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1. Introduction. Let ((s) = Z/i~s (Res > 1) denote the Riemann zeta function; then, as
is well known, £(2/w) = 22m~17i2m\B2m\/(2m)\, where Bm denotes the wth Bernoulli number,
In this paper we investigate the possibility of similar evaluations of the Epstein zeta function
(c(.s) at the rational integers s = k ^ 2. Let

2 2 (a > 0, ac-b2 = 1) (1.1)

be a positive definite quadratic form and

ZQ(s) = l!Q(m,n)-° (s = <7 + ir ,Res>l) , (1.2)
mtn

where the summation is over all pairs of integers except (0, 0). In attempting to evaluate
tQ(k) we are guided by Kronecker's first limit formula [11]

lim[CQ(s)-7r/(s-l)] = 27r()-log2-logV^»/(T)|2), (1.3)
s-»l

where y is Euler's constant,

//(T) = e2nit /24 fl (1 - e2nin") (Im T > 0) (1.4)
m = l

is the Dedekind eta-function, and T is the complex number in the upper half plane, ^f,
associated with Q by the formula

Q(m, n) = y~1\m+nx\2, z = x+iy = b/a+ija. (1.5)

On the basis of (1.3) we would expect a formula involving functions of T. This formula is
stated in Theorem 1, (2.13).

The Dedekind eta-function is a modular form of dimension —\ with a multiplier system
[7]. It satisfies the functional equations

r,(x + l) = e2"il24i1(z), ^ ( - 1 / T ) = C-2 '" / 8VT»?(T). (1.6)

The (inhomogeneous) modular group F(l) consists of all linear fractional transformations
w = Vz = (az+b)ftcz+d) with rational integers a, b, c and d and ad-be = 1. It is known to
be generated by

w = Uz = T + 1 and w = Tz = - 1/T. (1.7)

The homogeneous modular group SL(2, Z) (Z the integers) will be denoted by T(l). The
Eisenstein series

G2k(z) = Y'(m + nz)-2k (k = 2, 3, 4,...) (1.8)
m,n

t The research for this paper was partially supported by National Science Foundation grant GP12081.
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2 JOHN RODERICK SMART

are modular forms of dimension — 2k and multiplier system 1 [4]. Moreover

G2k(x) = 2 C ( 2 f c ) + ^ ^ £ a«-i(n)e(nt), (1.9)
1 ^K)

where o2k-i(n) denotes the sum of the 2k-1 powers of the divisors of n, and we are using
the notation

= e2niz.

00

In a certain sense logf/(r) = 7iiT/12-^a_1(n)e(nT) is an Eisenstein series of dimension 0.
i

We find in evaluating £Q(k) that in place of log^r) in (1.3) we obtain in (2.13) functions
<P2it(T) aQd their derivatives, which are closely related to indefinite integrals of Eisenstein
series. The functions q>2k(x) satisfy the transformation formulas

(1.10a)
and

T 2 * - W - 1 / T ) = </>2*« + 4 I1C(2k-2jX(2/)T2t-2j-1. (1.10b)
j=i

We shall call them modular forms of dimension 2k — 2 with rational period functions.
We are not able to evaluate (,Q{k) for any Q or k in the same sense as we know (,(2m).

However, with the aid of (1.10) we are able to give explicit evaluations of some related series
associated with two particular quadraticforms (those associated with T = /andt = \(— l + t^/3)).
Examples of such series are given in (4.8), (4.11) and (4.12).

Finally we indicate some applications to the problem of evaluating the Riemann zeta
function for odd arguments. There is little more here than the rederivation of the results of
Grosswald [4].

2. The value of (c(fc). In order to obtain the connection between £Q(fc) and modular
forms with rational period functions, we start with a formula of Selberg and Chowla [3],
first proved by Rankin [9], in the form given by Bateman and Grosswald [2]:

CQ(s) = 2y%{2s) + 2yl '%(2s - l)r(s - i)r(})/r(s) + 2n V~yH(s)ir(s), (2.1)

where

H(s) = 4 f ns-i<r1-2s(n)cos2nnxxKs-i(2Tiyn). (2.2)
n = l

In stating the formula of Bateman and Grosswald we have changed their notation to conform
to (1.1) and (1.5). I would like to thank Bruce Berndt for suggesting the use of (2.1) in
place of my earlier proof, which used the Poisson summation formula and the evaluation of
the resulting integrals by means of the residue method. Now we set s = k, a positive integer,
in (2.1) and (2.2) and we use the formula [13, p. 80 (12)]

