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1. The General Problem 

The dynamical evolution of a spherical star system is attractive to the theorist for two 
reasons. In the first place the physical problem, with some idealization, appears to 
have an appealing, if somewhat deceptive, simplicity; a large number of point masses, 
attracting each other with inverse-square gravitational forces, are assumed to move 
in a quasi-steady system with spherical symmetry. In the second place, the observed 
globular clusters appear to conform rather closely to this ideal of a spherical star 
system; to analyze the changes of these clusters with time, resulting from the dynamical 
interaction of stars with each other, is surely an important aspect of the theory of 
galactic evolution. 

Some aspects of this evolution may be deduced from general statistical principles. 
Clearly the total energy of the system, including the kinetic energy, T, and the potential 
energy, W9 must be constant. From the second law of thermodynamics we know that 
the direction of any dynamical evolution must be such as to increase the total entropy. 
In terms of statistical mechanics when energy is exchanged back and forth between 
particles in a steady state, with no energy input from the outside, the system will tend 
to evolve towards the most probable state, where the distribution of particles, or stars, 
among different energy states is in accordance with the probability Ph computed from 
the equation 

P,. = Cft exp(-AJE£),. (!) 

where £, is the energy of a star in some particular state and gt is the statistical weight of 
that state, proportional to the amount of phase space available; C is a normalization 
constant, while the parameter X is inversely proportional to the mean energy of each 
particle, averaged over all particles. 

The application of Equation (1) to a system of gravitationally interacting mass 
points runs into immediate difficulty because P, increases steadily as Et becomes more 
strongly negative, and there is no lower limit on Et. Thus tightly bound gravitational 
subsystems may be expected to form and become even more strongly bound as a 
result of energy exchanges resulting from mutual encounters. Another difficulty is 
posed at the other end of the energy scale by stars for which E( is zero or slightly 
positive; the total phase space available for stars in such states may be regarded as 
infinite. Thus it is clear that a self-gravitating cluster has difficulty reaching a perma
nent equilibrium state. One final state appears to be possible, - two tightly bound 
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stars revolving about each other in a permanent Keplerian ellipse, with all other stars 
escaping to infinity. This particular state is unchanging not because it has reached the 
maximum possible entropy, but rather because dynamical evolution has ceased, if we 
ignore gravitational radiation. In any case it is clear that in the evolution of a cluster a 
part of the system will expand, with perhaps some stars escaping, while another part 
will contract If the simplicity of an isolated binary system is not reached, the contrac
tion will continue until the initial assumptions are no longer valid. The finite stellar 
radius may be important if physical collisions occur, while general relativistic effects 
can be important if the escape velocity from the system becomes comparable with the 
velocity of light, as, for example, if material collapses toward a black hole. 

We now list four different pathways by which a star system may evolve in con
formity with Equation (1). 

(1) Contraction of cluster as a whole, with escape or 'evaporation' of some stars. 
(2) Contraction of inner core of cluster, with expansion at intermediate radii. 
(3) Contraction of subsystem of heavier stars, with expansion for the lighter stars. 
(4) Formation and contraction of binary systems. 

A chief purpose of the dynamical theory summarized in the ensuing sections is to 
analyze the rate at which each of these processes occurs. In this introductory section 
we explain briefly the physical nature of each such process. 

Process (1), first proposed by Ambartsumian (1938) and Spitzer (1940), is in many 
ways the simplest of the four, since it can be discussed quantitatively without any real 
evaluation of the internal structure of the cluster. Thus a moderately realistic estimate 
of the escape rate can be obtained with the entirely unrealistic assumption that the 
cluster is homogeneous and uniform. From the familiar virial theorem it is readily 
shown that the mean square value of the escape velocity, v^, is given for an isolated 
system in general by 

<^>=4<t;2>. (2) 

Hence if a Maxwellian velocity distribution is established in the relaxation time, tr, the 
fraction {e of stars that will gain enough energy to escape during this time is the frac
tion of the particles in a Maxwellian distribution, PM(v\ which have velocities twice 
the rms value, vm, giving 

00 

4 = I PM(v)dv = 1.4xlO-3. (3) 

As a result of this evaporation of stars, both the mass and energy of the cluster must 
decrease, with the cluster becoming progressively more tightly bound. For a homoge
neous uniform cluster the evolutionary history can be traced (King, 1958b) until the 
system collapses entirely after a life of about 40 initial relaxation times. More elaborate 
dynamical investigations, using the Fokker-Planck equation for exact analytical 
computations of dynamical relaxation gave only slightly different results for homoge-
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neous clusters (Spitzer and Harm, 1958; King, 1965, 1966); for actual clusters the 
variations of density and relaxation time with position must also be considered 
(King, 1958a). 

Process (2) can take at least two forms, depending on whether the energy released 
from the contraction of the core appears in the outer part of the cluster, or 'halo', or 
somewhere in the intermediate region. If the former, then an increasing number of 
stars will populate the halo with low binding energies and large apocentric distances. 
Such stars have relatively long periods and return only infrequently to the denser 
regions of the cluster. As we shall see in Section 3, the accumulation of stars in the 
outer halo is closely related to the escape of stars associated with process (1), and 
these two effects may conveniently be discussed together. 

If the energy released by the core appears in the intermediate region of the cluster, 
process (2) takes a somewhat different form. To discuss this mechanism quantitatively 
requires rather detailed knowledge of the internal structure of the cluster. Analyses 
to date have been confined to rather idealized systems. In particular, Antonov (1962) 
and Lynden-Bell and Wood (1968) have considered this process in isothermal spheres 
confined within hypothetical rigid boundaries. The analysis assumed that the mean 
free path was short and thus, unlike the stellar case, the velocity distribution remained 
everywhere isotropic during the evolution. Their work demonstrated that such spheres 
would be thermally unstable if the central density exceeded the density at the boundary 
by a factor greater than 708. In this situation, the system has the remarkable property 
that the entropy is increased by a development of a thermal gradient, with heat 
flowing from the contracting core to the expanding outer region. Since the kinetic 
energies of particles in a self-gravitating system increase as the system gives up energy 
and contracts, the contracting core becomes steadily hotter as it loses energy, while the 
outer region cools. 

