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M E T R I Z A B I L I T Y C O N D I T I O N S F O R C O M P L E T E L Y 
D I S T R I B U T I V E L A T T I C E S 

BY 

G. G I E R Z , J. D . L A W S O N A N D A. R. S T R A L K A 

ABSTRACT. A lattice is said to be essentially metrizable if it is an 
essential extension of a countable lattice. The main result of this 
paper is that for a completely distributive lattice the following 
conditions are equivalent: (1) the interval topology on L is metriz
able, (2) L is essentially metrizable, (3) L has a doubly order-
generating sublattice, (4) L is an essential extension of a countable 
chain. 

Discussions of very strong completeness properties for distributive lattices 
are often, at least implicitly, highly topological in nature. The strength of the 
completeness properties a lattice possesses can be measured by the quality of 
the various intrinsic topologies which the order structure of the lattice can 
create. In this paper we shall discuss metrizability and metrizability-like condi
tions. For these very restrictive topological properties, it is natural that we 
should begin with an examination of those lattices with the strongest complete
ness properties—completely distributive lattices. 

For completely distributive lattices, the interval topology is compact, Haus-
dorff and compatible with the order structure. We are able to provide several 
purely order-theoretic conditions, largely based upon the idea of essential 
extension, which are equivalent to the interval topology being metrizable. Our 
discussion then leads to a set of conditions, again involving essential extensions, 
which implies complete distributivity. 

For a lattice L, a an element of L, and A a subset of L, /[a={xeL | x > a} 
and Î A = ( J{^ a | a e A}. The sets [a and | A are defined dually. The interval 
topology on L, denoted Int(L), has a subbase for its family of closed sets 
consisting of all sets of the form Î* and ix where xeL. Papert-Strauss in [6] 
showed that the interval topology on a completely distributive lattice L is 
compact and Hausdorff and when L is equipped with this topology, it becomes 
a topological lattice; i.e., the meet and join operations, thought of as maps 
from LxL into L, are continuous. A map between complete lattices is said to 
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be a complete homomorphism if it preserves arbitrary infima and arbitrary 
suprema. A homomorphism between two completely distributive lattices is 
complete if and only if it is continuous relative to the interval topology. Let I 
be the unit interval of the real line with the usual order and, let IM denote the 
countable product of copies of /. Putting together current information about 
completely distributive lattices, we have: 

THEOREM 1. Let L be a completely distributive lattice. Then the following 
conditions are equivalent: 

(i) Int(L) is metrizable. 
(ii) There is an algebraic and topological imbedding of (L, A, v, Int(L)) into 

Cr, A, v, inter)). 
(iii) There is a countable, point-separating family of continuous homomorph-

isms from (L, A, V, Int(L)) into (I, A, V, Int(I)). 
(iv) There is a complete isomorphism from L into I°\ 
(v) There is a countable, point-separating family of complete homomorphisms 

from L into I. 

In view of Theorem 1 we shall say that any completely distributive lattice 
satisfying the equivalent conditions listed in Theorem 1 is metrizable. 

Recall that a lattice L is said to be an essential extension of a lattice M if M 
can be imbedded into L in such a way that whenever i(/ is a lattice congruence 
on L such that ifjC\MxM = AM, then i\f = AL. The concept of essential exten
sion plays a prominent role in our search for a purely order-theoretic analog of 
metrizability. In the paper [1] Banaschewski and Bruns discuss essential 
extensions of distributive lattices in depth. 

DEFINITION 2. The lattice L is said to be essentially metrizable if it is an 
essential extension of a countable lattice. 

That essential metrizability has more to do with metrizability than with 
separability will become clear when we come to Proposition 4. It might be 
useful to keep in mind the chain J which is formed by applying the lexicog
raphic ordering to the subset [0, l]x{0, 1} of the plane. Then relative to the 
interval topology, / is a compact, totally disconnected, separable Hausdorff 
space—but it is not metrizable. In effect, J can be thought of as a space similar 
to the Cantor chain except that it has uncountably many gaps. 

PROPOSITION 3. Let L be a distributive lattice and let a,beL, a < 6 . If L is 
essentially metrizable, then so are lb, | a and the interval [a, b] = /far\lb. 

Proof. First of all, we verify Proposition 3 for lb. Let D^L be a countable 
sublattice and assume that L is an essential extension of D. We define Df ç lb 
by D' = {dAb \ deD}. The distributive law implies that D' is a (countable) 
sublattice of lb. Let @ be a congruence relation on lb. We may extend © to a 
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congruence i// on L by defining 

i// = {(x, y) G L x L | (x A b, y A b) e ® and x v 6 = y v b}. 

