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SUMMARY

Estimation of the true incidence of tuberculosis (TB) is challenging. The approach proposed by
Styblo in 1985 is known to be inaccurate in the modern era where there is widespread availability
of treatment for TB. This study re-examines the relationship of incidence to prevalence and other
disease indicators that can be derived from surveys. We adapt a simple, previously published
model that describes the epidemiology of TB in the presence of treatment to investigate a revised
ratio-based approach to estimating incidence. We show that, following changes to treatment
programmes for TB, the ratio of incidence to prevalence reaches an equilibrium value rapidly;
long before other model indicators have stabilized. We also show that this ratio relies on few
parameters but is strongly dependent on, and requires knowledge of, the efficacy and timeliness
of treatment.
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INTRODUCTION

Tuberculosis (TB) is one of three high-burden endemic
infections that are the focus of United Nations
Development Programme (UNDP) targets [1]. The
current burden is highest in low- and middle-income
countries and is magnified in nations with generalized
human immunodeficiency virus (HIV) epidemics [2].
Surveillance and monitoring of TB remains challeng-
ing. This is due, in part, to limitations in the tools
available for quantifying key indicators.

The main epidemiological indicators that are rel-
evant to TB control are incidence and prevalence of
disease, case-fatality rate and prevalence of latent
infection [3]. There are well-established methods for
measuring the prevalence of disease and latent infec-
tion using cross-sectional surveys in representative
samples of the population. Case-fatality rates can be
quantified using routine surveillance data. However,
estimation of incidence of disease is challenging [4].
Data on incidence are important because trends may
provide the opportunity to evaluate the impact of
TB control programmes and changes in risk factors
for disease. Although disease notifications provide
some information on incidence, this is almost always
an under-estimate because of incomplete case detec-
tion. Unless the proportion of incident cases detected
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is known, disease incidence cannot be estimated from
case notification data [5]. True incidence is also diffi-
cult to measure because of factors such as the diffi-
culty in determining when symptoms commence,
failure to differentiate TB from other diseases and fail-
ure of case notification [5].

To address the difficulties in estimating incidence,
Styblo used a modelling approach to estimate key epi-
demiological ratios. He estimated that the ratio of the
mortality to the incidence and prevalence of smear-
positive TB was in the pattern 1:2:4. This is equivalent
to saying that a smear-positive TB case remained in-
fectious for 2 years, on average, with a 50% chance
of dying from TB. His models applied to settings
where treatment for TB was not routinely available.
He further determined that the ratio of the percent
annual risk of TB infection (ARTI) to the incidence
of smear-positive pulmonary TB per 100 000 was
1:50 [6]. These ratios were widely used around the
world for some time [7].

Recent studies have shown that these ratios are not
valid in several settings with functioning treatment pro-
grammes [7, 8]. Furthermore, there is evidence that
transmissibility varies widely between settings and,
therefore, the ratio of disease incidence to ARTI is un-
likely to be valid for all settings [7, 8]. However, there
has been little research attempting to devise new meth-
ods for estimating incidence. This leaves an important
gap in the tools available for disease surveillance in set-
tings where surveys have been performed.

The aims of this study were to re-examine the re-
lationship between incidence and other indicators, de-
termine the degree of deviation from Styblo’s ratios
in the presence of treatment and to develop a new
method of estimating incidence from survey-derived
indicators. Our approach uses an adaptation of a pre-
viously published TB model [9], which reflects TB epi-
demiology more realistically than the model used by
Styblo.

METHODS

Model description

We adapted a model by Blower et al. [9], used orig-
inally to demonstrate the influence of epidemiological
factors on the population dynamics of TB. Since our
study is focused on the incidence and prevalence of in-
fectious TB we excluded non-pulmonary TB as an out-
come state and introduced a parameter describing
treatment impact. The features that distinguish our

model from Styblo’s work [6] are the specific parame-
terization of infection routes and demographic time-
scales, the inclusion of treatment and the potential
for relapse following recovery from disease. Our
study used no data and did not require ethical
approval.