In actual clusters the physical situation is somewhat different from that assumed in 
these analyses - see Section 3 - but one might expect that perhaps a similar collapse 
of the central core - called the 'gravothermal catastrophe' by Lynden-Bell and Wood -
may occur if the density change within the isothermal region of the cluster amounts 
to more than some three orders of magnitude. There have been no computations of 
the rate to be expected for this type of collapse, but one might expect an accelerated 
collapse, since the relaxation time gets markedly shorter as the central core becomes 
denser. 

Process (3), which Spitzer (1969) pointed out could lead to contraction without 
limit, results in a straightforward way from the tendency towards equipartition of 
energy between stars of different masses. During one relaxation time, trh, a heavier 
star should lose an appreciable fraction of its kinetic energy to the lighter stars and 
fall towards the center of the system, creating appreciable mass stratification. If there 
are only a few such heavy stars, they will reach equilibrium near the cluster center 
with lower velocities than the lighter stars and about the same kinetic energies. If the 
amount of mass in this concentration of heavy stars is appreciable, however, the self-
attraction of these stars will require increased random velocities in equilibrium, 
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equipartition with the lighter stars becomes impossible, and the subgroup of heavy 
stars will continue to lose energy to the lighter stars, continually contracting with 
increasing velocities and increasing departure from equipartition. The initial time 
scale for this type of collapse should be of the order of the relaxation time in the inner 
regions of the cluster, but in contrast to the evaporation and gravothermal cata
strophes there is no reason to expect any acceleration of the collapse. Indeed, if kinetic 
energy is lost by the heavy stars at a constant rate, which would be expected if the 
density and rms velocity of the light stars remained constant, the mean value of M/r 
for these stars might be expected to increase at a constant rate, giving drjdt varying 
as -rf, if rx is the mean radius for this subgroup. 

Process (4) was pointed out by Aarseth (1968) and van Albada (1968) as a major 
influence on the evolution of systems with some 25 to 250 stars. Numerical integration 
of the exact equations of motion for such systems, following von Hoerner (1960,1963), 
showed that binary stars were formed and disrupted, but that one or more tightly 
bound binaries generally accounted for most of the binding energy of the cluster at the 
end of the evolutionary period followed. General arguments - Spitzer and Hart 
(1971a), referred to as Paper I - show that the three-body encounters which form 
tightly bound binary systems become less and less important as the number of stars, 
N, increases. A detailed analysis by Heggie (1974) verifies this result and shows that 
in a cluster of 105 stars, for example, the formation of binaries should be quite un
important for dynamical evolution. We shall therefore neglect process (4) throughout 
most of the discussion below. 

As emphasized by Heggie (1974), there are two situations in which absorption of 
energy by binary systems can be important even in clusters with large N. Firstly, if the 
core of the cluster collapses, the formation of binaries may become important when a 
relatively small number of stars is involved in a high-density core; we return to this 
subject again in Section 6. Secondly, if a sufficient fraction of the stars are binary from 
the beginning, with a separation of a few astronomical units between components, the 
dynamical evolution may be profoundly affected, with the cluster as a whole perhaps 
even expanding rather than contracting. It has often been assumed that binaries are 
relatively infrequent in systems of population type II, and indeed very few binaries 
have been detected in globular clusters. However in van de Kamp's (1971) list of stars 
within 5.2 pc, the fraction which are in fact multiple systems is about 40% independent 
of space velocity. Thus of the 13 stars with a heliocentric velocity known to exceed 
70 km s"1, 3 are double and 2 are triple systems. Of the remaining 32 stars, with 
lower (or uncertain) velocities, 13 are double stars, with 1 triple. The possible presence 
of such multiple systems in globular clusters has so far been generally ignored and 
must certainly be considered in future work. 

2. Dynamical Methods for Large-TV Systems 

Since it is not feasible to integrate numerically the exact equations of motion for a 
system with a very large number of stars, an approximate solution must be sought. As 
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the basis for such an approximation in spherically symmetric systems we may express 
the gravitational acceleration g„ for any star i, as the sum of two terms; 

where rx is a unit vector in the r direction. The radial potential function, cp (r, t), may be 
computed from the smoothed distribution of stars; if the system is in a quasi-steady 
state, <p(r, t) will change only slowly with time. The function ¥t(t) represents for each 
star the difference between the actual acceleration and the smoothed spherically 
symmetric value, and results from the granularity of the actual distribution of mass 
points. The basic approximation made is that the effects produced by this granularity 
may be computed from an analysis of successive two-body encounters. This approxi
mation is believed to be relatively accurate, although for some effects, such as the 
formation of binaries, one must consider encounters of three bodies and other higher-
order correlations. 

The analytical theory of two-body encounters has been thoroughly explored by 
Chandrasekhar (1942), and by Rosenbluth et al. (1957). However, to apply this theory 
to the complex configuration of a stellar cluster seems discouragingly complicated, -
see Henon (1973). Instead, Monte Carlo techniques have been used to follow numeri
cally the orbits of some thousand 'test stars', taken to be a representative sample of a 
larger group. In these techniques the orbit of each star in the potential field, <p(r, t), is 
taken into account, and velocity perturbations are applied with suitable random 
sampling techniques so that the net effect of two-body encounters is correctly given. 
Two different methods have been published, the first by Henon (1967,1971,1973), the 
second by a group at Princeton (see Spitzer and associates, Papers I-VII). These 
methods differ both in the consideration of stellar orbits in the potential field cp(r, t) 
and in the choice of velocity perturbations resulting from Ef(r). 

