With just a slight abuse of notation, we write

x(k+ 1) = F(x(k)) , k ≥ 0. (2.21)

Our interest is in the long-run behavior of the state process; in particular, does it converge
to an equilibrium? We also seek bounds on a particular performance metric called the
total cost.

The following is assumed throughout:

The state space X is equal to Rn, or a closed subset. (2.22)

For example, we allow the positive orthant, X = Rn
+. The restriction on the state space (2.22)

is imposed so that any closed and bounded set S ⊂ X is necessarily a compact subset of X.
The definition of an equilibrium xe is straightforward – it is a state at which the system is

frozen:

xe = F(xe). (2.23)

The equilibrium will in fact be a part of the control design. Think of the cruise control in
your car, in which “equilibrium” means traveling in a straight line at constant speed. The
particular speed is something that you as the driver will choose. The control system then
does the best it can to keep x(k) near the desired value xe.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

18 Control Crash Course

2.4.1 Total Cost

This performance metric is based on a function c : X→ R+, interpreted as the “cost function
under policy φ,” to be considered in greater depth in Chapter 3. Based on this, we arrive at a
strange but ubiquitous definition: the total cost is a function of x, known as the (fixed policy)
value function, and defined as the infinite sum:

J(x) =
∞∑
k=0

c(x(k)) , x(0) = x ∈ X. (2.24)

It is assumed that c(xe) = 0, and we seek conditions ensuring that x(k)→ xe as k →∞, so
there is some hope that J is finite valued. For the cruise control problem, the cost function is
designed so that c(x) is large if the state x corresponds to a speed that is far from desired.

Why Is the Controls Community So Excited about Total Cost? This metric for performance is
not very intuitive, but there are compelling reasons for using it as a performance metric in control
design:

(i) It is “forward looking.” One might argue that (2.24) is looking too far foward (who cares
about infinity?), but there is implicit “discounting” of the future since for a good policy we
have c(x(k)) → 0 quickly as k → ∞.

(ii) Theory for total cost optimal control is often closely related to average cost optimal control –
to be seen in Part II of the book.

(iii) If J is finite valued, then stability is typically guaranteed.

Benefit (iii) is the most abstract, but the most valuable aspect of this performance metric.
Section 2.4.2 is dedicated to stability theory and its relationship to value functions. A part of
this theory is based on the (fixed policy) dynamic programming equation:4

J(x) = c(x) +J(F(x)). (2.25)

This can be derived from the definition (2.24), written as

J(x) = c(x) +

∞∑
k=0

c(x+(k)),

where x+ is the solution to (2.21), starting at x+(0) = F(x).

2.4.2 Stability of Equilibria

We survey here the most common definitions of stability for a nonlinear state space model.
The first and most basic is a form of continuity near the equilibrium xe. Let X(k;x0)
denote the state at time k with initial condition x0: this is simply x(k), obtained recursively
from (2.21), starting at x(0)=x0. In particular, the equilibrium property (2.23) implies that
X(k;xe) = xe for all k.

4 Dynamic programming equation and Bellman equation are used interchangeably, in reverence to [35].

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 19

Stable in the Sense of Lyapunov. The equilibrium xe is stable in the sense of Lyapunov if for all
ε > 0, there exists δ > 0 such that if ‖x0 − xe‖ < δ, then

‖X(k;x0)−X(k;xe)‖ < ε for all k ≥ 0.

In words, if an initial condition is close to the equilibrium, then it will stay close forever.
An illustration is provided in Figure 2.3, with B(r) = {x ∈ Rn : ‖x − xe‖ < r} for any
r > 0.

This is a very weak notion of stability, since there is no guarantee that the state will ever
approach the desired equilibrium. The next definitions impose convergence:

Asymptotic Stability. An equilibrium xe is said to be asymptotically stable if xe is stable in the
sense of Lyapunov and for some δ0 > 0, whenever ‖x0 − xe‖ < δ0,

lim
k→∞

X(k;x0) = xe. (2.26)

The set of x0 for which the preceding limit holds is called the region of attraction for xe.
The equilibrium is globally asymptotically stable if the region of attraction is all of X: that is,

δ0 = ∞, and hence x(k) → xe from any initial condition.

It is common to say that the state space model is globally asymptotically stable. That is,
it is often stressed that this is a property of the system (2.21) rather than the equilibrium
xe ∈ X.

Sometimes we obtain a very fast rate of convergence: the state space model is said to be
globally exponentially asymptotically stable if there are constants �0 > 0 and B0 <∞ such
that for each initial condition and k ≥ 0,

‖X(k;x0)− xe‖ ≤ B0‖x0 − xe‖e−�0k. (2.27)

2.4.3 Lyapunov Functions

R
n

xex0

x(k) = X (k;x0)

B() B()

Figure 2.3 If x0 ∈ B(δ),
then X(k;x0) ∈ B(ε)
for all k ≥ 0.

The construction of a Lyapunov function V is the most common
approach to establishing asymptotic stability, as well as bounds
on a value function (and more general bounds on the state
process). In broad generality, V is a function on X taking
nonnegative values, and the crucial property that makes it a
Lyapunov function is that V (x(k)) is decreasing when x(k)
is large: this is formalized as a drift inequality. The Lyapunov
function V is often regarded as a crude notion of “distance” to
the “center of the state space.”

For any scalar r, let SV (r) denote the sublevel set:

SV (r) = {x ∈ X : V (x) ≤ r}. (2.28)

In addition to the nonnegativity of V , we frequently assume it is
inf-compact:

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

20 Control Crash Course

{x ∈ X : V (x) ≤ V (x0)} is a bounded set for each x0 ∈ X.

That is, the set SV (r) takes on one of three forms for any r: the empty set, SV (r) = X, or
SV (r) ⊂ X is bounded.

V (x) V (x)

xx

V is inf-compact V is coercive

Figure 2.4 Inf-compact and
coercive.

In most cases, we find that SV (r) = X is impossible,
so that we arrive at the stronger coercive assumption:

lim
‖x‖→∞

V (x) =∞. (2.29)

In this case, under our standing assumption (2.22), the
set SV (r) is either empty or bounded for each r. Figure
2.4 illustrates the two classes of functions with X = R

(the function shown on the left is bounded). Here are three numerical examples:

(i) V (x) = x2 is coercive since (2.29) holds.
(ii) V (x) = x2/(1+x2) is inf-compact but not coercive: SV (r) = R for r ≥ 1, and

SV (r) = [−a,a] (a bounded interval) for 0 ≤ r < 1, with a =
√

r/(1− r).
(iii) V (x) = ex is neither: SV (r) = (−∞, log(r)] is not a bounded subset of R for r > 0.

The value function J satisfies the intuitive properties of a Lyapunov function under mild
conditions:

Lemma 2.1 Suppose that the cost function c and the value function J defined in (2.24) are
nonnegative and finite valued. Then,

(i) J(x(k)) is nonincreasing, and lim
k→∞

J(x(k)) = 0 for each initial condition.

(ii) Suppose in addition that J is continuous, inf-compact, and vanishes only at xe. Then,
for each initial condition, lim

k→∞
x(k) = xe.

The proof is postponed to Section 2.4.4, but we note here the first steps: the dynamic
programming equation (2.25) implies that for each k ≥ 0,

J(x(k+ 1)) = J(x(k))− c(x(k)) ≤ J(x(k)). (2.30)

That is, J(x(k)) is nonincreasing, so that x(k) ∈ SJ(r) for each k ≥ 0, with r = J(x(0)).
The inf-compact assumption then implies that the state trajectory is “bottled-up” in the
bounded set SJ(r).

In the context of total-cost optimal control, the basic drift inequality considered in this
book is Poisson’s inequality: for nonnegative functions V ,c : X→ R+, and a constant η ≥ 0,

V (F(x)) ≤ V (x)− c(x) + η. (2.31)

The reference to a French mathematician is explained in the notes. Poisson’s inequality is
a relaxation of the dynamic programming equation (2.25) through the introduction of η, as
well as the inequality.

Poisson’s inequality is defined with attention to the dynamics: on combining (2.31) and
(2.21), we obtain (similar to (2.30))

V (x(k+ 1)) ≤ V (x(k))− c(x(k)) + η , k ≥ 0.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 21

If η = 0, it follows that the sequence {V (x(k) : k ≥ 0} is nonincreasing. Under mild
assumptions on V , we obtain a weak form of stability:

Proposition 2.2 Suppose that (2.31) holds with η = 0. Suppose moreover that V is
continuous, inf-compact, and has a unique minimum at xe. Then the equilibrium is stable in
the sense of Lyapunov.

Proof From the definition of the sublevel sets, we obtain⋂
{SV (r) : r > V (xe)} = SV (r)

∣∣∣
r=V (xe)

= {xe}.