- ^ Z (fe-l + r)!/{r!(k-l-r)!(2zr} (2.3)
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ON THE VALUES OF THE EPSTEIN ZETA FUNCTION

to obtain after some computations

1 oo / ; ,

?(r
In deriving the above formula we used the fact that al.2k{n) = n1 2*02*_i(«). Now we let
p = AT- 1 — r in (2.4) and use the relation

to obtain the formula

• % \[ k 1
-2-p\2' .. Y.^i-un"{e{mm) + e{-mnx)-\\. (2.5)

fli=ln=I J

From this equation we can obtain a partial fraction expansion for (Q(&) as a function of T.
We start with the well known relation

/
-id

CO \ N 1

1+2 Y, eJ"fat) = BCOtJtT= lim X! • (2-6)
n=l / W->oon=-WT + n

We make the convention that, hereafter, all conditionally convergent doubly infinite series
will be understood as limits as in (2.6). Differentiating (2.6) p times, we obtain

Using these two results in (2.5) we obtain

CQ(fc) = 2y

(2.8)
If we introduce the notation

00 00

(2.9)
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where the prime denotes that the term with m = 0 is omitted, then we can write the above
formula in the form

p = 0
-T-)}. (2.10)

We introduce the following function related to ^2fc(T) s o a s t o determine more easily its
transformation properties under substitutions of the modular group. Define

00 00 1

_ Y' y' 1
m=-oon=-oow2*~1(WJ'r+'1)'

where the prime on the summation sign indicates that m(n) — 0 is omitted, so that

(2.H)

(2-12)

We are now in a position to state

THEOREM 1. Let Q(u,v) = au2 + 2buv+cv2 be a positive definite quadratic form of
determinant 1, and let T = x+iy be associated with Q as in (1.5). Then, for k an integer ^ 2 ,

k~i/2k-2

+(4>o~*z
Proof. If we consider separately in (2.8) the terms corresponding to n = 0 in the doubly

infinite sums, then we obtain, in view of the definition (2.11),

Z ( k \
 P) '

P = O \ K *•
(

P=O\

The proof will be complete upon showing that this last term is equal to 2j>*£(2)t)/| 112|£. This
is equivalent to showing that

2k-2-
Z

p=o

This relation can be proved by induction on k. Let

For 0 ^ / ? ^ f c - l , substitute (2VJT
some calculation one can show that

1) for ( 2 V ) in the definition of Sk. After

Sk = (2/
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ON THE VALUES OF THE EPSTEIN ZETA FUNCTION

Setting 2/>/T = £ + »/, one finds that Sk = (4y2/|T 12)-S*-1 + "/(V-^i1) a n d hence

By calculation, Sl + S1 = (2^)4/| T |4. This proves the required relation.
Note that upon differentiating \J/2k(x) 2k—I times we obtain a constant multiple of the

Eisenstein series (1.8). Thus <p2k(t) is closely related, by (2.12), to an indefinite integral of an
Eisenstein series.

3. Transformation formula of q>2k{x). In this section we obtain the transformation
properties of the functions q>2k{t). However, for the purpose of applying these results to the
summation of certain double series in the next section, we make the following more general
definition.

Let N be a positive integer and at and a2 integers, and define

} (3.1)

In the above double sums the prime indicates that the term with m = 0 (or n = 0) is to be omit-
ted if it could occur. As before, we understand conditionally convergent double series in the

M

sense lim £ . First of all, we show that the above series converges uniformly on
M-*co m= —M

compact subsets of the upper half plane 3tf. Write
M

£ 1 = lim £ (mx + a2 + tN)
Af-«oo t = - M

(2mT + a ) {S(0,a2,N)
tJV)

where, for integers a, b,
i f ^

\ 0 if a$

Now we use the estimate | C T + ^ | ^ |rf|sinargT, valid for c,d real and t e J f . For T in a
compact subset K of Jf we have

uniformly in K. Thus we see that the series of (3.1) converges uniformly in K.
It is convenient to introduce the following notation. Let N be a positive integer, a an

integer and let

C(s;a,JV)= Yl "~s (s = ff+i*,ff£l) (3.2)
n=o(N)

(«-* = e-
siosn = | n | - J e - s a r g n , argn = 0, -n).
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Now we obtain the transformation formula

Pi*(T + l; au a2, N) = q>2k(x, a,, Ol+a2, N) + C(2k; au N){d(0, at+a2, N)/x

-«(a1,a1+a2,iV)/(T + l)}. (3.3)
We start with

' 2* 1 = lira £ ml-2k(n
Af-»oo q~ —Af + m

r M + m

= lim \ Y' m1" , a1 + a2) N)

8(0,ai+a2,N) - - + - ' 1 -2k/
* ( + ̂ )f

^- , _ 2 V , . _ ! , S(0,ai+a2,N) 8(m,ai+a2,N)
= ^ m 2\mx + n) ' + -5- m 2 V T . n •

The result (3.2) follows upon summing the above equation over values of m for which
m = a^N).