In the work by Henon the unperturbed stellar orbits are not actually computed in 
detail. For his Monte Carlo computations the only information required from the 
orbits is the resultant probability distribution of r„ the star's distance from the center, 
and this can be determined from the star's energy, E, and angular momentum J (both 
taken per unit mass) if the potential field q>(r, t) is known. For each of the test stars a 
particular position in its orbit is determined, in accordance with this probability 
distribution. Adjacent stars are then assumed to have a mutual encounter, changing 
the velocity of each. All the geometrical angles in this encounter are chosen at random, 
but the collision parameter, p, (the distance of closest approach in the absence of 
mutual forces) is computed to give the correct total mean square deflection, con
sidering the local density, the time step used and the actual relative velocity of the two 
stars. After each such collision, new random positions are chosen for each of the two 
stars, taking into account the new E, J of each and the potential q>(r, t) is recomputed; 
spherical symmetry is assured by the assumption that each star considered is one of a 
large number of stars all with identical radial and transverse velocities and all ar
ranged in a spherical shell (called a 'superstar' by Henon). 
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In the computations at Princeton, (see Spitzer and associates, esp. Papers I, IV and 
VII) Equation (4) is integrated numerically with time to give rt(t) for each of the 1000 
test stars; again, for the computation of cp(r, t) each test star is assumed to represent a 
large number of similar stars arranged in a uniform spherical shell. The velocity 
perturbations are computed in groups rather than from individual two-body collisions 
as in Henon's method. The cluster is divided into 25 spherical shells or regions, each 
one containing 40 test stars; the mean density Q and rms velocity vm are determined in 
each region, with separate values for stars of each mass group. For each star of velocity 
v, the velocity perturbations are assigned according to a Gaussian distribution for
mula which gives the correct first and second moments of Ay for a star of that mass 
and velocity interacting separately with the stars of each mass group; each such group 
is assumed to have a Maxwellian distribution of velocities, with the rms velocities and 
densities computed for that group of field stars in the region considered. 

In the Princeton computations the ratio of the relaxation time, trh, to the mean 
crossing time, rjvm, is taken to be in the range from 10 to 50, corresponding to a 
cluster with N between 500 and 4000. For clusters with so small a value of N the use of 
a smoothed radial potential becomes questionable, and the Monte Carlo computa
tions are not completely valid. For clusters with N equal to 105, the actual ratio of 
trh to rjvm (which varies as N/log(0AN) - see Paper I) is about 800, and the com
puting time involved in following stars for so many orbits would be prohibitively 
large. Fortunately, most aspects of cluster evolution, as measured in units of trh, are 
independent of the crossing time, a fact which forms the basis of Henon's method, and 
hence the Princeton computations can be taken as representing the dynamical history 
of clusters with large N. In considering the escape of stars from the cluster, an effect 
whose detailed mechanism depends on the ratio of relaxation to crossing time and 
hence on N, a separate theoretical study indicates the modifications needed in the 
computed models (see Section 3.3.). 

Comparing these two methods, the one developed by Henon has the advantage 
that it requires somewhat less computing time. In addition, the computation of 
velocity perturbations takes the exact distribution of stellar velocities into account; 
this latter advantage is not too significant, since in the denser regions where encounters 
are significant the actual distribution is generally rather closely Maxwellian. The 
Princeton method has some advantage in that individual orbits are followed. Initial 
dynamical collapse can be considered and, as pointed out above, a basis is given for 
analyzing the effect of distant encounters in producing escape of stars, which cannot 
be considered directly with Henon's method 

3. Results for Isolated Systems with Stars of Same Mass 

3.1. REFERENCE RELAXATION TIME 

In this section we shall give some results for the simplest possible system, obtained 
with Monte Carlo calculations, mostly by the Princeton group. It is often convenient 
to express time in units of a reference relaxation time, defined as the relaxation time 
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at the mean density for the inner half of the cluster mass, M, with stars assumed to have 
the rms velocity of the cluster as a whole. With some simplifications and approxima
tions, - discussed in Paper I - we obtain 

0.060 Mll2rl12 

trh = mGl/2 log(0.4N)' ( 5 ) 

where rh is the radius containing half the mass, N is the total number of stars, and m is 
the mean mass, equal to M/N. The median radius, rh, changes relatively little during 
the evolution of most of the models; in any case it is simplest to use the initial value of 
trh as a reference parameter throughout the life of the cluster. Because of the tremen
dous central concentration of most clusters, the local relaxation time can be several 
orders of magnitude shorter than trh at the center and enormously greater in the far 
halo. 

3.2. DEVELOPMENT OF ISOTHERMAL SPHERE AND SURROUNDING HALO 

As noted above, one would expect collisions to establish a velocity distribution close 
to the Maxwellian in the central regions of the cluster. The Monte Carlo models may 
be used to show the actual value of f{E), the density of test stars in phase space, as a 
function of E, the star's energy per unit mass. Figure 1, taken from Paper IV, shows the 
values obtained in the inner three regions (containing the inner 12% of the mass) in 
one of the model one-component systems. The energy scale is defined so that a star at 
rest at infinity has zero energy. In the outer regions, the phase density should be a 
function of J as well as of E, but in the central regions the velocity distribution is 
isotropic and / is a function of E only. 

The points mostly lie close to the solid line, representing an exponential decrease of 
f(E) with increasing E. However, this distribution would give a finite value for /(0), 
giving much too large an escape rate. For E only slightly negative, the points lie 
reasonably close to the dashed line, representing the 'lowered Maxwellian' 

/ ( £ ) = C e x p [ ( - 3 E / i £ ) - l ] , (6) 

proposed by Michie (1963) and King (1965); C is a constant of proportionality. 
Equation (6) is based on the assumption that the energy required for escape is zero. 
This lowered Maxwellian distribution seems a reasonably good approximation for 
the cluster models. At values of E between the last plotted point and zero, the phase 
space density drops to a value much below that given in Equation (6). The statistical 
weight of these states of slight negative energy is relatively very large, and the gradual 
increase of f(E, 0) in these states as time goes on is an important part of the cluster 
evolution, which leads, as we shall see below, both to the development of the halo and 
to escape of some stars. 

As a result of this tendency towards an isotropic Maxwellian distribution, the inner 
half of the cluster, within the radius rh, approximates the inner region of an isothermal 
sphere. There are slight deviations from strictly isothermal conditions because of the 
drop in the velocity distribution function at energies near zero, discussed above. 
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However, in the central regions this drop is way out in the wings of the velocity distri
bution function and produces little direct effect locally, except for a slight decrease of 
the rms velocity with increasing radius. 

In the halo a quite different situation prevails. Since the local dynamical relaxation 
time is very long, the velocity distribution is anisotropic. The phase space density is 

io-2 

10-3 

10-4 

f(E) 

io"5 

io"6 

-50 -40 -30 -20 -10 0 
E 

Fig. 1. Density in phase space, /(£"), as a function of stellar energy, E (potential plus kinetic), in the 
inner regions of Model Dl fairly late in its development. The straight line represents the usual Max
wellian distribution, while the dashed line represents the lowered Maxwellian distribution (Equation (6) 
in text), which decreases linearly to 0 as the energy approaches 0, the value for a star motionless at infinity. 

constant along a dynamical trajectory when collisions are infrequent, and hence along 
orbits which intersect the core, / ( £ , J) has the same values as in the core. For J 
greater than a certain critical value, the orbits are restricted to regions of low density, 
outside the isothermal core, and if these orbits are not populated originally, they will 
remain unpopulated. Thus the halo contains stars on predominantly radial orbits, 
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with transverse velocities varying as 1/r since the angular momenta remain constant 
with increasing distance. 