The final equality follows from the assumption that xe is the unique minimizer of V . The
inf-compact assumption then implies the following inner and outer approximations: for each
ε > 0, we can find r > V (xe) and δ < ε such that5

{x ∈ X : ‖x− xe‖ < δ} ⊂ SV (r) ⊂ {x ∈ X : ‖x− xe‖ < ε}.
If ‖x0 − xe‖ < δ, then x0 ∈ SV (r), and hence x(k) ∈ SV (r) for all k ≥ 0 since V (x(k))
is nonincreasing. The preceding final inclusion then implies that ‖x(k)− xe‖ < ε for all k.
Stability in the sense of Lyapunov follows.
�

Bounds on the value function J are obtained by iteration: for example, the two bounds

V (x(2)) ≤ V (x(1))− c(x(1)) + η , V (x(1)) ≤ V (x(0))− c(x(0)) + η

imply that V (x(2)) ≤ V (x(0))− c(x(0))− c(x(1)) + 2η. We can of course go further:

Proposition 2.3 ((Comparison Theorem)) Poisson’s inequality (2.31) implies the following
bounds:

(i) For each N ≥ 1 and x = x(0),

V (x(N)) +
N−1∑
k=0

c(x(k)) ≤ V (x) +N η. (2.32)

(ii) If η = 0, then J(x) ≤ V (x) for all x.
(iii) Suppose that η = 0, and that V , c are continuous. Suppose moreover that c is inf-

compact, and vanishes only at xe. Then the equilibrium is globally asymptotically
stable.
�

The proof is found in Section 2.4.4.
Proposition 2.3 raises a question: what if Poisson’s inequality is tight, so that the inequality

in (2.31) is replaced by equality? Consider this ideal with η = 0, and use the more suggestive
notation V = J◦ for the Lyapunov function:

J◦(F(x)) = J◦(x)− c(x). (2.33)

If J◦ is nonnegative valued, then we can take V = J◦ in Proposition 2.3 to obtain the upper
bound J(x) ≤ J◦(x) for all x. Equality requires further assumptions:

5 This conclusion requires a bit of topology: the characterization of compact sets in terms of “open coverings.” If
this is new to you, don’t worry: topology is not a prerequisite for this book. In the future, you might want to take
a first-year mathematical analysis course.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

22 Control Crash Course

Proposition 2.4 Suppose that (2.33) holds, along with the following assumptions:

(i) J is continuous, inf-compact, and vanishes only at xe.
(ii) J◦ is continuous.

Then, J(x) = J◦(x)− J◦(xe) for each x.

2.4.4 Technical Proofs

To establish Propositions 2.3 and 2.4, we first require Lemma 2.1.

Proof of Lemma 2.1 We begin with the sample path representation of (2.25):

J(x(k+ 1))− J(x(k)) + c(x(k)) = 0. (2.34)

Summing each side from k = 0 to N − 1 gives for each x = x(0), and each N ,

J(x) = J(x(N)) +

N−1∑
k=0

c(x(k)).

On taking limits, we obtain

J(x) = lim
N→∞

{
J(x(N)) +

N−1∑
k=0

c(x(k))
}

=
{

lim
N→∞

J(x(N))
}

+ J(x),

which implies (i) under the assumption that J(x) is finite.
The inf-compact assumption in (ii) is imposed to ensure that the state trajectory evolves

in a bounded set: (2.30) implies that x(k) ∈ SJ(r) for the particular value r = J(x(0)), and
each k ≥ 0. Suppose that {x(ki) : i ≥ 0} is a convergent subsequence of the state trajectory,
with limit x∞. Then J(x∞) = lim

i→∞
J(x(ki)) = 0 follows by continuity of J .

The assumption that J vanishes only at xe implies that x∞ = xe. Part (ii) follows, since
every convergent subsequence reaches the same value xe.
�

Proof of Proposition 2.3 The bound (2.32) is established following the discussion preced-
ing the proposition. We begin with the sample path representation of (2.31), similar to (2.34):

V (x(k+ 1))− V (x(k)) + c(x(k)) ≤ η. (2.35)

Summing each side from k = 0 to N − 1 gives (i):

V (x(N))− V (x(0)) +

N−1∑
k=0

c(x(k)) ≤ ηN .

Part (ii) follows since V (x(N)) ≥ 0 for each N , so that when η = 0 we obtain from the
preceding bound

N−1∑
k=0

c(x(k)) ≤ V (x(0)).

The proof of (iii) is identical to Lemma 2.1: part (ii) implies that limk→∞ c(x(k)) = 0,
and the assumptions on c then imply that x(k)→ xe as k →∞.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 23

It remains to show that xe is stable in the sense of Lyapunov. To see this, first observe that
with η = 0, the bound (2.31) implies that V ≥ c, so that V is also inf-compact. The bound
(2.31), and conditions on c, η, also imply that V (x(k)) is strictly decreasing when x(k) �=xe.
Continuity of V implies that V (x(k)) ↓ V (xe) for each x(0), so that V (xe) < V (x(0)) for
all x(0) ∈ X. Stability in the sense of Lypapunov then follows from Proposition 2.2.
�

Proof of Proposition 2.4 The proof begins with iteration, as in Proposition 2.3:

J◦(x(N)) +

N−1∑
k=0

c(x(k)) = J◦(x).

Lemma 2.1 (ii) and continuity of J◦ implies that J◦(x(N)) → J◦(xe) as N → ∞, which
implies the desired identity: J◦(xe) +J(x) = J◦(x).
�

2.4.5 Geometry in Continuous Time

Let’s briefly consider an analog of (2.21) in continuous time, with state evolving on X = Rn:

d

dt
xt = f(xt), (2.36)

where f : Rd → Rd is called the vector field. It is common to suppress the time index, writing
d
dtx = f(x).

We let X(t;x0) denote the solution to (2.36) at time t, when we need to emphasize depen-
dency on the initial condition x0. The definition of asymptotic stability of an equilibrium xe

is the same as for the state space model in discrete time (2.21). The equilibrium is globally
asymptotically stable if, in addition,

lim
t→∞

X(t;x0) = xe , for all x0 ∈ X.

Verification of global asymptotic stability invites the following assumptions, generalizing
the theory in discrete time. Recall that V : Rn → R is continuously differentiable (or C1) if
the gradient ∇V exists and is continuous.

Lyapunov Function for Global Asymptotic Stability

�

V is nonnegative valued and C1.

�

It is inf-compact (recall the definition that follows (2.28)).

�

For any solution x, whenever xt �= xe,

d

dt
V (xt) < 0. (2.37)

Naturally, d
dtV (xt) = 0 if xt = xe: in this case, V (xt+ s) = V (xe) for all s ≥ 0.

Figure 2.5 illustrates the meaning of the vector field f for the special case X = R2, and the
figure is intended to emphasize the fact that V (xt) is nonincreasing when V is a Lyapunov
function. The drift condition (2.37) can be expressed in functional form,

〈∇V (x),f(x)〉 < 0, x �= xe. (2.38)

This is illustrated geometrically in Figure 2.6.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

24 Control Crash Course

x

f(x)

R
n

xt

V (xt)

Figure 2.5 If V is a Lyapunov function, then V (xt) is nonincreasing with time.

x= x∗ x(t)

∇V (x)

SV (r)

〈∇V (x), f(x)〉 < 0,

f(x)

> 90◦

x

Figure 2.6 Geometric interpretations of a Lyapunov drift condition: the gradient
∇V (x) is orthogonal to the level set {y : V (y) = V (x)}, which is the boundary of
the set SV (r) with r = V (x).

Proposition 2.5 If there exists a Lyapunov function V satisfying the assumptions for global
asymptotic stability, then the equilibrium xe is globally asymptotically stable.
�

Proposition 2.5 is a partial extension of Proposition 2.3 to the continuous time model.
A full extension requires a version of Poisson’s inequality. Suppose that c : Rn → R+ is
continuous, V : Rn → R+ is continuously differentiable, and η ≥ 0 is a constant, jointly
satisfying

〈∇V (x),f(x)〉 ≤ −c(x) + η, x ∈ X. (2.39)

An application of the chain rule implies that this is a continuous time version of (2.31):

d

dt
V (xt) ≤ −c(xt) + η , t ≥ 0.

And with a bit more work, we reach the following conclusions:

Proposition 2.6 If (2.39) holds for nonnegative c,V ,η, then

V (xT) +

∫ T

0

c(xt) dt ≤ V (x) +T η, x0 = x ∈ X , T > 0.

If η = 0, then the total cost is finite:∫ ∞

0

c(xt) dt ≤ V (x), x0 = x ∈ X. (2.40)

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 25

Proof For any T > 0, we obtain by the fundamental theorem of calculus,

−V (x0) ≤ V (xT)− V (x0) =

∫ T

0

(
d
dtV (xt)

)
dt ≤ Tη −

∫ T

0

c(xt), T ≥ 0.

If η = 0, then the bound (2.40) follows on letting T →∞.
�

Converse Theorems We have seen this implication:

Existence of Lyapunov function =⇒ Stability and/or performance bound

where the nature of stability depends on the nature of the Lyapunov function bound. What
about a converse? That is, if the system is stable, can we infer that a Lyapunov function
exists?

Assume moreover that the total cost is finite:

J(x) =

∫ ∞

0

c(xt) dt, x0 = x

with arbitrary initial condition. If J is differentiable, then we obtain a solution to (2.37) using
V = J :

Proposition 2.7 If J is finite valued, then for each initial condition x0 and each t,

d

dt
J(xt) = −c(xt). (2.41)

If J is continuously differentiable, the Lyapunov bound (2.37) follows with equality:

∇J(x) · f(x) = −c(x).

Proof We have a simple version of Bellman’s principle (a focus of Chapter 3): for any
T > 0,

J(x0) =

∫ T

0

c(xr) dr+ J(xT).

For t ≥ 0, δ > 0 given, apply this equation with T = t+ δ and T = t:

J(x0) =

∫ t+ δ

0

c(xr) dr+J(xt+ δ),

J(x0) =

∫ t

0

c(xr) dr+J(xt).

On subtracting, and then dividing by δ, this gives

0 =
1

δ

∫ t+ δ

t

c(xr) dr+
1

δ

(
J(xt+ δ)− J(xt)

)
.

Letting δ ↓ 0, the first term converges to c(xt) because c : Rn → R is continuous, and the
second term converges to the derivative of J(xt) with respect to time, which establishes
(2.41). The final conclusion follows from the chain rule.
�

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

26 Control Crash Course

2.4.6 Linear State Space Models

If the dynamics in (2.21) are linear, with x(k) ∈ X = Rn, then

x(k+ 1) = Fx(k) , k ≥ 0 (2.42)

for an n× n matrix F , and by iteration

x(k) = F kx, k ≥ 0 , x(0) = x.

This equation is valid with k = 0 since we take F 0 = I , the n× n identity matrix.
Suppose that the cost is also quadratic, c(x) = xᵀSx, for a symmetric and positive definite

matrix S. It follows that c(x(k)) is a quadratic function of x(0) for each k:

c(x(k)) = (F kx)ᵀSF kx.