If © T̂  A then so is t//. In this case we may pick elements c, deD such that 
(c, d) e i/r but c f d. It follows that (c A b, d A b) e © Pi D' x D \ so we need only 
verify that c A b ^ d A b . Assume cAb = dAb. Since we also have cvb = dvb 
by definition of *//, we obtain the contradiction c = (c Ab)vc = (d Ab)vc = 
(d vc)A(b vx) = (d vc)A(d vb) = d v(c Ab) = d v(d Ab) = d. Hence, | b is an 
essential extension of D' and | b is essentially metrizable. 

Using a dual argument, we find that | a is essentially metrizable, too. The 
essential metrizability of [a, b] is now an easy consequence of the first two 
cases. • 

PROPOSITION 4. Every compact, essentially metrizable, Hausdorff topological 
lattice is metrizable. 

Proof. Suppose that the compact topological lattice L is an essential exten
sion of the countable lattice D. Then since every compact topological lattice 
can be imbedded in a product of compact metric lattices [Using the techniques 
of Chapter A, Section 8 of [5], it is easily seen that this sort of approximation 
by metric objects will hold much more generally than for our particular 
situation.*], it follows that there is a point-separating family \py : L —> Ly | ye 
T} of continuous lattice homomorphisms from L onto metric topological 
lattices. A countable subfamily {py : L —> Ly | 7 e T'} from this collection will 
suffice to separate points in D. Then the canonical map p:L-+ ir{Ly : 7 e T'} 
associated with this subfamily must be an isomorphism when it is restricted to 
D. But L is an essential extension of D which implies that p must be an 
algebraic and topological imbedding. The product space ir{Ly : 7 G T'} is metriz
able. Therefore L is metrizable. • 

DEFINITION 5. A sublattice D of a lattice L is said to be doubly order-
generating in L if for each x e L, inf(|x C\D) = x= sup(|x Pi D). 

In the terminology of Banaschewski and Bruns, a doubly order-generating 
set is said to be meet and join dense. This next result is essentially due to 
Banaschewski and Bruns. Even though we state it in terms of distributive 
lattices, the proof really is not dependent upon any lattice identity. 

PROPOSITION 6. If D is a doubly order-generating sublattice of the distributive 
lattice L, then L is an essential extension of D. 

Proof. Suppose that ç:L-^M is a lattice homomorphism, but not an 
isomorphism from L onto the lattice M. Then there are elements a,beL such 

* See the Appendix for details. 
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that (p(a) = q>(b)—we may assume that a<b. Because D is doubly order-
generating in L, there are elements c7deD such that c efa\|i> and d elb\|c. 
Then d^c, bAd = d7 avc = c, <p{c) = cp(bvc) and <p(d) = <p(aAd) which per
mit us to make the following calculations: 

<p(cAd) = (p((b v c) A(a A d)) = <p(aAd) 

Since d^rc, the elements d and cAd are distinct and <p identifies these two 
elements of D. Therefore L is an essential extension of D. • 

It is easy to find lattices which are essential extensions of nondoubly 
order-generating sublattices. For example, let A={(x,y)elxl\x = l or 
y = 0}. Then since A is a maximal chain in Ix I, it is a complete subset of Ix I. 
Hence it cannot order-generate Ixl. Nevertheless Ixl is an essential exten
sion of A. 

We now have assembled all of the ingredients for our purely order-theoretic 
characterizations of metrizability for completely distributive lattices. 

THEOREM 7. Let L be a completely distributive lattice. Then the following 
conditions are equivalent: 

(i) L is metrizable. 
(ii) L is essentially metrizable 

(iii) L has a countable doubly order-generating sublattice. 
(iv) L is an essential extension of a countable chain. 

Proof. After appealing to Propositions 4 and 6 and calling attention to 
Proposition 5 of [1] (which states that "Every at most countable distributive 
lattice L is an essential extension of a chain"), we need only show that (i) 
implies (iii). The interval topology on L will have a countable neighborhood 
base of compact sublattices, say {Un : n = 1, 2, . . .}. For each n let zn = inf Un 

and un = sup Un. Define M to be the sublattice generated by all of the zn's and 
i^'s. Without difficulty one sees that M is a countable doubly order-generating 
sublattice of L. (See also [4, III-4.2].) 

Although it might seem to be so, our story is not yet complete. Essential 
metrizability has an impact upon the theory of complete distributive lattices 
beyond the metrizability situation. It will be seen that it leads to conditions 
which decide whether a distributive lattice is completely distributive or, when 
intrinsic topologies are introduced, in deciding when these topologies have 
bases of sublattices. 