To obtain the density in the halo we integrate f(E, J) over 2nvt dvt dvn where vt and 
vr are the tangential and radial velocities, respectively. As a reasonable first approxi
mation we may set f(E, J) equal to f(E, 0) for J less than some upper limit, Jl9 and 
zero outside. Thus f(E, J) differs from zero only within a range* Avt from 0 to JJr, 
and we have 

Q(r) = 7t(Av,)2(Avr)f, (7) 
where / is a mean value of f(E, 0) over vr, taken over the range* Avr from 0 to the 
escape velocity (2GM/r)1/2. According to Equation (6), expanding the exponential for 

10 1 1 I I I H I | 1 1 I I I I l l | 

t = 2185 

n—i i i i in 

MODEL D1 

t=1910 

1000 

Fig. 2. Density distribution, g(r), as a function of distance r from the center at different times in the 
development of Model Dl. The straight line at the right represents the theoretical density distribution 
in a well developed halo. This model starts with an initial collapse, which generates a substantial halo 

at the beginning. The dimensionless units for Q and r are explained in Paper II. 

* The velocity ranges Avt and Avr in Equation (7) should not be confused with the velocity perturbations 
which are denoted by these same symbols in Paper IV. 
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small E, f decreases from —3CE/v„ to zero as vr increases over this range; since —E 
equals GM/r when vr vanishes, / is proportional to \jr. Since, as we have seen, Avt 

and Avr vary as 1/r and l/r1/2, respectively, Equation (7) yields 

Q(r) = k/r3'5, (8) 

where k is a constant of proportionality. 
The density distributions in two different models at successive times are plotted in 

Figures 2 and 3, which show the isothermal central region and the outlying halo. The 

10 i—i i i i i i i | 1—i i i 11 i i | 1—i i i i i n 

■■■-.; 
t=1710 

MODEL F1 

J I I I M i l 
1000 

Fig. 3. Density distribution g(r) at different times in the development of Model Fl. This model starts 
as a sphere of constant density in equilibrium, with all stars in circular orbits. There is no appreciable 

halo at the beginning, and the halo develops much later than in Model Dl , shown in Figure 1. 

upper right solid lines represent Equation (8), which seems to provide a good fit for the 
halo. The progressive contraction of the isothermal core, which is discussed in more 
detail below, is evident in these figures. The outward growth of the halo is also evident. 
For stars in the halo the mean value of J, the angular momentum of each star, does not 
change appreciably with time, nor does the value of the constant k in Equation (8). 
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Halo growth consists of extending the range of r over which Equation (8) is valid; at 
greater r the density drops off very sharply. In terms of / ( £ , 0) the development 
consists of increasing the phase-space density at energies only slightly negative up to 
the value given in Equation (6). Halo growth is particularly evident for Model F, for 
which the initial equilibrium configuration is a sphere of constant density, with no 
halo whatever, and therefore the entire halo must develop as a result of two-body 
encounters. Model D starts off with an initial collapse, which produces a substantial 
halo to begin with, and the outward growth of the halo is less noticeable. 

One way of presenting the Monte Carlo data on evolution of a cluster is to plot the 
radii containing different fractions of the total mass as functions of the time. Such a 
plot for Model F is given in Figure 4, where the solid line gives the results obtained by 
Henon, while the individual points show Princeton results from Paper IV. The close 
agreement is very gratifying. The outward extension of the halo and the contraction 
of the core are both evident. 

3.3. ESCAPE OF STARS 

Stars can escape from a cluster by a close encounter with another star at any position 
within the cluster. Such encounters produce velocity changes comparable with the 
relative velocity of the two stars, and in view of Equation (2), velocities exceeding v^ 
can result. The resultant rate of escape for the cluster as a whole has been computed by 
Henon (1969). 

In clusters with large N the cumulative effect of many distant encounters, producing 
small deflections, is more important in leading to escape of stars. In any one orbit the 
change of energy is small, leading in the first instance to outward diffusion of the stars 
and growth of the halo rather than to escape. We analyze the conditions under which 
halo stars can actually escape. We may define s2 as the root mean square change of 
energy of a halo star during one orbit from apocenter, where r = ra, through the iso
thermal core and back again to apocenter. Evidently s2 will increase as J decreases, 
increasing the density experienced by the star at pericenter. For each J, e2 will not 
depend significantly on £ for halo stars, when E is only slightly less than zero. There 
will also be a mean change of energy per orbit, denoted by el9 but this is smaller and 
we may neglect it. Evidently when the energy of the halo star, closely equal to — GM/ra, 
equals — a2, escape is somewhat likely. We define this value of ra as the critical distance, 
rf. As ra increases above rf, the probability of escape per orbit approaches 0.5. 

Let us now consider what happens when N, the total number of stars, increases. 
We keep the total mass M and the cluster dimensions constant, varying only the mean 
mass per star: thus the stellar energy per unit mass and the potential function <p(r) 
remain unaffected. In this case it may be shown - see Paper II - that e2 decreases as 
1/W1/2, while ex varies as 1/N. Hence the critical radius rf increases as N1 /2 , and the 
halo development must proceed to greater radial distances before escape becomes 
possible. This development to large r is limited by the long periods of the extended 
halo orbits. The period of a star with apocenter distance ra is proportional to r~ 3/2, 
and thus Pf, the period at the critical distance, increases as AT3/4. Since the time 
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required for evolution by encounters varies as N (the small variation of logiV is 
ignored here), diffusion of halo stars out to the critical distance occurs more readily 
as N is increased, even though the critical distance increases with N. It may be shown 
that after the halo has grown out to the critical radius, the rate of escape per unit trh 

Fig. 4. Values of the radius containing various fractions of the total mass of Model F, plotted against 
the dimensionless time used by Henon. The solid line represents the computations by Henon (1973) for 
this model, while the dots and crosses represent values obtained by Spitzer and Thuan (1972) for models 
Fl and F2, respectively; these two models differ only in the ratio of the relaxation time, trh, to the dy

namical crossing time, rh/vm, which equals 10 and 20, respectively, for Fl and F2. 

in independent of N, although the mean energy of the escaping stars, which equals 
0.58 e2 - see Paper III - will decrease as 1/N1/2. 