Hence the value function J defined in (2.24) is also quadratic:

J(x) = xᵀ
[∞∑
k=0

(F k)ᵀSF k
]
x, x(0) = x ∈ X.

That is, J(x) = xᵀMx, where M is the matrix within the brackets. It satisfies a linear fixed
point equation, known as the (discrete-time) Lyapunov equation:

M = S +F ᵀMF . (2.43)

A proof of the following can be obtained based on these calculations:

Proposition 2.8 The following are equivalent for the linear state space model (2.42):

(i) The origin is locally asymptotically stable.
(ii) The origin is globally asymptotically stable.

(iii) The Lyapunov equation (2.43) admits a solution M ≥ 0 for any S ≥ 0.
(iv) Each eigenvalue λ of F satisfies |λ| < 1.
�

Controllable Canonical Form. Recall that this state space realization was based on the ARMA
model (2.4), with N = n. If you have taken a course in signals and systems, you then know
that stability of the ARMA model (in an input–output sense called bounded input, bounded output
[BIBO] stability) is verified by examining the roots {pi : 1 ≤ i ≤ n} of the rational function

a(z) = 1+

n∑
i=1

aiz
−i =

n∏
i=1

(1− piz
−i) , z ∈ C.

The system is BIBO stable if |pi| < 1 for each i. The eigenvalues {λi : 1 ≤ i ≤ n} of F are
obtained as the solution to a root finding problem ΔF (λ) = 0, where

ΔF (λ) = det(λI − F) =
n∏

i=1

(λ− λi) , λ ∈ C.

For the state space model in controllable canonical form, it can be shown that ΔF (z) = a(z)zn

for any z ∈ C, and hence {pi : 1 ≤ i ≤ n} = {λi : 1 ≤ i ≤ n}.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.4 Stability and Performance 27

Example 2.4.1 (Linear Model in Continuous Time) Consider the linear ODE

d

dt
x = Ax (2.44)

whose solution is the matrix exponential:

xt = eAtx(0) , eAt =
∞∑

m=0

1

m!
tmAm. (2.45)

Consequently, xt → 0 as t → ∞ from each initial condition if and only if A is Hurwitz:
each eigenvalue of A has strictly negative real part.

The solution to (2.41) is obtained with a quadratic J(x) = xᵀZx, where the matrix Z
can be found through a bit of linear algebra and calculus. The value function is nonnegative,
so we may assume Z is positive semidefinite (hence in particular, symmetric: Z = Zᵀ).
Symmetry implies,

d
dtJ(xt) = 2xᵀ

tZAxt = xᵀ
t [ZA+AᵀZ]xt

and from (2.41) this gives

xᵀ
t [ZA+AᵀZ]xt = −c(xt) = −xᵀ

t Sxt.

This must hold for each t and each x(0), giving the Lyapunov equation in continuous time:

0 = ZA+AᵀZ +S. (2.46)

Euler Approximation If we sample, with constant sampling interval Δ > 0, then from the
continuous time model (2.44) we obtain the linear model (2.42): with tk = kΔ,

x(tk+ 1) = eΔAx(tk) , k ≥ 0. (2.47)

The Euler approximation of (2.44) also results in the linear model (2.42), but with
F = I +ΔA. The matrix F is precisely the first-order Taylor series approximation of the
matrix exponential. While only an approximation, it is often good enough for control design.

A particular two-dimensional example is A = (−0.2, 1
−1, −0.2). The matrix is Hurwitz, with two

eigenvalues λ(A) = −0.2± j. With sampling interval Δ = 0.02, we find that F = I +ΔA
also has two complex eigenvalues:

λ(F) = 1+Δλ(A) ≈ 0.996± 0.02j .

The eigenvalues satisfy |λ(F)| < 1, so we see that stability of the discrete-time approxima-
tion is inherited from the continuous-time model.

The Matlab command M = dlyap(F’,eye(2)) returns a solution to the Lyapunov
equation (2.43) with S = I (the identity matrix):

M =

[
131.9 0.0
0.0 131.9

]
.

The fact that F has complex eigenvalues implies that the state process will exhibit
rotational motion. The sample path of x shown on the left-hand side of Figure 2.7 spirals

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

28 Control Crash Course

x1

x2

x1

x2

x(k) X(k)

Figure 2.7 At the left is a sample path of the deterministic linear model (2.42).
At the right is a sample path from the linear model with disturbance (2.48).

Figure 2.8 Frictionless pendulum: stable and unstable equilibria for the state
space model.

toward the origin, and is intuitively “stable.” The plot on the right is a simulation of the linear
model subject to a “white noise” disturbance:

X(k+ 1) = FX(k) +N(k+ 1), k ≥ 0. (2.48)

See the discussion that follows (7.46) for details of the disturbance process N .

Example 2.4.2 (Frictionless Pendulum) The frictionless pendulum illustrated on the left-
hand side of Figure 2.8 is a favorite example in physics and undergraduate control courses.
It is based on several simplifying assumptions:

- There is no friction or air resistance.
- The rod on which the bob swings is rigid and without mass.
- The bob has mass, but zero volume.
- Motion occurs only in two dimensions.
- The gravitational field is uniform.
- “F = MA” (apply classical mechanics, subject to the foregoing).

A nonlinear state space model is obtained in which x1 is the angular position θ, and x2 its
derivative:

d

dt
x = f(x) =

[
x2

−g
� sin(x1)

]
. (2.49)

Shown on the right-hand side of Figure 2.8 are sample trajectories of xt, and two equilibria.
An inspection of state trajectories shown on the right-hand side of Figure 2.8 reveals that

the equilibrium xe = (π
0) is not stable in any sense, which agrees with physical intuition

(the pendulum is sitting upright in this case). Trajectories that begin near the equilibrium
xe = 0 will remain near this equilibrium thereafter.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.5 A Glance Ahead: From Control Theory to RL 29

The origin is stable in the sense of Lyapunov. To see this, consider a Lyapunov function
defined as the sum of potential and kinetic energy:

V (x) = PE + KE = mg�[1− cos(x1)] +
1
2m�2x2

2.

The first term is potential energy relative to the height at the equilibrium xe = 0, and the
second is the classical “KE = 1

2mv2” formula for kinetic energy. It is not surprising that V
is minimized at xe = 0.

We have ∇V (x) = m�2[(g/�) sin(x1) , x2]
ᵀ, and

∇V (x) · f(x) = m�2
{
(g/�) sin(x1) · x2 − x2 · (g/�) sin(x1)

}
= 0.

This means that d
dtV (xt) = 0, and hence V (xt) does not depend on time. For example, the

periodic orbit shown in Figure 2.8 evolves in a level set of V :
g

�
[1− cos(x1(t))] +

1
2x2(t)

2 = const.

From this it follows that the origin is stable in the sense of Lyapunov.
Linearization: Using the first-order Taylor series approximation sin(θ) ≈ θ, the state

space equation for the pendulum can be approximated by the LTI model (2.44): d
dtx = Ax,

with

A =

[
0 1
−g/� 0

]
. (2.50)

The eigenvalues of A are obtained on solving the quadratic equation 0 = det(Iλ−A):

0 = det
([

λ −1
g/� λ

])
= λ2 + g/� =⇒ λ = ±

√
g/� j.

The complex eigenvalues are consistent with the periodic behavior of the pendulum.

2.5 A Glance Ahead: From Control Theory to RL

Here is a definition from Wikipedia, as seen on July 2020: “Reinforcement learning (RL) is
an area of machine learning concerned with how software agents ought to take actions in an
environment in order to maximize the notion of cumulative reward.” Here is a translation of
some of the key terms:

� Machine learning (ML) refers to prediction/inference based on sampled data.
� Take actions ≡ feedback. That is, the choice of u(k) for each k based on observations.6

� Software agent ≡ policy φ. This is where the machine learning comes in: the creation
of φ is based on a large amount of training data collected in “the environment.”

� Cumulative reward ≡ negative of the sum of cost, such as (2.24), but with the inclusion
of the input:

Cumulative reward = −
∑
k

c(x(k),u(k)).

6 The term features is a common substitute for the observation process y shown in Figure 2.1.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

30 Control Crash Course

An emphasis in the academic community is truly model-free RL, and most of the theory
builds on the optimal control concepts reviewed in the next chapter. Some of the main ideas
can be exposed right here.

What follows is background on how RL algorithms are currently formulated. Think hard
about alternatives – remember, the field remains young!

2.5.1 Actors and Critics

The actor-critic algorithm of reinforcement learning is specifically designed within the
context of stochastic control, so this is a topic for Part II. The origins of the terms are worth
explaining here. We are given a parameterized family of policies {φθ : θ ∈ Rd}, which
play the role of actors. For each θ, we (or our “software agents”) can observe features of the
state process x under chosen the policy. The ideal critic then computes exactly the associated
value function Jθ, but in realistic situations we have only an estimate.

Since in this book we are minimizing cost rather than maximizing reward, the output of
an actor-critic algorithm is the minimum

θ� = arg min
θ
〈ν,Jθ〉, (2.51)

where ν ≥ 0 serves as a state weighting. This will be defined as a sum

〈ν,Jθ〉 =
∑
i

Jθ(x
i)ν(xi),

where ν(xi) is relatively large for “important states.”
Methods to solve the optimization problem (2.51) are explored in Section 4.6, using an

approach known as gradient free optimization. These algorithms are intended to approximate
the true gradient descent algorithms of optimization surveyed in Section 4.4, and are often
called “actor-only methods.” The meaning of actor-critic methods is explained in Chapter 10.

This is an example of ML: optimizing a complex objective function over a large function
class for the purposes of prediction or classification (in this case, we are predicting the best
policy). A very short introduction to ML can be found in Section 5.1.