To get an idea of the situation we are dealing with, we will consider an 
already well-discussed example. Let us assume that we have a complete, meet-
and-join continuous distributive lattice L. (A distributive lattice L is meet 
continuous iff a A sup A = sup(A A a) for every subset A^L. Join continuity is 
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defined dually.) If we assume further that L is essentially metrizable, must it 
then be completely distributive? The answer is negative as we see from: 

EXAMPLE. Let L = (?reg([0, 1]) be the complete Boolean algebra of regular 
open subsets of the unit interval. Then L is doubly order-generated by the 
open intervals with rational end-points and their complements in L. Thus, L is 
essentially metrizable by Proposition 5. But L is not completely distributive. 
One reason for this may be found in the paper by E. E. Floyd [3] in the course 
of which he shows that: Let r be any topology on 6TCJ[0, 1]) in which lattice 
ideals and lattice filters converge to their respective suprema and infima. Then 
every neighborhood of 1 contains a filter with infimum 0; i.e., from a topologi
cal point of view, the lattice of regular open sets of [0, 1] is pathological. A 
similar idea is contained in the dissertation of D. J. Clinkenbeard (see [2]). 

At this point we will try to describe the difficulties that arise in the examples 
of Floyd and Clinkenbeard in a definition. First, we must recall the definition of 
a Scott open set. 

DEFINITION 8. Let L be a complete lattice. A subset U^L is called Scott 
open provided that 

(i) C/ = tLT. 
(ii) U intersects every ideal I ç= L such that sup leU. 

DEFINITION 9. A complete lattice L is called a topologically incompatible 
lattice, i-lattice for short, if every Scott open neighborhood of 1 contains a 
filter having 0 as its infimum. An interval of a lattice is called an /-interval if it 
is an i-lattice. 

PROPOSITION 10. Let L be a compact topological meet-semilattice. Then L 
contains no i-intervals. Moreover if L has a largest element, then L is not an 
i-lattice. 

Proof. It is enough to verify the second statement. Since L is compact, the 
largest element 1 has an order convex open neighborhood U such that 0 ^ £7. 
Now notice that an order convex neighborhood of 1 must be an upper end. 
Hence the set U will be Scott open, since in a compact semilattice, ideals and 
filters converge to their suprema and infima respectively. Finally, for every 
filter F ç U we have inf Fe Ù, i.e., inf F^O. • 

At this point it is necessary to bring in a few topological concepts. In a lattice 
L we say that an element y is way below an element x, written y « x, if 
whenever J is an ideal of L such that sup J belongs to fx, then J P l | y ^ 0 . The 
concept way above is defined and denoted in a dual fashion. If the compact 
topological lattice L has a neighborhood base of lattices, then for each xeL 
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we must have inf{y e L | y » x} = x = sup{y e L | y « x}. For further discussion 
on this topic, we suggest that the reader consult [4, VI-3.4, p. 282 ff.]. 

LEMMA 11. Let L be a complete distributive lattice without i-intervals. If L is 
meet continuous, join continuous and essentially metrizable, then x = 
sup{y : y « x} for every xeL; i.e., using the terminology of [4] L is a continuous 
lattice. 

Proof. Let beL and let a = sup{y e L : y « b}. Then a < b. We have to show 
that a = b. Assume that a < b. First of all, using Proposition 3 and the meet 
continuity of L, we may take b to be 1. Now let x be any element of L such 
that x «a 1 where « a denotes the way below relation on the lattice fa. We 
define x e L by x = inf{c :avc>x}. The distributivity and the join continuity of 
L imply xva = x. Now let J be an ideal of L such that s u p / = l . Then 
Jva = {c v a : c e J} is an ideal of fa having supremum 1, whence xeJva. Pick 
an element ceJ such that c>xva. Then c > x and we conclude that xeJ 
showing that x « 1. Now the definition of a implies x < a ; i.e., x = x v a = a. 

Appealing to Proposition 3 again, we therefore may assume that a = 0 and 
that x « 1 if and only if x = 0. We now show that the essential metrizability of L 
implies that L is an i-lattice. The arguments we shall use here may be viewed 
as a Baire category theorem for the Scott topology on L: 

Let D ç L b e a countable sublattice such that L is an essential extension of 
D and define 

O = {inf{x : x v d > c} : c, d G D, d G | C \{C}}. 

Then Q is countable. Moreover, for every x G L \ { 0 } there is a q 6 Q such that 
q < x. Indeed, if x ^ 0 then @ = {(u, D):xvM = xvi)}is nontrivial. Hence, since 
L is an essential extension of D, we can find elements c, deD such that 
deic\{c} and x v d = x v c and this implies that c = cA(xvc) = c A ( x v d ) < 
x v d . For these elements c, d G D let q = inf{x : x v d > c}. Then q < x. Since the 
join continuity of L implies O^Q, we may conclude that L\{0} = 
U tt<? :qeQ}. 