The Monte Carlo calculations at Princeton give quantitative results in accord with 
these theoretical expectations. Thus in Model F, where there is no halo to start with 
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and the halo does not become fully developed until near the end of the computations, 
no stars escape during the first 60% of the period covered, and during the last 10% 
of the time the escape rate reaches about 0.3% per time interval trlr In Model D, where 
the halo develops much earlier, the escape rate reaches this same value about 55% 
of the way through the evolutionary time followed. The value of e2 in Model Dl is 
about 2 for J = 100, a representative mean value for the halo, giving a highly eccentric 
orbit. Thus rf is about 500 for this model, with about the same value for Model Fl 
also. The corresponding period, Pf, is 800 time units (for G= 1 and M= 103, in the 
dimensionless units used). The halo in Model Dl becomes well developed out to this 
radius well before the end of the computations, while in Model Fl, this stage is 
reached only very near the end. Separate computations in which N was varied, 
keeping all other quantities the same, confirm that the mean energy of escaping stars 
varies about as N~1/2, and is roughly equal to %e2. 

The measured rate of escape, ^ of about 3 x 10"3 per interval of trh is less than 
computed from Equation (3) by a factor 0.4. If somewhat more sophisticated methods 
are used for predicting ^e, the reduction factor is slightly smaller, about 0.3. This 
discrepancy is largely accounted for by the rate at which stars accumulate in the 
outermost halo; in Model Dl this rate is about twice the measured £e. These stars 
return to the isothermal core so infrequently that they are very similar to escaping 
stars and should really be grouped with them for some purposes. For systems with N 
as large as 105, the halo would be more fully developed, the ratio of stars accumulating 
in the far halo to those escaping, per unit time interval, would fall below unity late in 
the evolutionary development, and £e would be closer to the predicted value of about 
0.01. 

In terms of these results it is clear why Henon's method does not give the rate of 
escape. The dynamical time in which a star moves around its orbit from apocenter to 
apocenter does not appear in his method, which corresponds to the limiting case of 
infinite N. Thus the rms change of energy in a single orbit is not considered, and there 
is no way of determining the value of rf beyond which stars will begin to escape. His 
technique gives correctly the total rate at which stars diffuse up towards zero energy, 
but cannot distinguish evaporation at slight positive energy from halo buildup at 
slight negative energy. The Fokker-Planck diffusion equation, based on the limit of 
infinitesimal velocity changes, gives no escape of stars from an isolated cluster. As 
shown in detail in Paper III, consideration of finite velocity changes in the neigh
borhood of zero E is required to give correctly the escape rate which is, in fact, present. 

One may ask what the present theory should predict for the process of escape from 
systems with smaller N. If N&250, s2 is about 60% of the mean kinetic energy per 
unit mass of the cluster stars. If the present theory is still applicable for systems of such 
low N, which it may conceivably be at times before the presence of binaries dominates 
the exchange of kinetic energy between stars, the mean energy of the escaping stars 
(their kinetic energy at infinity) should be about a third of the mean kinetic energy of 
the cluster stars, in rough agreement with the results obtained by Aarseth (1975) for 
one-component systems with N = 250. Detailed numerical agreement is not to be 
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expected, since the standard theory for large N ignores terms whose relative order is 
1/lnAT. However it is evident that for small N the exchange of energy in one orbit is 
relatively large, in contrast with the conventional velocity diffusion picture which 
must be applicable for large N. 

3.4. CONTRACTION OF ISOTHERMAL CORE 

In all the Monte Carlo models the core contracts steadily throughout the evolution. 
At the beginning, the driving force behind this contraction for the one-component 
models is apparently the diffusion of stars toward zero energy in response to the drop 
of f(E) below the Maxwellian value for slightly negative energies (shown in Figure 1). 
A detailed energy accounting in Paper IV shows that during most of the cluster's 
evolution the energy gained by stars which accumulate in the halo at slight negative 
energies or which escape at slight positive energies is just about balanced by the energy 
given up by the contraction of the inner core. Furthermore, the rate of contraction is 
about that predicted from the simple evaporation theories. As we have seen, these 
neglect halo formation, but they give correctly the rate at which stars accumulate at 
energies near zero; whether a star ends up orbiting in the halo or escaping from the 
system does not affect much the energy it has required to raise it above the average 
stars. 

Towards the end of the evolutionary calculation the contraction seems to change its 
character. The rate of contraction, as measured at the radius containing 2% of the 
mass, actually accelerates, although the rate at which stars escape and accumulate in 
the halo does not seem to change very much. In Figure 5 the radii containing 2% and 
10% of the mass of Model F are plotted against time. Evidently the squares of these 
radii, proportional to the spherical areas at these radii, decrease linearly with time, and 
seem destined to reach zero in a finite time. The time interval between the start of the 
cluster's evolutionary history and this final collapse of the central region is denoted by 
rcoll, and is from 12 to 19 times trh in different isolated clusters. Somewhat similar 
results were obtained by Larson (1970) with an approximate analytical theory. 

A detailed energy accounting for Model D (see Paper IV) confirms that the rate of 
energy release from the core very late in the evolution is greater than can be accounted 
for by diffusion of particles up to small positive or negative energies. Instead the energy 
released near the center goes into readjustment of intermediate regions of the cluster. 
In view of the relatively small numbers involved, this result is not very secure statisti
cally. Just what is happening within the cluster is not clear in detail, but one is tempted 
to identify this final collapse with the gravothermal instability described as process (2) 
in Section 1. On this basis one would expect the range of density variation within 
the isothermal sphere to surpass some critical value before the final collapse. Since 
there is a gradual transition between the isothermal central regions and the halo, this 
expectation cannot be tested precisely. However, in the later stages of development the 
median radius, rh, provides a rough approximation for the radius of the isothermal 
zone. The ratio of the central density, g(0), to Q(rh\ the density for r equal rh attains 
the value 103 relatively late in the collapse of the one-component models analyzed, 
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and a gravothermal catastrophe under these conditions would seem a logical in
ference. 