2.5.2 Temporal Differences

Where do we find a critic? That is, how can we estimate a value function without a model?
One answer lies in the sample path representation of the fixed policy dynamic programming
equation, previously announced in (2.30). For any θ, we have

Jθ(x(k)) = c(x(k),u(k)) +Jθ(x(k+ 1)) , k ≥ 0 , u(k) = φθ(x(k)).

We might seek an approximation Ĵ for which this identity is well approximated. This
motivates the temporal difference (TD) sequence commonly used in RL algorithms:

Dk+ 1(Ĵ)
def
= −Ĵ(x(k)) + Ĵ(x(k+ 1)) + c(x(k),u(k)) , k ≥ 0 , u(k) = φθ(x(k)).

(2.52)

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.5 A Glance Ahead: From Control Theory to RL 31

After collecting N observations, we obtain the mean-square loss:

Γε(Ĵ) =
1

N

N−1∑
k=0

[
Dk+ 1(Ĵ)

]2
. (2.53)

We are then faced with another machine learning problem: minimize this objective function
over all Ĵ in a given class (for example, this is where neural networks frequently play a role).

If we can make (2.53) nearly zero, then we have a good estimate of a value function.
Beyond its application to actor-critic methods, there are TD- and Q-learning techniques,
designed to minimize (2.53) or a surrogate, that are part of a bigger RL toolbox.

2.5.3 Bandits and Exploration

Suppose that our policy is pretty good. Maybe not optimal in any sense, but x(k) → xe,
u(k) → ue rapidly as k → ∞, where the limit satisfies c(xe,ue) = 0. We typically then
have continuity:

lim
k→∞

[
−Ĵ(x(k+ 1)) + Ĵ(x(k))− c(x(k),u(k))

]
= −Ĵ(xe) + Ĵ(xe)− c(xe,ue) = 0.

(2.54)
It follows that we aren’t observing very much via the temporal difference (2.52). If N is very
large, then Γε(Ĵ) ≈ 0. This essentially destroys any hope for a reliable estimate of the value
function. Expressed another way: a good policy does not lead to sufficient exploration of the
state space.

There are many ways to introduce exploration. We can, for example, adapt our criterion
as follows: denote by Γε(Ĵ ;x) the mean-square loss obtained with x(0) = x. Rather than
take a very long run, perform many shorter runs, from many (M > 1) initial conditions. The
loss function to be minimized is the average

Γ(Ĵ) =
1

M

M∑
i=1

Γε(Ĵ ;xi). (2.55)

The best way to choose the samples {xi} is a topic of research.
Another approach is to let the input do the exploring. The policy is modified slightly

through the introduction of “noise”:

u(k) = φ̆(x(k),ξ(k)).

For example, {ξ(k)} might be a scalar signal, defined as a mixture of sinusoids. The noisy
policy is defined so that

(i) φ̆(x(k),ξ(k)) ≈ φθ(x(k)) for “most k.”
(ii) The state process “explores.” In particular, the policy is designed to avoid convergence

of (x(k),u(k)) to any limiting value.

This is a crude approach, since by changing the input process, the associated value function
also changes. More sensible approaches are contained in Chapters 4 and 5, and in the
second part of the book: Q-learning and “off-policy SARSA” might be designed around

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

32 Control Crash Course

an exploratory policy such as this one, but these algorithms are carefully designed to avoid
bias from exploration.

The theory of exploration is mature only within a very special setting: multi-armed
bandits. The term “bandit” refers to slot machines: you put money in the machine, pull an
arm, and hope that more money pops out. A more rational application is in the advertisement
industry, in which an “arm” is an advertisement (which costs money), and the advertiser
hopes money will pop out as the ads encourage sales. There is a great history of heuristics and
science to create successful algorithms to maximize profit, based only on noisy observations
of the performance of candidate ads ([216] is a great reference on the theory of bandits,
and a short survey is contained in Section 7.8). It is here that the “exploration/exploitation”
trade-off is most clearly seen: you have to accept some loss of revenue through exploration in
order to learn the best strategy, and then “exploit” as you gain confidence in your estimates.

The situation is much more complex in control applications: imagine that for each
state x(k), there is a multi-armed bandit. “Pulling arm a” at time k means choosing
u(k)= a∈U. Concepts from bandit theory have led to heuristics to best balance the
exploration/exploitation trade-offs arising in RL. This is an exciting direction for future
research [171, 307].

2.6 How Can We Ignore Noise?

It is hard to explain this precisely to a student without a background in probability theory. If
you have some exposure to stochastic processes, then you might want to skim Section 7.2:
you will learn how to construct a deterministic “fluid model” or “mean-field model” based on
a more detailed and complex stochastic state space model, and find justification for control
design based on the simpler model.

The pragmatic answer to this question is that we rarely have a reliable model of
disturbances, so we leave them unmodeled but not ignored. That is, we attempt to create
a control architecture that is not very sensitive to disturbances. There is an elegant theory
of robust control for this purpose, though even here “robustness” is only with respect to
disturbances within some uncertainty class. The most successful outcomes of this literature
lean heavily on frequency domain concepts. For example, it is assumed that disturbances
(the d shown in Figure 2.1) are largely limited to lower frequencies, and measurement noise
(the w shown on the right-hand side of this figure) is limited to higher frequencies.

Justification for nonlinear control systems is based on Lyapunov function techniques. We
establish stability of our control solution through a Lyapunov function V as outlined in
Section 2.4.3, and then argue that V will continue to have “negative drift” in the form (2.31)
even with error in the model F, or in the presence of the disturbance d.

Finally, the naive “disturbance-free” model obtained through physics, or through tech-
niques surveyed in Section 7.2, often provides a great deal of insight for the structure of
control solutions. We might use this insight to build architectures for reinforcement learning.

2.7 Examples

2.7.1 Wall Street

Let’s begin with an example that clearly does not belong in this chapter. Search for “flash
crash” on your internet browser to see images of the enormous volatility of stock prices on

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.7 Examples 33

many time scales. While we have few tools for control design at this stage of the book, there
are many interesting modeling questions that will help illustrate control and RL philosophy.

Where Is the Control Problem?

Let’s consider the specific problem of stock portfolio management. The goal is to create a
computer program that makes decisions second-by-second on which stocks to buy or sell.
The goal is to “maximize profit,” but there is also the notion of risk, which is not easily
defined without tools from probability and statistics.

Perhaps more significant is that this control problem is not of the centralized variety.
Consider how Figure 2.1 is interpreted for stock trading. The process is the global economy
and everything that goes along with it! The two blocks state feedback and observer are the
results of thousands of individual decision makers (the “agents”) who forecast future prices
(and other events), and employ optimization strategies for online decision making. Trajectory
generation will also be local to each agent: this might represent decisions regarding purchase
orders for new computers, new staff, or a new office closer to Wall Street.

In summary: stock trading is a game rather than a classical control problem, but this should
not stop us. As an individual (or company designing software for others), we can treat the
“process” along with the actions of all other players as a larger process. Reinforcement
learning is an appealing approach to control design because the learning (or training) does
not require a detailed model (though significant data are required for training).

This is a great example of the value of both measurements and actuation in control. The
better your measurements, the more money you can expect to earn in an optimal control
solution – there is no better example to illustrate this point. The book Flash Boys contains
a popular treatment of the role of actuation – in particular, the cost of delay in the feedback
loop [223] (see also [30]). It is claimed that millions of dollars can be made by reducing
response delay by a millisecond!

State Feedback?

How do we interpret u(k) = φ(x(k))? The input u(k) is easy to understand, given the
preceding description of the stock portfolio management problem.

What is the state x(k)? I don’t know, and I would not trust anyone who claims to have
an answer! It is traditional to view prices as a stochastic process that evolves according to
the actions of millions of citizens and hundreds of corporations. There is modeling theory
based on martingales and changes of measure, so theory from mathematical finance may
provide intuition on how to construct a state process. A quick “gut reaction” might be this:
x(k) = x0(k), the vector of all stock prices at time k. Without any knowledge of finance,
my gut tells me that this would be a huge mistake. Here are examples of what many would
add after further reflection:

(i) Past history of prices. It is important to visit recent performance in terms of both trends
and volatility.

(ii) Forecasts of prices. You may have insider knowledge. You may realize that tweets from
certain influential people provide insight on the decisions of others, which will then
influence stock prices.

(iii) What is the objective? Once you have a formulation of reward and risk, make sure that
these essential quantities are functions of your state process.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

34 Control Crash Course

Go
al

3,747 m
Elevation

Figure 2.9 Mountain car.

You then have a very high-dimensional vector x(k), and are left to find the feedback law φ.
There is no perfect state description. Even if a state space model were available, the full

state would not be directly observed (and we would still want to use “side information,” such
as the tweets of CEOs and politicians). Appendix C contains a summary of belief states for
partially observed control problems. This is an elegant way to create a fully observed state
for the purposes of control, but comes with enormous cost in terms of complexity.

What follows are toy examples that will be useful for applying the methods to be
developed over the course of this book. The models are presented in continuous time because
of the elegance of calculus and classical mechanics.

2.7.2 Mountain Car

The goal is to drive a car with a very weak engine to the top of a very high mountain, as
illustrated in Figure 2.9.

A two-dimensional state space model is obtained using position and velocity xt =
(zt,vt)

ᵀ, and the input u is the throttle position (which is negative when the car is in reverse).
In the following, the state space is defined to be a rectangular region,

X = [zmin,zgoal]× [−v,v]

in which zmin is a lower limit for the position zt, and the target position is zgoal. The constraint
xt ∈ X means that the velocity vt is bounded in magnitude by v > 0.

Within the RL literature, this example was introduced in the dissertation [264], and has
since become a favorite basic example [338].

What makes this problem interesting is that the engine is so weak that it is impossible to
reach the hill directly from some initial conditions. A successful policy will sometimes put
the car in reverse, and travel at maximal speed away from the goal to reach a higher elevation
to the left. Several cycles back and forth may be required to reach the goal.