Now we seek the transformation formula when x is replaced by — 1/T. We obtain this
relation with the aid of the following identity:

(3.4)

obtained by writing the left hand side in its partial fraction decomposition as a function of m.
Then, summing (3.4) first over n = a2(N) and then over m = fli(A0, we find that

9>2*(*; fli, «2, N) = "f' (-iy+1T2*"-'~1CO"; «i, NWk-j; a2, N)

-t""1 I ' I ' n'-'Vt + n)-. • (3.5)

Now consider

00 CO

s = - o o r = - o o

00 00

1-1

S= - M t = - 0 0

s = — oo ( = — oo

nsfcj m= — b
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ON THE VALUES OF THE EPSTEIN ZETA FUNCTION 7

The interchange of order in this last step is seen to be valid by summing the terms corresponding
to ± t together. The resulting sum can be shown to be absolutely convergent in 3V by using
the estimate | cx + d\ ^ | c\y, valid for xetf and c and d real. One finds that the terms of
the sum are 0{s2~2kt2), where the constant depends upon biy b2 and x. It follows that (3.5)
can be written in the form

<p2k(x; au a2, N) = f ( - l y ^ " - ' " ' ^ ax, NX(2k-j; a2, N)

+ i2k-2tp2,H-lfr;-a2,a1,N). (3.6)

This becomes, upon replacing au a2 by a2, —au

= <(>2k(x;a2, -auN) + ft\-iyxM-J-iC(j;a2,NX(2k-j; -altN). (3.7)

Grosswald [4] derived a functional equation of this type for

which corresponds to the case N= 1, ax =a2 = 0. Now we are in position to state

THEOREM 2. Let V={° S)er(l). Then the functions (p2k(r) defined in (3.1) satisfy the
transformation formula

(cz+d)2k-2<p2k(Vx; au a2, N)= <p2k(j; aai + ca2, ba,+da2, N) + r(x, V), (3.8)

where r(x, V) is a rational function oft which depends upon ax, a2 and V. The transformation
formulas (3.3) and (3.7) give r(r, V)for the generators V = U and V= T, respectively, o/T(l).

Proof. The elements ofT(l) can be written as words in t/ = (i i) and T = (_°i J).
The proof is by induction on the word length. The result is clearly true when V = ±1.
Suppose that it is true for all elements of V that can be written as a word in U and T of
length less than n. Consider MeT(l), which can be written in the form VT, VT~\ VU,
VU~l, where V is a word in U and T of length less than n. We replace T by Tx, T"1!, f/t
or U ~ 'T, as the case may be, in (3.8); for example, on replacing T by 7r, we see with V = (" 3)
that

c; au a2, N) = q>2k(Tx; aax + ca2, ba, +da2, N)+r(Tx, V)

or

(dx-c)2k-2<p2k(VTx;a1,a2,N)=x2k-2<p2k(Tx;aa1 + ca2,ba1+da2,N) + x2k-2V(Tx, V).

By (3.7),

{dx-c)2k-2<p2k(VTx; alt a2, N) = ^ ( T ; ba^da2, -aa1-ca2, N) + r(x, T) + x2k~2r(Tx, V).
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8 JOHN RODERICK SMART

Now note that VT = (J I£). This completes the proof in this case. The other three cases
are similar; in fact, since T'1 = —T, this case need not be considered. We remark that the
rational functions r(r, V) satisfy the relation

Wi V2, T) =r2k(V2, T) + (c2T+rf2)"-2r2t(F1) V2x), (3.9)

where

4. Applications of the transformation formulas to the summation of certain series. We are
able to apply the transformation formulas (3.3) and (3.7) to determine <p2k(i; au a2, N) and
cp2k(p; au a2, N), p —i( — l + iy/3) in some cases. This is done in part (a) of this section.
I believe this to be of interest in its own right. In parts (b), (c) and (d) of this section we
apply these results to the summation of some series.

(a) Calculation of<p2k(x; au a2, N).

Casel. a1 = a2=0,N=l. From (3.7), if k = 0(mod2), we find that

<P«M = 2i*£ ( - l)'C(2/)C(2fc-2/). (4.1)

If k £ 1 (mod 3), then, from (3.7),

2k~2<P k

since - 1/p = p +1. From (3.2), we see that

<P2kiP+1) = (P2k(p)+2C(2k)lp(p+1).