On the other hand, it must be admitted that the physical situation in a cluster of 
large N is quite different from that envisaged in the theoretical analysis of bounded 
isothermal spheres of gas. In addition to the lack of a rigid boundary, the local dynami-

H140 

t / t rh 
Fig. 5. Values of the radius containing 2% and 10% of the total mass of Model F, replotted from Figure 4. 
As before, dots and crosses represent the results for Models Fl and F2, respectively. The straight lines 

represent empirical fits to the data. 

cal relaxation time is much longer than the dynamical crossing time, or the comparable 
orbital period. Thus the phase space density will be constant along each dynamical 
trajectory. Any departure from thermal equilibrium in the intermediate region of the 
cluster will therefore appear not in a perturbation of a local temperature, with radial 
temperature gradients appearing, but rather in a difference of f(E, J) between orbits 
of the same E but different J; i.e., in a developing anisotropy of the velocity distribu
tion. More generally, Miller (1973) has argued that the thermodynamic considerations 
which lead to the gravothermal instability are not directly applicable to stellar 
systems. More analysis is clearly required, and the present tentative identification of 
the gravothermal instability is suggestive rather than conclusive. 
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If this identification were correct, one would naturally question what role the 
gravothermal instability should play in systems of relatively small N, which have been 
followed by direct integration of the exact equations. There is some question whether 
this effect should appear when N is between 100 and 250. In the Monte Carlo models, 
this instability appears when the density within the inner 2% of the cluster mass is 
some 1000 times as great as the lowest density in the isothermal region. Such a mean 
density becomes difficult to define when the number of stars involved is as low as 2, 
and even with as many as 5 stars, there is some question as to how good the corre
spondence should be between an actual system and a model based on an essentially 
continuous distribution of matter. 

Quite apart from the detailed mechanisms involved, one may ask why the area of 
the spheres containing a small fixed percentage of the total mass should decrease 
linearly with time during the final collapse, as indicated in Figure 5. It was shown in 
Paper IV that this result follows approximately if one assumes that the contracting 
core loses a certain fraction, rj, of its kinetic energy during each relaxation time at the 
center. The energy lost is presumably conducted away to more distant regions of the 
cluster; the core contracts, of course, as a result of the energy drain, and the gravita
tional energy so released heats the core to higher rms velocities than before. Numerical 
values in Paper IV for the collapse rates indicate that on the average 

<>/> = 2 . 2 x l 0 - 3 , (9) 

with an average deviation of about 10% for the three models of isolated systems. 

4. Results for Systems with a Distribution of Stellar Mass 

4.1. DEVELOPMENT OF MASS STRATIFICATION 

If two groups of stars are present, each with a Maxwellian velocity distribution with 
rms velocities vml and vm2, and with masses mx and m2, then encounters between the 
two groups of stars in a region where the particle densities are nx and n2 will change 
the mean energy, Eml of group 1 stars at a rate (Spitzer, 1969) 

dE 
-Sfi=(im2^2->1^1)/teq(l,2), (10) 

where 

8(6?t)1/2 n2mlm2G2 ln(0.4N)' 
t (1 2)= v<*^v<*v , , 

Conservation of energy requires that 

(12) 
teq(l,2) teq(2,l) 

The ratio of the 'equipartition time' teq to the local relaxation time tr(2, 2), for en-
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counters among stars of group 2, is given by 

fe<.(l>2)_01im2 

tr(2,2) m, % 2 

3/2 

(13) 

If the lighter stars, of mass m2, predominate, the relaxation time tr for the entire 
system is close to tr(2, 2), and the equipartition time for the heavies will be somewhat 
shorter than tr 

One would expect that in a system with an initial distribution of masses the ten
dency towards equipartition would produce a marked stratification within a time 
comparable to trh. Early Monte Carlo computations reported in Paper II demon
strated this effect. Several rather serious approximations made in this work have now 
been improved, - see Paper VII. Figure 6 shows the mass fractionation in a cluster 
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Fig. 6. Radius containing half the mass for each of three mass groups in Model La, plotted as a function 
of time in units of trh. The stellar masses given are ten times the values used in the computer program 

and, in solar masses, give representative values for old systems of population type II. 

with three components, (Model La) with the mass distribution spectrum slightly 
steeper than in the familiar Salpeter function; the stellar masses are in the ratio 
1:0.4:0.16, with the total mass in each group in the ratio 1:2:3. This figure shows 
clearly how the heavier stars settle towards the center in a time of order trh. The rate at 

https://doi.org/10.1017/S0074180900015345 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015345


20 L. SPITZER, JR. 

which stars accumulate in the halo or escape from the system per time interval equal 
to trh, is much the same as in the one-component case, except that this rate is about 
twice as high for the lighter stars as for the heavy ones. The stars of intermediate mass 
escape at about the same rate (within about 20%) as the lightest stars, in general 
agreement with the results obtained for small-N systems by Wielen (1968) and by 
Aarseth and Woolf (1972). 

4.2. CONTRACTION OF ISOTHERMAL CORE 

The initial contraction of the isothermal core for the three-component models is sub
stantially faster than in the one-component system, as a result of the mass stratifica
tion. In all these models the contraction accelerates at the end, with the area of the 
spherical shells containing a fixed percentage of the total mass decreasing linearly 
with t as before. The time, £coll, from beginning to final collapse is shorter than before, 
with tcoll/trh equal to about 3, as compared with values between 12 and 19 for the 
one-component models. 

For one-component models the mechanism producing contraction changed during 
the evolution of the system, with evaporation and halo buildup important initially 
and the gravothermal instability apparently dominant at the end A similar transition 
apparently occurs for the three-component models. The rate of collapse at the end is 
about an order of magnitude too great to attribute to the energy transferred away 
from the heavies through equipartition, at a rate given by Equation (10). This result 
follows from the fact that the total fraction of the mass present in the form of light and 
intermediate stars together is very small in the central regions, - less than about 10% 
within the sphere containing 4% of the system's mass. However, the rate of collapse 
found in these models is consistent with that observed in the one-component models; 
the values of 1000 rj for the three-component models range from 1.9 to 5.1, averaging 
3.0, in rough accord with Equation (9). Furthermore, the density range within the 
inner half of the mass of the system again reaches some three orders of magnitude late 
in the collapse phase. 