Figure 2.10 Two forces
on the mountain car.

A continuous-time model can be constructed based on the two
forces on the car, illustrated in Figure 2.10. To obtain a simple
model, we need to be careful with our notion of distance: zgoal −
zt denotes the path distance along the road to the goal, which
is not the same as the distance along the x-axis in Figure 2.9.
Subject to this convention, Newton’s law gives

ma = m
d2

dt2
z = −mg sin(θ) +κu.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.7 Examples 35

With state x = (z,v)ᵀ, we arrive at the two-dimensional state space model,

d

dt
x1 = x2,

d

dt
x2 =

κ

m
u− g sin(θ(x1)),

(2.56)

where θ(x1) is the road grade at z = x1.
An examination of the potential energy U tells us from which states we can reach the goal

without control (setting u = 0 in (2.56)). The potential energy is proportional to elevation
and can be computed by integrating the negative of force,−F (z). For the control-free model,
we have −F (z) = mg sin(θ(z)), and hence

U(z) = U(0) +mg

∫ z

0

sin(θ(z)) dz. (2.57)

Figure 2.11 Potential energy
for the mountain car.

The version of this model adopted in [338, ch. 10] uses
these numerical values:

κ/m = 1 , g = 2.5 , θ(z) = π+3z.

In this case, (2.57) gives U(z) = U(0) +mg sin(3z)/3.
Figure 2.11 shows the potential energy as a function of
z on the interval [zmin,zgoal]. It has a unique maximum at
zgoal, which implies that it is necessary to apply external
force to reach the goal for any initial condition satisfying
z(0) < zgoal and v(0) ≤ 0.

Is the goal reachable? We again examine potential energy. Consider the force as a function
of z with u(k) = 1 for all k. We obtain −F (z) = mg sin(θ(z)) − κ, and the resulting
potential energy is the integral, denoted U1(z) = U(z) − κz and shown in Figure 2.11. We
now have U(zmin) > U(zgoal), so from z(0) = zmin we will reach the goal with this open-loop
control law.

Consider the initial position z0 = −0.6, for which U1(z0) is indicated with a dashed line,
and let z1 denote the other value satisfying z1 > z0 and U1(z1) = U1(z0). If u(k) = 1 for
all k, then with initial condition z(0) = −0.6 and v(0) = 0, the car will initially move to the
right, and stall at time t1, for which z(t1) = z1. It will then reverse direction until it stalls at
location z0, and this process will repeat.

A discrete time model is adopted in [338, ch. 10], based on sampling the ODE with
sampling interval Δ = 10−3: using the notation x(k) = (z(k),v(k))ᵀ,

z(k+ 1) = [[z(k) +Δv(k+ 1)]]1, (2.58a)

v(k+ 1) = [[v(k) +Δ[u(k)− 2.5 cos(3z(k))]]]2. (2.58b)

This can be expressed in the form (2.6a) by substituting the expression for v(k+ 1) in (2.58b)
into the right-hand side of (2.58a).

The model is consistent with (2.56) using θ(z) = π+ 3z. The brackets denote projection
of the values of z(k+ 1) to the interval [zmin,zgoal], and v(k+ 1) to the interval [−v, v].
In addition, the constraint v(k)≥ 0 is imposed when z(k)= zmin, and v(k)= 0 when

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

36 Control Crash Course

z(k)= zgoal (the car is parked once it reaches its target). The following values are chosen
in numerical experiments:

zmin = −1.2, zgoal = 0.5, and v = 70. (2.58c)

Here is an aggressive policy that will get you to the top: Whatever direction you are going,
accelerate in that direction at maximum rate (provided this is feasible):

u(k) =

{
0 z(k) = zgoal

sign(v(k)) else
. (2.59)

If v(k) = 0, then sign(v(k)) can be taken to be 1 or −1, subject to the constraint that
v(k+ 1) �= 0.

2.7.3 MagBall

The magnetically suspended metal ball illustrated in Figure 2.12 will be used to illustrate
several important modeling concepts. In particular, it shows how to transform a set of
nonlinear differential equations into a state space model, and how to approximate this by a
linear state space model of the form (2.20). Further details from a control systems perspective
may be found in the lecture notes [29].

The input u is the current applied to an electromagnet, and the output y is the distance
between the center of the ball and the bottom edge of the magnet. Since positive and negative
inputs are indistinguishable at the output of this system, it follows that this cannot be a linear
system. The upward force due to the current input is approximately proportional to u2/y2,
and hence from Newton’s law for translational motion we adopt the model

ma = m
d2

dt2
y = mg − κ

u2

y2
,

where g is the gravitational constant, and κ is some constant depending on the physical
properties of the magnet and ball.

Control design goal: Maintain the distance to the magnet at some reference value r.
We obtain a state space model as a first step to control design. This input–output model

can be converted to state space form to obtain something similar to the controllable canonical
form description of the ARMA model in (2.16) and (2.18): using x1 = y and x2 = d

dty,

d

dt
x1 = x2,

d

dt
x2 = g − κ

m

u2

x2
1

,

ut

yt

Reference distance r > 0

Figure 2.12 Magnetically suspended ball.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.7 Examples 37

where the latter equation follows from the formula d
dtx2 = d2

dt2 y. This pair of equations
defines a two-dimensional state space model of the form (2.19):

d

dt
x1 = x2 = f1(x1,x2,u), (2.60a)

d

dt
x2 = g − κ

m

u2

(x1)2
= f2(x1,x2,u). (2.60b)

It is nonlinear, since f2 is a nonlinear function of x, and also the state space is constrained:
X = {x ∈ R2 : x1 ≥ 0}.

Suppose that a fixed current u◦ > 0 is applied, and that the state x◦ is an equilibrium:
f(x◦,u◦) = 0. From the definition of f1 in (2.60a), we must have x◦

2 = 0, and setting
f2(x◦,u◦) equal to zero in (2.60b) gives

x◦
1 =

√
κ

mg
u◦ > 0. (2.61)

If we are very successful with our control design, and xt = (r,0)ᵀ for all t, then we must
have

ut = u◦ , t ≥ 0 , where u◦ = r
√

mg/κ : the solution to (2.61) with x◦
1 = r.

Of course, we don’t expect that this “open-loop” approach will be successful. If we are
realistically successful, so that xt ≈ r for all t (perhaps after a transient), then we should
expect that ut ≈ u◦ as well. The design of a feedback law to achieve this goal is often
obtained through an approximate linear model, called a linearization.

Linearization about an Equilibrium State

The linearization is defined exactly as in the frictionless pendulum (2.49). Assume that the
signals x1, x2, and u remain close to the fixed point (x◦

1,x
◦
2,u

◦), and write

x1 = x◦
1 + x̃1,

x2 = x◦
2 + x̃2,

u = u◦ + ũ,

where x̃1, x̃2, and ũ are small-amplitude signals. From the state equations (2.60), we then
have

d

dt
x̃1 = x◦

2 + x̃2 = x̃2,

d

dt
x̃2 = f2(x

◦
1 + x̃1,x

◦
2 + x̃2,u

◦ + ũ).

Applying a first-order Taylor series expansion to the right-hand side of the second equation
gives

d

dt
x̃2 = f2(x

◦
1,x

◦
2,u

◦) +
∂f2
∂x1

∣∣∣
(x◦

1,x
◦
2,u

◦)
x̃1 +

∂f2
∂x2

∣∣∣
(x◦

1,x
◦
2,u

◦)
x̃2

+
∂f2
∂u

∣∣∣
(x◦

1,x
◦
2,u

◦)
ũ+ d.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

38 Control Crash Course

The final term d represents the error in the Taylor series approximation. After computing
partial derivatives, we obtain

d

dt
x̃1 = x̃2.

d

dt
x̃2 = αx̃1 +βũ+ d with α = 2

κ

m

(u◦)2

(x◦
1)

3
, β = −2

κ

m

u◦

(x◦
1)

2
.

This can be represented as a linear state space model with disturbance:

d

dt
x̃ =

[
0 1
α 0

]
x̃+

[
0
β

]
ũ+

[
0
1

]
d , ỹ = x̃1. (2.62)

There is a hidden approximation in (2.62), since d is in fact a nonlinear function of (x,u).
In control design, this approximation is taken one step further by setting d ≡ 0, to obtain
the linear model (2.20). The approximate model is not very useful for simulations, but often
leads to effective control solutions.

2.7.4 CartPole

Figure 2.13 CartPole.

The next example has a long history within the control systems
literature [14, 258, 331], and was introduced to the RL literature in
early research of Barto et al. [26]. It is today a popular test example
on openai.com. A history from the perspective of control educa-
tion can be found in [385], which provides the dynamic equations
with state x = (z,ż,θ,θ̇), where z is the horizontal position of the
cart, and the angle θ is as shown in Figure 2.13.

The control design goal is regulation: Keep θ = 0 while the cart
is moving at some desired speed, or some desired fixed position.
The aforementioned references describe several successful strate-
gies to swing the pole up to a desired position without excessive
energy. A normalized model used in [385] is given by

d
dtz = d

dtx1 = x2,
d
dtx2 = u,

d
dtθ = d

dtx3 = x4,
d
dtx4 = sin(x3)− u cos(x3).

(2.63)

The state equations are easily linearized near the equilibrium ue = 0 and xe = (ze,0,0,0)ᵀ

for any ze: using the first-order Taylor series approximations sin(x3) ≈ x3 and cos(x3) ≈ 1,
we obtain as in the derivation of (2.62)

d
dt x̃1 = x̃2,

d
dt x̃2 = u,

d
dt x̃3 = x̃4,

d
dt x̃4 = x̃3 − u+ d.

(2.64)

Ignoring the “disturbance” (error term) d, the ODE (2.64) is a version of the state space
model (2.20) with

A =

⎡⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0
1
0
−1

⎤⎥⎥⎦ .