We now arrange the elements of Q in a sequence ql5 q2, q3,. . . and note that 
none of the qn is way below 1, since no element of L\{0} is. Let f / b e a fixed 
Scott open neighborhood of 1. By induction, we will pick elements uneU such 
that 

(*) q n ^ w 1 A - • - A I ^ G I / . 

Indeed, let n = \. Then q i ^ l and hence we can find an ideal I such that 
s u p l = 1, but qi£l. Since U is Scott open, we can pick uxe UHI. 

Now assume that we already picked u l 9 . . . , i^ G U such that (*) holds. Since 
qn+1 is not way below 1, it cannot be way below ^ A - • • Au n e U either. Hence 
there is an ideal I of L such that s u p I ^ i ^ A - • -AMn, but qn+1£l. The meet 
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continuity of L implies that we may assume U{A- • • A un = sup J. Now pick 
un+leinU. Then qn+l^un+1 = U1A- • • AunAun+leU. The elements 
ux, u2, . . . now generate a filter F which is contained in U and we have 
inf F = infneN un. Assume that 0^infnef^ un. Then qm<infner^ un for a certain 
meN since L\{0} = /fq1 ii T^2^ ' * ' > contradicting the fact that qm^uxA- • -A 
um. Hence infF = 0 and therefore L is an /-lattice. We have arrived at a 
contradiction, which concludes the proof of Lemma 11. • 

On the surface, Lemma 11 does not seem to be self-dual since the assump
tion of having no /-intervals as well as the definition of /-lattices are not 
self-dual. However, a joint continuous distributive continuous lattice is a 
compact topological lattice by Corollary VII.2.4 of [4]. Therefore, using 
Proposition 10 we may apply Lemma 11 to the dual lattice Lo p and find that 
Lo p is also a continuous lattice. Now Theorem 1.3.15 of [4] yields. 

THEOREM 12. Let L be a complete, distributive, essentially metrizable, meet-
continuous, join-continuous lattice having no i-intervals, then L is completely 
distributive. • 

This theorem has a much neater formulation for compact topological lattices. 

COROLLARY 13. Let L be a compact, metric, topological lattice. Then the 
following statements are equivalent: 

(i) L is essentially metrizable. 
(ii) The topology for L has a neighborhood base of lattices. 

(iii) L is completely distributive. • 

Appendix. We now will fill the hole which we left in the proof of Proposition 
4. 

THEOREM 14. Every compact topological lattice L can be imbedded in a 
product of compact metric lattices. 

Proof. We will use the fact that the toplogy on every compact topological 
lattice is generated by a uniformity and that the lattice operations A and v are 
uniformly continuous for every such uniformity. Let U be any neighborhood of 
the diagonal A ç L x L . It is enough to construct a closed lattice congruence © 
on L such that 

(i) ©<=(7; 
(ii) © is a Gs-subset of LxL, i.e., © is the intersection of countably many 

open sets. 
Note that in this case L will admit arbitrary small closed congruences © (by (i)) 
such that L/0 is metric (by (ii)). By induction, we will pick a sequence (Un)neN 
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of entourages of the uniform structure of L such that 
(i) 0n+l ç Un ç U for all n G N ; 

(ii) U-x=Un; 
(iii) Un+loUn+1czUn; 
(iv) [ / n + 1 A[/ n + 1 ç [ / n and (7n+1 v L/n+1 ç (7n, where [7n + 1Al/n + 1 and 

J7n+1v(7n+1 denote complex products. 
Let U0 Ç (7 be any symmetric neighborhood of the diagonal and assume that 
we have picked Uu . . . , Un such that (i)-(iv) are satisfied. We have to construct 
Un+1: Firstly, by the definition of uniform structures there is an entourage V 
such that V^Un, V~X=V and V ° V ç [ / n . Since the lattice operations are 
uniformly continuous, we can find a symmetric entourage [ / n + 1 ç V such that 
Un+1 A Un+1 ç Un and Un+1 v Un+1 ç Un. Obviously, U0, Uu . . . , Un+1 satisfy 
(i)-(iv). 

We now use this sequence (Un)nGN in order to define our lattice congruence 
6 by 

®= n un. 

Then @ is a G6-set by definition. Moreover, (i) implies that © is closed and (ii) 
and (iii) imply that S is an equivalence relation. Finally, from (iv) above we 
conclude that © is a sublattice of L x L. Hence, © behaves as required and the 
proof is complete. • 

COROLLARY 15. If L is a simple compact lattice, then L is metric. 

With almost no modification of the proof of Theorem 13 we see that this 
theorem and its corollary holds for compact, topological universal algebras, 
provided that we only have countably many operation symbols all of which are 
finit ary. 
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