Important evidence on this question of collapse mechanism is obtained by a com
puter run in which encounters of heavy stars with each other were suspended arbi
trarily at a later stage in the collapse. One would expect that this modification in the 
program would have no great effect on the tendency towards energy loss to the lighter 
stars, but should slow down the outwards energy flux important in the gravothermal 
instability. When this modification was made in one of the models, at a relatively 
advanced stage of evolution, the collapse of the very inner region (containing 2% of the 
mass) slowed down to about half its previous rate. Further out, the radius containing 
10% of the mass stopped contracting entirely. While these results have not been 
explained in detail, they indicate that the transfer of energy from the heavy stars to 
the light stars is not the predominant mechanism responsible for the final collapse. In 
all probability, whatever detailed process accounts for the final collapse of one-
component systems also plays an important part in the similar collapse of three-
component clusters. 
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5. Results for Systems in Perturbing External Fields 

While the computations for isolated systems are of great physical interest, the 
attempt to explain actual clusters in our own Galaxy must take into account the 
external gravitational field to which these clusters are subject. The smoothed gravita
tional potential of the Galaxy itself is the largest such field, and the primary one 
which we shall consider. This field produces two effects. First, the cluster will undergo 
a quasi-steady tidal distortion, with stars escaping entirely whenever they enter 
certain 'escape regions'. Second, the cluster will gain internal energy as a result of 
changes in the local galactic field resulting from cluster motion. Neither of these 
effects is consistent with a spherically symmetric model of a cluster, but the resultant 
modifications of evolutionary development can be computed approximately with 
such symmetric models. 

If we consider first the quasi-steady effects of the field, the tidal distortion can 
obviously not be taken into account when spherical symmetry is assumed. However, 
the effect of the tidal field on the rate of escape can be computed if we assume that 
any star reaching the distance re from the cluster center will escape; the escape radius, 
re, can then be set equal to the minimum distance from the cluster center to the actual 
escape regions. In fact, stars in some directions can be stably bound to the cluster 
for substantial times at distances much exceeding re, but should escape in time when 
encounters deflect them into the true escape regions. 

The most serious approximation associated with the assumption of spherical 
symmetry is that the angular momentum of each star remains constant in the absence 
of gravitational encounters between stars. The tidal field would be expected to make 
the velocities of the halo star more nearly isotropic. Hence a star diffusing towards 
zero energy, as a result of encounters during periodic passages through the isothermal 
core, might penetrate progressively less deeply into the core in its successive orbits; 
as pointed out by Aarseth and Woolf (1972), this effect would be expected to decrease 
the escape rate somewhat, offsetting at least partially the effect of reduced re. On the 
other hand, numerical orbit computations by Prata (1971) showed that an external 
tidal field did not in fact produce an isotropic distribution of velocities for r less than 
about \re\ possibly this result is produced by some third integral which constrains 
the orbit. The only firm conclusion indicated at present is that one must question 
the validity of results obtained with spherically symmetric models of tidally perturbed 
clusters. 

We consider next effects produced by changes in the external field experienced by 
the cluster. As pointed out by Ostriker et a\. (1972) rapid motion of a globular cluster 
through the galactic disc produces a transient compressive force perpendicular to 
the galactic plane, which can effectively heat a cluster; this effect is called a 'com
pressive shock'. This increase of internal energy can be computed for a spherically 
symmetric model, neglecting the transitory nonspherical distortions. The problem 
of the constancy of angular momentum in spherically symmetric models is unimpor
tant in this case, since shock heating destroys this constancy in any case, and the 
computed models should be reasonably realistic. 
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Monte Carlo models of systems with tidal cut-offs and with shock heating have 
been computed both for one-component (Spitzer and Chevalier, 1972 - Paper V) and 
three-component (Spitzer and Shull, 1975 - Paper VII) systems. Because of the many 
parameters involved, a full analysis of these results would be outside the scope of the 
present paper, and only a brief general review will be given. 

As would be expected, the assumption of a finite escape radius, re, increases the 
escape rate, and also accelerates the initial contraction of one-component models, 
decreasing the time until the core collapses. If shock heating is assumed, the rate of 
escape is increased even further. This effect becomes particularly marked when a 
distribution of masses is present, since mass stratification forces the lighter stars out 
to larger radii, where shock heating is most effective. Thus imposing an escape radius 
as small as about 3rh increases the escape rate by about an order of magnitude above 
that for an isolated system. If moderate shock heating is assumed for a system with 
three mass components, another order of magnitude increase in £e is produced 
towards the end of the evolutionary development, leading to escape of about three 
fourths of the lightest stars during the time required to produce collapse of the core. 

Since the effectiveness of shock heating for a particular star varies as the square of 
the distance from the cluster center, reasonable amounts of shock heating in existing 
globular clusters generally have no direct effect on collapse of the inner isothermal 
core once this collapse has started. However, shock heating can sometimes hasten 
the rate of collapse by affecting the initial rate of contraction. Thus a small amount 
of shock heating, by getting rid of stars in the outer part of a one-component cluster, 
can accelerate the rate of diffusion of stars from the core up towards small total 
energy, increasing the initial rate of contraction and decreasing rcoll. In a multi-
component system, on the other hand, when shock heating increases the rate of escape 
of the lighter stars, the number of these stars in the central core is diminished, and the 
rate at which the heavier stars lose energy through equipartition is somewhat reduced; 
this effect tends to offset the other, and shock heating has no marked effect on fcoll in 
multi-component systems. With strong shock heating, such as may have existed at 
an earlier stage when clusters were more extended than they are now, complete 
dissolution of the system can be produced Evidently with so many physical processes 
occurring a wide range of evolutionary histories becomes possible. 

6. Evolution of Globular Clusters 

To compare the theoretical models with observed clusters we must know the values 
of trh, the reference relaxation time (see Equation (5)). These values depend on the 
cluster mass, which has been determined from velocity dispersions measured in four 
globular clusters (lUingworth and Freeman, 1974, and references cited therein). If 
we adopt the value of 1.0 MQ/LQ for M/L and use the observational data on clusters 
obtained by Peterson and King (1975) together with the analysis of these data by 
Ostriker et al (1972), values of trh can be computed for 32 clusters. The distribution 
of these values is shown in Figure 7. While these relaxation times cover a large spread, 
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only one value exceeds 1010 yr. It seems likely that most clusters have existed for times 
substantially exceeding trh. 