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

openai.com
https://doi.org/10.1017/9781009051873.004

2.7 Examples 39

The matrix A is not Hurwitz, with eigenvalues at±1 and repeated eigenvalues at 0. This was
anticipated at the start: it is unlikely that the pendulum will remain upright with a constant
“open-loop” input, ut ≡ 0. The linear model is of great value for insight, and for designing
a linear feedback law to keep the system near the equilibrium:

ũ = −Kx̃.

Methods to obtain the 4×1 matrix K through optimal control techniques will be investigated
later in the book.

In conclusion, we know what to do locally, but the linearization provides no insight
whatsoever on how to swing the pendulum up to the desired vertical position. The robotics
community has developed ingenious specialized techniques for classes of nonlinear control
problems that include CartPole as a special case (see [14, 82, 331, 385], and Exercise 3.10
for a survey of the approach of [14]). In the near future, we hope to marry existing control
approaches with model-free techniques from RL to obtain reliable control designs in more
complex settings.

2.7.5 Pendubot and Acrobot

Figure 2.14 shows a photograph of the Pendubot as it appeared in the robotics laboratory at
the University of Illinois in the 1990s [29, 330] and a sketch indicating its component parts.
It is similar to Sutton’s Acrobot [341], which is another example that is currently popular on
openai.com. The control objective is similar to CartPole: starting from any initial condition,
swing the Pendubot up to a desired equilibrium, without excessive energy.

The value of this example is explained in the introduction of [330], where they compare
to CartPole, and a variation of Furuta [137]:

The balancing problem for the Pendubot may be solved by linearizing the equations of
motion about an operating point and designing a linear state feedback controller, very
similar to the classical cart-pole problem . . . One very interesting distinction of the
Pendubot over both the classical cart-pole system and Furuta’s system is the continuum of
balancing positions. This feature of the Pendubot is pedagogically useful in several ways,
to show students how the Taylor series linearization is operating point dependent and for
teaching controller switching and gain scheduling. Students can also easily understand
physically how the linearized system becomes uncontrollable at q1 = 0, ±π. [This
excerpt refers to the first and third illustrations shown in Figure 2.14b, with q1, q2 joint
angles shown in Figure 2.15.]

Encoder 1DC motor

Link 1

(a) Pendubot components (b) Three potential equilibria

Link 2

Encoder 2

Figure 2.14 (a) The Illinois Pendubot, showing component parts. (b) A continuum
of equilibrium positions.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

openai.com
https://doi.org/10.1017/9781009051873.004

40 Control Crash Course

Figure 2.15 Coordinate description of the Pendubot: �1 is the length of the first
link, and �c1,�c2 are the distances to the center of mass of the respective links. The
variables q1,q2 are joint angles of the respective links, and the input is the torque
applied to the lower joint.

The Pendubot consists of two rigid aluminum links: Link 1 is directly coupled to the shaft
of a DC motor mounted to the end of a table. Link 1 also includes the bearing housing for
the second joint. Two optical encoders provide position measurements: One is attached at the
elbow joint, and the other is attached to the motor. Note that no motor is directly connected
to link 2 – this makes vertical control of the system, as shown in the photograph, extremely
difficult!

The system dynamics can be derived using the so-called Euler–Lagrange equations found
in robotics textbooks [332]:

d11q̈1 + d12q̈2 +h1 +φ1 = τ, (2.65a)

d21q̈1 + d22q̈2 +h2 +φ2 = 0, (2.65b)

where the variables can be deduced from Figure 2.15. Consequently, this model may be
written in state space form, d

dtx = f(x,u), where x = (q1,q2,q̇1,q̇2)
ᵀ, and f is defined from

the preceding equations.
This model admits various equilibria: For example, when ue = τe = 0, the vertical

downward position xe = (−π/2,0,0,0) is an equilibrium, as illustrated on the right-hand
side of Figure 2.14. Three other possibilities are shown in Figure 2.14b, each with τe �= 0.

A fifth equilibrium is obtained in the upright vertical position, with τe = 0 and xe =
(+π/2,0,0,0)ᵀ. It is clear from the drawing shown on the left-hand side of Figure 2.14 that
the upright equilibrium is strongly unstable in the sense that with τ = 0, it is unlikely that the
physical system will remain at rest. Nevertheless, the velocity vector vanishes, f(xe,0) = 0,
so by definition the upright position is an equilibrium when τ = 0.

Although they are complex, we may again linearize these equations about the vertical
equilibrium. With the input u equal to the applied torque, and the output y equal to the lower
link angle, the resulting state space model is defined by the following set of matrices in the
1990s vintage system described in [330]:

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.7 Examples 41

A =

⎡⎢⎢⎣
0 1.0000 0 0

51.9243 0 −13.9700 0
0 0 0 1.0000

−52.8376 068.4187 0 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0

15.9549
0

−29.3596

⎤⎥⎥⎦ ,

C =
[
1 0 0 0

]
, D = 0.

(2.66)

Postscripts

For those students who have had a course in undergraduate control systems, the correspond-
ing transfer function has the general form

P (s) = k
(s− γ)(s+ γ)

(s− α)(s+α)(s− β)(s+β)
,

with k > 0 and 0 < α < γ < β. The variable “s” corresponds to differentiation. Writing

P (s) = k
s2 − γ2

s4 − 2(α2 +β2)s2 +α2β2
,

the transfer function notation Y (s) = P (s)U(s) denotes the ODE model:

d4

dt4
ỹ − 2(α2 +β2)

d2

dt2
ỹ+α2β2ỹ = k[

d2

dt2
u− γ2u].

The roots of the denominator of P (s) are {±α,±β}, which correspond with the
eigenvalues of A. The positive eigenvalues mean that A is not Hurwitz. The fact that
P (s0) = 0 for the positive value s0 = γ implies more bad news (a topic far beyond the
scope of this book, but the impact of zeros in the right-half plane is worth reading about in
basic texts, such as [7, 15, 76, 205]).

2.7.6 Cooperative Rowing

In a sculling boat, each rower has two oars or sculls, one on each side of the boat. The
control system discussed here concerns coordination of N individual scullers (meaning just
one rower per boat) that are part of a single team. You can see five of N teammates on the
left-hand side of Figure 2.16. The team objective is to maintain constant velocity toward a
target (let’s say, the island of Kaua’i), and also maintain “social distance” between boats.

A state space model might be formulated as follows. Let zit denote the distance from the
origin, and ui

t the force exerted by the rower at time t. Taking into account the fact that

Figure 2.16 Cooperative rowing with partial information.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

42 Control Crash Course

drag increases with speed, and applying once more Newton’s law, f = ma, results in the
following system equations:

d2

dt2
zi = −ai

d

dt
zi + biu

i − di,

in which {ai,bi} are positive scalars, and the disturbance {dit} is left unmodeled. If we ignore
the disturbance (for the purposes of control design), we can pose the rowing game as a linear-
quadratic optimal control problem: a topic covered in Sections 3.1 and 3.6. We will see that
this will result in a policy of the form

ui = Kix+ ri,

where x is the 2N -dimensional vector of positions and velocities for all the rowers, Ki is
a 2N -dimensional row vector, and ri is a scalar function of time that depends upon the
tracking goal. Implementation of this policy requires that each rower know the position and
velocity of every other rower at each time. Let’s think about how the rowers might cooperate
without so much data.

Imagine that each rower only views the nearest neighbors to the left and right. This breaks
the team of size N into (overlapping) subteams of size three that coordinate individually.
Unfortunately, if N is large, it is known that this distributed control architecture can lead to
large oscillations in the positions of the boats with respect to the distant island [130].

The theory of mean-field games suggests that a more robust strategy is obtained with just
a bit of global information: Assume that at each time t, rower i has access to three scalar
observations: her own position and velocity zit,v

i
t, and the average position of all rowers:

z̄t =
1

N

N∑
j=1

zjt . (2.67)

One possibility is to pretend that xi
t = (zit,v

i
t,z̄t)

ᵀ evolves according to a state space model
of the form (2.19), in which case it is appropriate to search for a state feedback policy
ui
t = φi(xi

t).
Before fixing the architecture of the policy, it is essential to consider the goals. Since we

have assumed that social distancing is managed through an independent control mechanism,
there remain only two:

zit ≈ z̄t , vit =
d

dt
zit ≈ vref for all large t.

Based on the discussion in Section 2.3.2, we might obtain better coordination through the
introduction of a fourth variable, defined as the integral of the position error

zI i
t = zI i

0 +

∫ t

0

[zir − z̄r] dr,

or the discounted approximation,

zI i
t = zI i

0 +

∫ t

0

e�(t−r)[zir − z̄r] dr

with � > 0. Once we have made our choice, we then search for a policy defined as a function
of the four variables, ui

t = φi(zit,v
i
t,z̄t,z

I i
t).

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.8 Exercises 43

However, do not forget that this is a game The “best” choice of φi will depend upon the
choice of φj for all j �= i. We might experiment with “best response” schemes designed to
learn a collection of policies {φi : 1 ≤ i ≤ N} that work well for all. Best response is also
behind the RL training in AlphaZero [322].

2.8 Exercises

2.1 Controllable Canonical Form. Consider the state space model (2.18) with X = R3.
(a) If the input is defined by u(k) = −Kx(k)+ v(k) for a 1× 3 gain matrix K, obtain a state

space model in controllable canonical form (with new input v).
(b) For the special case n = 3 (so that F is a 3×3 matrix), design K so that the eigenvalues of

F−GK are each located at 1/2. Perform this calculation by hand. Your answer will depend
upon {a1,a2,a3}. Based on your effort, explain why this is called controllable canonical
form!

(c) Think a bit deeper: Have you solved a control problem? With state x(k) defined via (2.17),
would you say you are making good use of your output measurements?

