INJECTION OF MASS AND ENERGY INTO THE ISM BY MASSIVE STARS

CLAUS LEITHERER, LAURENT DRISSEN, and CARMELLE ROBERT
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218.

A large set of radiatively driven wind models for massive stars has been computed. We followed the stars from the ZAMS until they reach $T_{\text {eff }}=15,000 \mathrm{~K}$. The metallicity range is $0.1 Z_{\odot} \leq Z \leq 3 Z_{\odot}$. Power-law fits to the mass-loss rates and terminal velocities give:
$\log \left(\dot{M} / M_{\odot} y r^{-1}\right)=$
$2.20 \log \left(L / L_{\odot}\right)-0.68 \log \left(M / M_{\odot}\right)+1.38 \log \left(T_{\text {eff }} / K\right)+0.70 \log \left(Z / Z_{\odot}\right)-23.65 \quad(\sigma=0.15)$; $\log \left(v_{\infty} / k^{\prime 2}\right.$ sec $\left.^{-1}\right)=$
$-0.33 \log \left(L / L_{\odot}\right)+0.60 \log \left(M / M_{\odot}\right)+0.70 \log \left(T_{\text {eff }} / K\right)+0.15 \log \left(Z / Z_{\odot}\right)+1.00 \quad(\sigma=0.12)$. We adopted Maeder's (A\&AS 84, 139 [1990]) tables for massive star evolution at different metallicities. These models were extended to lower-mass stars using the results of Maeder and Meynet (A\&AS 76, 411 [1988]). The kinetic energy flux, the momentum flux, and the total energy content due to stellar winds in all evolutionary phases, including supernova explosions, have been computed.

The two figures below show the kinetic energy flux of a population of stars forming with $S F R=1 M_{\odot} y r^{-1}$ for $Z=2 Z_{\odot}$ (left) and $Z=0.1 Z_{\odot}$ (right). A Salpeter IMF extending from $0.1 M_{\odot}$ to $120 M_{\odot}$ has been assumed. At $\sim 4 \mathrm{Myr}$, OB and Wolf-Rayet (WR) stars are equally important for the energy flux. The energy flux scales nearly linearly with Z since $\dot{M} \propto Z^{0.70}$ and $v_{\infty} \propto Z^{0.15}$. The energy flux due to SN explosions is independent from Z. Therefore stellar winds are more important in a high-Z environment whereas SNe dominate in a low-Z environment. During the early phase of a starburst ($<3 \mathrm{Myr}$) stellar winds dominate the energetics. At later stages (depending on Z) SNe take over. For a typical starburst of age 10 Myr having solar Z both must be taken into account.