Two consequences seem to follow directly. Firstly, pronounced stratification of 
mass must have developed during the life of most of the clusters, provided that a 
wide initial distribution of masses was present initially. Secondly, if we continue to 

t r h in years 
Fig. 7. Histogram showing the distribution of values of trh in 32 clusters. The quantity trh is the relaxa
tion time for a star whose velocity equals the rms value for the cluster, and which is moving through a 

region of particle density equal to the mean value for the inner half of the cluster's mass. 

ignore possible effects produced by an initial distribution of binaries, we must con
clude that the cores of most clusters have gone through the collapse phase resulting 
from the gravothermal instability. We discuss each of these processes in turn, 

Any stars of relatively low mass in a cluster should be relatively concentrated in 
the outer regions of each cluster. The prominent stars, all those above the red-giant 
turn-off point, all have presumably about the same mass, except perhaps for a short 
period before their death when mass loss is significant. The mass of these stars in the 
upper part of the HR diagram is estimated by Ostriker et al. (1972) as 0.8 MQ. Stars 
less massive than about 0.3 MQ will be fainter than the 26th magnitude even in the 
closest clusters (m —A/> 14), and hence too faint to detect. Whether these faint stars 
have escaped entirely, as suggested by Ostriker et al (1972), or whether they are 
present in an extended halo around each cluster cannot be determined from the 
present evidence. Nearly complete escape of the lighter stars might have been possible 
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at an earlier epoch, when the cluster was considerably more diffuse and the rate of 
shock heating was relatively more rapid. On the other hand, in the three-component 
Monte Carlo computations, the distribution of the heavier stars seems not unlike 
the observed clusters. If the presence of the lighter stars in these models is ignored 
and the virial theorem is applied to the heavier stars only, the derived mass exceeds 
only slightly the true total mass in the heavy stars; i.e., the self-attraction of the heavy 
stars is the dominant influence in accounting for their velocity dispersioa If a relatively 
massive halo of light stars is actually present in a globular cluster, the variation of 
velocity dispersion of the heavy stars with distance from the center should clearly 
be influenced, but observational evidence on so refined a point is entirely lacking. 
In any case it is clear that mass stratification, plus enhanced escape of the lighter 
stars, would seem to offer a reasonable interpretation for the observed clusters and 
their low apparent M/L ratio. 

Since collapse of an inner core appears to be an entirely possible event in the life 
of a cluster, one may inquire what the consequences of such a collapse might be. There 
seem to be two general possibilities for the final development of a collapsing core. 
On the one hand, the collapse may be terminated by the presence of binaries, which 
sink to lower and lower energies, ejecting other stars from the core if not from the 
cluster. As suggested by Heggie (1974) such binaries may form naturally as fewer and 
fewer stars become involved in the collapsing regioa In this connection it is conceiv
able that a few tightly bound binaries present in the cluster may sink to the center of 
the system because of the higher combined mass of each binary; such binaries would 
then interact increasingly with the single stars composing the bulk of the contracting 
core. 

On the other hand, if binaries are not present it would appear to be impossible to 
stop the collapse until the finite sizes of the stars become important. Physical collisions 
between stars will then occur. Since the stellar velocities at this time will be small 
compared to escape velocities from a stellar surface, coalescence between two 
colliding stars (Colgate, 1967; Sanders, 1970) will be more likely than disruption. 
Thus a few massive stars will form, and may either explode as supernovae or form 
binary systems which will tend to give up energy to single stars. If only a few super-
novae were produced in each core collapse, the chance of observing such an event 
either in our own Galaxy or in neighboring systems would be very small, since super-
novae formed in this way would constitute an extremely small addition to the overall 
supernova rate per galaxy. 

In either case some of the mass of the core is likely to be ejected either as gas or as 
stars, and it is possible that the entire cluster may expand somewhat. It is difficult 
to see, however, how another contraction, leading to yet another collapse, can be 
avoided. If successive collapses follow each other and collisions between stars form 
an essential part of each cycle, these collapses may be expected to change their 
character as the stars gradually die and the heaviest stars are degenerate dwarfs. 
Formation of a massive black hole could be the final stage in cluster evolution. 
Clearly there are many challenging problems still to be explored in following the 
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evolutionary development of a cluster to its ultimate, perhaps even apocalyptic, 
conclusion! 

Parts of this summary were prepared and discussed at the 1974 Theoretical Astro
physics Workshop at the Aspen Center for Physics. 
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DISCUSSION 
Lecar: What is the advantage of integrating the stellar orbits (in contrast to Henon's method) ? 
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Spitzer: The main advantage is that you can determine the escape rate. To evaluate this rate it is nec
essary to avoid going to the limit of large AT at the beginning. When N is infinite, escape of stars becomes 
indistinguishable from accumulation in the far halo. For some purposes you don't really care which is 
which, in which case this large-TV limit is appropriate to start with. But if you are interested in finding 
the actual escape rate, then you must keep N finite until you determine this rate, and then let N increase. 
As it turns out, the escape rate determined in this way is virtually independent of N. 

Ipser: What is the mass to radius ratio of your core ? How does it vary as the core contracts ? 
Spitzer: The ratio of mass to radius does not change very rapidly. This ratio varies with the mean 

square velocity, which goes up but rather slowly. So the ratio increases slightly with time. 
King: In your first comparison of envelope profile with the r~3 5 law it seemed to me that the slope 

was more like r~3, which is more like what is observed. In particular, Hubble's law for elliptical galaxies, 
which has this slope, has always been an enigma. 

Spitzer: For model F, you start with no halo at all, so it is quite difficult to build up a halo; as a result 
the envelope is rather curved on a log-log plot of Q against r. In Model D a conspicuous halo is produced 
in the initial collapse, and a well developed halo exists throughout the evolutionary life of the system; 
for this halo the r~3 5 relationship fitted the density quite well. We tried to fit an inverse cube law to the 
density, but were unable to do so. 

King: Can you say something about the economics of your calculations ? How much does it cost to 
run a model, and how many man years have gone into the programming ? 

Spitzer: One typical evolutionary model on the Princeton IBM 360/91 costs us about $600. The com
puting program was written and applied by one graduate student during about half a year; in successive 
years three other graduate students have extended the program, again each devoting about half a year 
to this research effort. 
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