Thus

(P
2k-2-l)(p2k(p) = 4*2 p2k-2j-1C(2;X(2/c-2;)-2C(2fc)p"-3/(p + l). (4.2)

Case 2. ax = a2 = 1, # = 2. From (3.7) we obtain that, if k = 0(mod 2), then

cp2k(i; 1,1, 2) = i X V iy«2/; 1, 2)C(2fc-2/; 1, 2). (4.3)
2j=i

Ccwe 3. al=l,a2 = 2,N=3. It follows from (3.7) that

p"~ W P + 1 ; 1.1.3) = <P2*(p; i, - i , 3)+*t1( - iy+ 1p"- ; - 1CO' ; 1,3)C(2k-y; 2,3)
y=i

and from (3.2) that
; i . i,3) = <p2k(p; 1,2,3).

Thus

( P 2 ' - 2 - D ^ ( P ; 1, 2, 3) = *I(-l)V*--'-1CO-; 1, 3)C(2/c-j; 2, 3). (4.4)
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ON THE VALUES OF THE EPSTEIN ZETA FUNCTION 9

We now give a short table of values of the function (p2)fcz; ai> ai> N).

94(i) = - in* 118 <pe(i) = - 1 3/TT8/2835O

<p4(/; 1, 1, 2) = -m 4 /32 <p4(p) = ;r4(l - / 3 V3)/90
(p8(i; 1 , 1 , 2 ) = - 7/TI8/23040 (p6(p) = (3 - 8/V3)TI6/2835

Table 1

(b) Now we compute some series associated with the functions q>2k(x; <*i> <*2> N)- Starting
with definition (3.1), if we multiply numerator and denominator of the summands by wr+n,
equate real and imaginary parts and use the relation (1.5), we obtain

E' I ' m2-2kIQ(n,m)=-lmq>2k(T;al,a2,N) (4.5)
m = o,(N)n = u2(N)

and
X' I ' nml-2kIQ(n,m) = lmTcp2k(T;al,a2,N). (4.6)

m = a,(N)nso2(N)

Another type of series can be obtained using the partial fraction expansion (2.6) for 7icot7iT.
We see that

and so, from (3.1),

r,auN). (4.7)

(c) We can now put the results of (a) and (b) together to sum various series.
First, if k = 0(mod2), then we have, from (4.1), (4.3) and (4.5), that

m n j= 1

and

X X m2~2kl(m2 + n2) = £ £ ( — 1)J+1C(2y; 1, 2)f(2/c-2;; 1,2), (4.9)
msl(2)nsl(2) j=l

where the prime denotes that the term with m(n) = 0 is omitted from the sum. These formulas
also have an elementary derivation starting from a partial fraction expansion similar to (3.4).
C(2y; 1, 2) can be computed from [1, p. 807]

f l/(2fc + l)2n = ±(22"-l)7i2"|iJ2/1|/(2n)!. (4.10)
k = 0

If we still require that k = 0(mod2), then, from (4.7), (4.5) and (4.1), we find that

£ cothTtm/m2*"1 = - £ ( - 1)J+1C(2/)C(2fe-2/)+C(2fc)/7r. (4.11)
m=i nj=l
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10 JOHN RODERICK SMART

Similarly, from (4.7), (4.5) and (4.3), we obtain

Z t£!fZt»
m=o (2m+ 1) 2nJ=l

The formula (4.11) has an interesting history. The case k = 4 was one of the 120 formulas
that Ramanajan sent Hardy in his celebrated letter [8]. In 1928 Watson [12] proved (4.11) by
the method of contour integration. So far as I know, (4.12) is new.

We conclude this part with a short table of sums of series obtainable from the values in
Table 1:

X X l / m 6 ( m 2 + n2) = 137t8/28350, £ £ l/m2(m2 + H2) = 7t4/32
m = l ( 2 ) n s l ( 2 )

£ E l/m6(m2 + n2) = 7T:8/23040, £ ' £ ' l/m2(m2 -mn + n2) = n4 ^3/30
niEE l ( 2 ) n = 1 ( 2 ) m n

Table 2

(d) Finally we mention the connection of these results with the zeta function of a number
field. Let K = Q(\/D), where D is square free, have discriminant d; then the zeta function
of K [6] satisfies

«Q, (4.13)
a

where summation is over all nonzero integral ideals a of A" and

In the case of D — — 1, we have d = - 4 and

L ( s , - 4 ) = f (-l)"/(2« + l)s. (4.15)
n = O

If Z>= - 3 , then</= - 3 and

L(s, - 3) = (2/V3) f (sin 2«7:/3)ns. (4.16)
n = l

From the definition of the norm of an integer in Q ( V - l ) and Q ( V - 3 ) , we see that