If you are baffled, then seek advice from your professor, fellow students, and a good book on
state feedback methods!

2.2 Controllability and Observability. Consider the linear state space model

x(k+1) = Fx(k)+Gu(k) , x(0) =
(
1
1

)
,

y(k) = Hx(k) with F =

[
0.5 1

0 2

]
, G =

[
1

0

]
, Hᵀ =

[
0

1

]
. (2.68)

If you have taken a state space controls course, then you know that this system is not controllable
and not observable. If you don’t have this background, then you might be able to guess the
definitions of these terms after completing this exercise.
(a) Can you find a feedback law u(k) = φ(x(k)) that results in a bounded output y?
(b) Does the situation improve if H = [1 0]?
(c) How about if G = [0 1]ᵀ?

2.3 Stabilizability. The state space model is called stabilizable if there is a feedback law u(k) =

φ(x(k)) that results in a closed-loop system that is globally asymptotically stable. The example
in Exercise 2.2 is not stabilizable.

Perform the following calculations with F =

[
2 1

0 0.5

]
and G =

[
1

0

]
:

(a) Design the gain in u(k) = −Kx(k) so that F − GK has repeated eigenvalues (you will
see that you do not have choice in the value). Is K unique?

(b) Solve the Lyapunov equation (2.43) with F replaced by the closed-loop matrix F − GK

from (a), and with S = I .
(c) Denote y(k) = x1(k) = Hx(k). Suppose that our goal is to ensure that y(k) → r as

k → ∞, with r a constant. Modify your control design as follows:

u(k) = −K1ỹ(k)−K2x2(k)−K3z
I(k),

where ỹ(k) = y(k) − r and zI(k+1) = zI(k)+ ỹ(k) (review discussion surround-
ing (2.11)). Find K̄3 > 0 sufficiently small so that the system remains stable for 0 ≤
K3 ≤ K̄3. This is possible because of the inherent robustness of feedback (you verified
stability when K3 = 0).

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

44 Control Crash Course

(d) Obtain a state space model for the system in a closed loop, with augmented state xa =

(x1,x2,z
I):

xa(k+1) = F axa(k)+Gar,

where F a is 3 × 3 and Ga is 3 × 1. Plot the eigenvalues of F a for a range of values of
K3 > 0, and comment on your findings.

Solve the equilibrium equation (for your favorite control design): xa(∞) = F axa(∞)+Gar.
Is your equilibrium xa(∞) consistent with your control goals?

Obtain a plot of y(k) as a function of k, with initial condition x1(0) 	 r, and verify that it
converges to the desired limit and at the predicted rate.

2.4 Consider the scalar state space model, x(k+1) = x(k)− αx(k)3.
(a) Show that the origin is stable in the sense of Lyapunov, and estimate the region of attraction

(which will depend upon α).
(b) Explain why this state space model is not globally asymptotically stable.
The state process x is in fact an Euler approximation of the ODE d

dtx= −x3. See Exercise 2.15
for some interesting features of the solution.

Control Systems in Continuous Time
For simulating an ODE, you might try ode45 in Matlab. There are several Python alternatives.

2.5 Integral Control Design. The temperature T in an electric furnace is governed by the linear state
equation

d

dt
T = u+w,

where u is the control (voltage) and w is a constant disturbance due to heat losses. It is not
directly observed. It is desired to regulate the temperature to a steady-state value prescribed by
the set-point T = T 0, where T 0 is your comfort temperature. The following should be solved
by hand:
(a) Design a state-plus-integral feedback controller to guarantee that Tt → T 0 as t → ∞, for

any constant w. This can take the form u = −K1(T − T 0)−K2z
I with

zI
t = zI

0 +

∫ t

0

[Tr − T 0] dr.

The closed-loop poles should have natural frequency ωn ≈ 1 (that is, the eigenvalues of the
2× 2 matrix that defines the closed-loop state space model should satisfy |λ| ≈ 1.)

(b) To what value does the control ut converge as t → ∞? Has the controller “learned” w?

2.6 Solve the following based on the linear state space model d
dtx = Ax with A =

[
−1 4

0 −1

]
.

(a) Show that V (x) = ‖x‖2 = x2
1 +x2

2 is not a Lyapunov function.
(b) Find a quadratic function V that is.
(c) Consider the Euler approximation x(k+1) = Fx(k) with F = I +ΔA, and Δ > 0.

Estimate the range of Δ > 0 for which your function V from part (b) is a Lyapunov
function for this discrete time system. Is this range complete? That is, does it include all
values for which the eigenvalues of F lie in the open unit disk in C?

2.7 In this exercise, you will consider a particular control architecture for cooperative rowing,
using a simplification of the model described in Section 2.7.6. Consider the homogeneous and
disturbance-free system

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.8 Exercises 45

d2

dt2
zi = −a

d

dt
zi +ui , 1 ≤ i ≤ N

with a > 0. The goal is to maintain vit
def
= d

dtz
i
t ≈ vref for all t, and zit ≈ z̄t for each i,t, with z̄t

the average position (recall (2.67)). We wish to achieve these objectives without requiring that
each rower have complete observations.

The following control architecture is of the category studied in [130]:

ui = −K−[zi − zi−1]−K+[z
i − zi+1]−Kv[

d
dtz

i − vref] , 1 ≤ i ≤ N,

where for notational convenience we interpret z0 = zN and zN +1 = z1. This architecture
is well motivated in terms of goals, and the desire to make decisions based on only local
information. Unfortunately, theory predicts problems when N is large.
(a) Describe the closed-loop dynamics as a 2N -dimensional state space model, with constant

input vref. This will have the form, for some matrix K and vector g,

d

dt
x = (A−BK)x+ gvref.

The remainder of the exercise is numerical, with a = vref = 1, K− = K+, and several
values of N (say, 10, 500, 5,000):

(b) Choose nonnegative gains K+, Kv so that the closed-loop system is stable, in the sense
that the key error terms are bounded as functions of time and convergent:

eiz = lim
t→∞

(zit − z̄t) , eiv = lim
t→∞

(vit − vref).

See if you can obtain gains so that |eiv| ≤ 0.05.
Note that you do not yet have any tools to efficiently compute the control gains. Just

experiment until you find something that works.
(c) Obtain a plot of the eigenvalues of A − BK for the chosen values of N . Do you find

complex eigenvalues? Eigenvalues at zero?
(d) Simulate your control design for various nonideal initial conditions. Think hard about how

to plot your results to display the poor behavior of these scullers. Discuss your findings.

2.8 Let’s now consider the rowing game in which each rower has access to the average position
(2.67), and the control architecture

ui = −Kp[z
i − z̄]−KIz

I i −Kv[
d
dtz

i − vref] , 1 ≤ i ≤ N, (2.69)

where in the notation of Section 2.7.6,

zI i
t = zI i

0 +

∫ t

0

[zir − z̄r] dr.

Repeat (a)–(d) of Exercise 2.7 based on this policy.

2.9 You are given a nonlinear input–output system defined by the nonlinear differential equation:

ÿ = y2(u− y)+ 2u̇. (2.70)

(a) Obtain a two-dimensional nonlinear state space representation with output y, input u, and
states x1 = y and x2 = ẏ − 2u.

(b) Linearize this system of equations around its equilibrium output trajectory when u ≡ 1,
and write it in state space form.

(c) For those of you with background in classical control: Find the transfer function for the
linear system obtained in (b), and comment on the implications.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

46 Control Crash Course

(d) Obtain a linear compensator u = −Kx̃ for the linearization, where x̃ = (y − 1,ẏ)ᵀ. To
be successful, you want x̃t → 0 as t → ∞ for each initial condition for which ‖x̃0‖ is
sufficiently small.

2.10 We now consider (2.70) subject to a constant disturbance:

ÿ(t) = y2(u− y)+ 2u̇+ d,

where the value of d is not known in advance. In this case, we cannot expect perfect tracking
unless we introduce integral control:

u = −Kx̃a , where x̃a = (y − 1,ẏ,zI)ᵀ , zI
t =

∫ t

0

(y − 1) dr.

Find a 1×3 row vector K so that this control design is stabilizing in the sense that x̃a is bounded,
and x̃ vanishes for “small” initial conditions. Perform simulations to verify that perfect tracking
is achieved for initial conditions near the equilibrium value and any fixed value of d satisfying
|d| ≤ 1.

2.11 Consider the state space model d
dtx = Ax+Bu; y = Cx, where A is similar to a diagonal

matrix. That is, Λ = V −1AV where Λ is a diagonal matrix, with each Λ(i,i) an eigenvalue of
A, and V is a matrix whose columns are eigenvectors.
(a) Obtain a state space model for x = V −1x, of the form d

dtx = Āx+ B̄u; y = C̄x, by
finding representations for (Ā,B̄,C̄). This state space representation is called modal form.

The remainder of the problem is numerical, using

A =

⎡⎣ 8 −7 −2

8 −10 −4

−4 5 2

⎤⎦ , B =

⎡⎣00
1

⎤⎦ , C = [1 0 0].

(b) Find the eigenvalues and eigenvectors of A, and verify that the matrix Λ = V −1AV is
indeed diagonal when V is the matrix of eigenvectors.

(c) Obtain a state space model in modal form.

2.12 Foster’s Criterion. Suppose that d
dtx = f(x) is a nonlinear state space model on Rn. Assume

also that there is a C1 function V : Rn → R+, and a set S such that

〈∇V (θ),f(θ)〉 ≤ −1, θ ∈ Sc. (2.71)

Foster introduced a version of this stability criterion for Markov chains in the middle of the last
century [135].
(a) Show that TK(x) ≤ V (x) for x ∈ Rn, where

TK(x) = min{t ≥ 0 : xt ∈ K}, x0 = x ∈ R
n.

(b) In the special case of a stable linear system [f(x) = Ax, with A Hurwitz], show that a
solution to (2.71) is given by V (x) = log(1+xᵀMx) for some matrix M > 0, and with
S = {x : ‖x‖ ≤ k} for some scalar k.

(c) Find an explicit V , S for A =

[
−1 4

0 −1

]
(the matrix used in Exercise 2.6).

2.13 Consider the nonlinear state space model on the real line,

d

dt
x = f(x) =

1− ex

1+ ex
= − tanh(x/2).

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.8 Exercises 47

(a) Sketch f as a function of x, and from this plot explain why xe = 0 is an equilibrium, and
this equilibrium is globally asymptotically stable.

(b) Find a solution to the Poisson inequality (2.39): 〈∇V ,f〉 ≤ −c+ η̄, with c(x) = x2 and
η̄ < ∞. You might try a polynomial, or a log of a polynomial of |x|. See if you can find a
solution with η = 0.

(c) Find a solution V to Foster’s criterion (2.71), with S = [−k,k] for some k > 0. Also,
explain why TS(x) is not finite valued using S = {0} (that is, k = 0).

2.14 Suppose that one wants to minimize a C1 function V : Rn → R+. A necessary condition for a
point x◦ ∈ Rn to be a minimum is that it be a stationary point: ∇V (x◦) = 0.

Consider the steepest descent algorithm d
dtx = −∇V (x). Find conditions on the function V

to ensure that a given stationary point x◦ will be asymptotically stable for this equation. One
approach: Find conditions under which the function V is a Lyapunov function for this state
space model. We will return to this topic in Section 4.4.

2.15 Consider the nonlinear state space model on the real line,

d

dt
x = f(x) = −x3.

(a) Sketch f as a function of x, and from this plot explain why xe = 0 is an equilibrium, and
this equilibrium is globally asymptotically stable.

(b) Find a solution to the Poisson inequality (2.39) with c(x) = x2: 〈∇V ,f〉 ≤ −c+ η̄ with
η̄ < ∞. You might try a polynomial, or a log of a polynomial in of |x|. See if you can find
a solution with η = 0.

(c) Find a bounded solution to Foster’s criterion (2.71).

2.16 Consider the Van der Pol oscillator, described by the pair of equations

d

dt
x1 = x2,

d

dt
x2 = −(1− x2

1)x2 − x1.

(2.72)

(a) Obtain a linear approximate model d
dt x̃ = Ax̃ around the unique equilibrium xe = 0.

(b) Verify that A is Hurwitz, and obtain a quadratic Lyapunov function V for the linear model.
(c) Show that V is also a Lyapunov function for (2.72) on the set SV (r) defined in (2.28), for

some r > 0. That is, show that the drift inequality (2.37) holds whenever xt ∈ SV (r).
Conclude that the set SV (r) ⊂ Ω ≡ the region of attraction for xe.

(d) Can we find the entire region of attraction? Take a box around the origin B = {x : −m ≤
x1 ≤ m, −m ≤ x2 ≤ m} for some integer m (definitely larger than 1, but less than 10

will suffice). Choose N values {xi} ⊂ B (say, N = 103), and simulate the ODE for each
i, with x0 = xi, to test to see if xt ∈ SV (r) for some t < ∞, and hence xi ∈ Ω.

Why does entry to SV (r) guarantee that x0 is in the region of asymptotic stability?

2.17 Inverted Pendulum with Friction. Consider the pendulum with applied force u, and “damping
force” bθ̇:

µ

where x = (θ,θ̇)ᵀ, and a,b > 0. Note that the location of θ = 0 is now at the top, in contrast
to what is shown in Figure 2.8. This is because our goal here is to swing the pendulum up and
stabilize in the unstable upward position (corresponding to θ = 0 in this exercise).

Envision the state space as an infinite tube: equate θ and θ+2πn for any n.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

48 Control Crash Course

(a) Obtain a linearized state space model with equilibrium (xe,ue) for each possible equilib-
rium (you will find that xe

2 = 0 is required). Comment on the challenge for xe
1 = ±π/2.

(b) Obtain a linear feedback law that results in xe = 0 asymptotically stable (locally).
You will obtain a control solution that is globally asymptotically stable in Exercise 3.10 after
you learn a few concepts from optimal control in the next chapter.

2.18 Linear Control Design for MagBall. Our goal is to maintain the ball at rest at some preassigned
distance r from the magnet.
(a) Find u◦ so that x◦ = (r,0)ᵀ is an equilibrium: f(x◦,u◦) = 0. Based on the linearization

(2.62), design a linear control law for (2.62), of the form

ũ = −Kx̃ = −K1x̃1 −K2x̃2

with x̃1 = x− x◦ and x̃2 = x2. Make sure that your solution results in A−BK Hurwitz.
(b) A difficulty with this design is that u◦ depends on c/m, which may not be known. Modify

your design as follows:

ũ = −Kx̃a , where x̃a = (x̃1,x̃2,z
I)ᵀ , zI

t =

∫ t

0

x̃1 dr (2.73)

with K = [K1,K2,K3]. This is known as proportional-integral-derivative (PID) control.
Obtain a third-order linear state space model, and choose K3 > 0 so that the 3 × 3 matrix
remains Hurwitz, and the transient behavior remains “good” (you decide what that means).
Observe that the equilibrium condition d

dtz
I = 0 implies that xe

1 = r.
(c) Simulate as in Exercise 2.16 to estimate the region of attraction (you may restrict the

simulation to initial conditions with zero velocity).

2.19 Feedback Linearization for MagBall. For systems with simple nonlinearities, there is a “brute-
force” approach to obtain a linear model. For MagBall, we may view ν = u2/x2

1 as an input,
from which we obtain a linear system via (2.60):

d

dt
x1 = x2,

d

dt
x2 = g − κ

m
ν.

(a) As in the previous exercise, obtain a control law ν = −Kx̃, where K1 and K2 are
parameters chosen for stability and good transient response.

(b) Obtain an expression for the equilibrium xe for the closed-loop system using the gain K

obtained in (a). This is obtained by setting d
dtxi = 0 for i = 1,2.

(c) Modify your design as in (2.73): ν = −Kx̃a. Find K3 > 0 so that the transient behavior
remains “good.”

(d) You will need to modify your policy in (c) so ν is nonnegative valued, say ν = φ(x̃a) =

max(0,Kx̃+K3z
I). The current applied to the magnet using this policy is then

u = x1

√
φ(x̃a). (2.74)

Simulate, and estimate the region of attraction. You may restrict the simulation to zero initial
velocity.

How does the region of attraction change when κ is doubled? κ divided by 2? Do not change
your policy! The point is to check if your solution is robust to an inaccurate model.

Warning: Recall that it is not possible to achieve convergence to x◦ from any initial condition.
Note: See [199] for a survey on feedback linearization – a topic that has far more depth than

is obvious from this example.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

2.9 Notes 49

Matrix Algebra

2.20 Let A be an n× n matrix, and suppose that the following infinite sum exists:

U = I +A+A2 +A3 + · · · ,

where I denotes the identity matrix. Verify that U is the inverse of the matrix I −A.
Note that this coincides with the Taylor series expansion of f(x) = 1/(1− x) when n = 1.

2.21 Two square matrices A and Ā are called similar if there is an invertible matrix M such that

A = M−1ĀM .

Obtain the following for two similar matrices A and Ā.

(a) Show that Am is similar to Ā
m for any m ≥ 1, where the superscript “m” denotes matrix

product,

A1 = A, Am = A(Am−1), m ≥ 1.

(b) Show that v is an eigenvector for A if and only if Mv is an eigenvector for Ā.
(c) Suppose that Ā is diagonal (Āij = 0 if i �= j). Suppose moreover that |Āii| < 1 for each

i. Conclude that I −A admits an inverse by applying Exercise 2.20.

2.22 Matrix Exponential. Compute eAt for all t for the 2× 2 matrix

A = aI + bJ , I =

[
1 0

0 1

]
J =

[
0 1

−1 0

]
.

The notation is intended to be suggestive: J2 = −I .
It is not difficult to obtain a formula for Am for each m, as required in the definition (2.45).

With a < 0 and b �= 0, describe the solution to d
dtx = Ax with a nonzero initial condition.

2.9 Notes

The notion of “state” is flexible in both control theory [15] and reinforcement learning
[337, 338]. The motivation is the same in each field: For the purposes of online decision
making, replace the full history of observations at time k by some finite-dimensional
“sufficient statistic” x(k). One constraint that arises in RL is that the state process must
be directly observable; in particular, the belief state that arises in partially observed
Markov decision processes (MDPs) requires the (model-based) nonlinear filter, and is
hence not directly useful for model-free RL. In practice, the “RL state” is specified as
some compression of the full history of observations – see [338, section 17.3] for further
discussion.

For more on linear models see [7, 80] and [118] for more advanced and recent material.
Textbook treatments on Lyapunov theory can be found in [45] (nonlinear) and [7, 205]

(linear). The Electrical and Computer Engineering (ECE) Department at the University of
Illinois had a great course on state space methods – the lecture notes are now available online
[29]. The first section of [165] contains a brief crash course on Lyapunov theory, written in
the style of this book, and with applications to reinforcement learning.

Poisson’s inequality (2.31) is far removed (roughly two centuries) from the celebrated
equation introduced by mathematician Siméon Poisson. The motivation back then was

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

50 Control Crash Course

potential theory, as defined in theoretical physics. About one century later, Poisson’s
equation arose as a central player in studying the evolution of the density of Brownian
motion (a particular Markov process). The terminology Poisson inequality and Poisson
equation is today applied to any Markov chain, with generator playing the role of the
Laplacian. The generator takes any function h : X → R to a new function denoted Ah.
In particular, the deterministic state space model (2.21) can be regarded as a Markov chain
[257], and the associated generator is defined as

Ah (x) = h(F(x))− h(x).

In this notation, (2.31) becomes AV ≤ −c+ η.

https://doi.org/10.1017/9781009051873.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009051873.004