CQl(s) = 4C(s, - 4 ) = 4C(s)L(s, - 4 ) , j

Cfi2(s) = 6(V3/2)sC(s, - 3) = 6(V3/2)sC(5)L(s, - 3 ) J

where (2i = m2+n2, Q2 = (2/V3)(m2-773/i+n2). There are known formulas [1] for L(s, - 4 )
and L(j , —3) when s is an odd integer. We can sum one final series in terms of L(2, - 4 ) ,
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ON THE VALUES OF THE EPSTEIN ZETA FUNCTION 11

which is known as Catalan's constant [1, p. 807]. From (2.13),

so

4C(2)L(2, - 4 ) =

<p'4(i) = (120n2L(2, - 4 ) - 1 3 T I 4 ) / 1 8 0 .

From (4.7) we see that <p'^i) = 27i2][ i/(w
2

sinhm7r)-2C(4); thus

£ l/(m2sinhm7r) = (120L(2,-4)-ll7i2)/180. (4.18)
m = l

5. Applications to the Riemann zeta function for odd arguments. In this section we
rederive the results of Grosswald [4] and add a few connections with the previous section. Let

F(-z) = (p2k(z)l4ni-^2k)l2nh-C(2k-\)l2; (5.1)

then from (2.11) and (2.6) we see that
00 00 00

m=1 n = l m = 1

and this is the function considered by Grosswald. Solving for C(2k— 1) in (5.1), setting T = i
and using (4.1), we find that, if 2k = 0(mod 4), then

J=l m = l

Now, if 2k = 0(mod4), we differentiate (5.1) and (3.7) (with N = 1, ay = a2 = 0) and set i = i
to obtain

C(2fc-1) = fcC(2/c)/7r(fc-l)+ £ C(2k-2jK(.2j)(2k-2j-\)(-])k-iln(k-\)

+ - ^ - £ l/[m2*-2(e2l"n-l)2]-2 £ l/[m2*-V™--1)]- (5-4)

We note in passing that, by using (4.2), similar formulas could be obtained involving the series

m-l

We now consider the connections with ((3). Noting from (2.11) that <p6(f) = <p6(t) and
<P6(-T) = " ^ W t w e obtain from (2.13) with k = 3 the relation

£c(3) = 2 ( (6 )^ 3 (1 + | T | " 6 ) — 3 Im <P6(T)/8>'2 + 3 Re <P6(T)/8J> + Im <pg (T)/8- (5.5)

Now, specializing this result with T = i, Q - Qi = m2+n2, we find on comparing (4.17) that

4£(3)L(3, - 4 ) = 4C(6) + 3«>6(i)/8 +3^6(0/8-i>6'(0/8. (5.6)
After differentiating (3.7) and setting T = /, we get the relation 2i<p6(i) + <p'6(i) = 4£(2)C(4).

Using the known value 1(3, - 4 ) = 7t3/32 [1, p. 808], we have
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12 JOHN RODERICK SMART

Now in a similar way we consider the case z = p corresponding to Q — Q2 —
(2/\/3)(m2-nm+n2). First we compute q>'6(p). Using the relations - l / p = p + l , (4.10),
(1.10a), (1.10b) and the formulas obtained from them by differentiation with respect to T, we
find after some calculations that (p'6(p) = ( T C 6 / 3 4 - 5 - 7 ) ( - 4 + 3 J V 3 ) . Next using the relation

[1, p. 809] J(sinfc7ix)/fc3 = (x3-3x2/2+x/2)Tr3/6withx = } and (4.18), we see that L(3, - 3 ) =
i

47t3 V3/35. Thus from (4.17) we see that

Now substituting the values for q>6(p) and <p'6(p) into (5.5), we derive

C(3) = n3 V3/42 + 9 Im K(p)/8. (5.8)

It is seen that, if one could compute <P6(T), (p'6(z) and 9g'(T) f° r
 T = 1 or T = p, we would then

have computed £(3). These computations seem very difficult.

Added in proof. A. Hurwitz employed devices similar to (3.4) in order to obtain trans-
formation formulas of modular forms (Cf. Werke I (Basel, 1962), 23ff. and 583ff.). Joseph
Lewittes, in his paper " Analytic continuation of the series £(m + nz)~s ", Trans. Amer. Math.
Soc. 159 (1971), 505-509, essentially established the transformation formula (1.10b) when
k ^ 0, by different methods. Grosswald has generalized the results of [4] in his paper
" Remarks concerning the values of the Riemann zeta function at integral odd arguments ",
J. Number Theory 4 (1972), 225-235.
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