The model divides the population into several
classes: individuals who are susceptible (S), latently
infected individuals (E), individuals with infectious
pulmonary TB (I) and recovered individuals (R).
New susceptible individuals are born at fixed rate
(Π) that ensures a stable population in the absence
of disease. Natural mortality in individuals without
active TB disease occurs at a constant rate (μ),
which, in the base case, gives a mean life-expectancy
of 70 years. We assume homogeneous mixing and uni-
form risks of infection with the force of infection (λ)
expressed as the product of the density of infectious
individuals and their per unit-time infectiousness (β).
Figure 1 shows the model states and transitions (for
the model equations, see Appendix).

Infected individuals either progress rapidly to active
disease (with probability P) or enter the latent class
(with probability 1−P), with progression to active
disease determined by the reactivation rate (v). These
rates are chosen so that in base case 5% of infections
progress rapidly to disease and 5% progress to disease
by reactivation from latent infection over a typical
lifetime. Individuals with active TB suffer an ad-
ditional risk of mortality (μT). In the absence of treat-
ment a proportion (c) of infectious individuals recover
from TB, while recovered individuals can return to ac-
tive disease through the relapse rate (ω) and are still
latently infected with the disease post-recovery.

Treatment effects are captured by the addition of a
single ‘treatment’ parameter (τ) to the model. There
are a variety of methods for introducing treatment
into models of TB and this is one of the simpler and
more common approaches [10]. This parameter is
the rate at which individuals with active TB move
into the recovered class as a result of intervention.
The effectiveness of the intervention can be considered
to include the effectiveness of case-finding, case-
holding, adherence to therapy and the efficacy of drug
therapy. It represents the contribution of intervention
programmes to the mean time until an individual
with infectious TB is rendered non-infectious by treat-
ment [or period of infectiousness (τ+ c+ μ+ μT)

−1].
Treatment outweighs the other parameters in this per-
iod of infectiousness by an order of magnitude. All the
consequences of therapeutic intervention are included
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through this parameter including impacts on mor-
tality, transmission and rate of recovery.

Model parameters

Revised ratio

Over a long time period the distribution of the popu-
lation in each state reaches a constant (or equilibrium)
value. In this equilibrium situation, it is straightfor-
ward to show that the ratio of incidence to prevalence
obeys the following equation:

incidence
prevalence

= (τ + c+ μ+ μT),

where the parameters τ, c, μ, μT represent rates of
treatment, natural recovery, mortality and TB-
specific mortality respectively. The ratio is unaffec-
ted by the other model parameters, including trans-
missibility (β), reactivation or relapse rates. It should
be noted that in our modelling approach ARTI and
mortality are both directly proportional to prevalence
and so ratios involving these quantities behave simi-
larly to the ratio of incidence to prevalence. Details
of the derivation of these ratios are given in the
Appendix. The model was simulated using the ode45
solver in Matlab R2013b (www.mathworks.com/
help/matlab/ref/ode45).

RESULTS

Figure 2 summarizes the model estimates for the main
indicators, over time, in the absence of therapeutic in-
tervention (‘treatment’). The model reveals an initial
rapid rise in incidence and prevalence (Fig. 2a) fol-
lowed by a stable (endemic) phase. Due to the

timescales of reactivation and relapse disease (Fig. 2b),
the epidemiology evolves slowly over a timescale from
several decades to hundreds of years, depending on
parameter values. The ratio of incidence to prevalence
varies considerably during the epidemic period and
then stabilizes rapidly once prevalence has peaked.

Figure 3 shows the effect of introducing treatment
into the model after it has reached the equilibrium
state. The model predicts that the prevalence of TB
disease will decline rapidly as soon as treatment is
introduced, while the effect on incidence of TB disease
is relatively smaller and more gradual. This is because,
at equilibrium, most incident cases arise from reacti-
vation of latent TB infection and to a lesser extent re-
lapse of recovered cases. Incidence from these causes
is unaffected by changes in infection prevalence. The
decline in incidence of reactivation TB occurs at a
significant delay, while incidence of relapse in people
who have recovered after treatment for TB increases
initially because the pool of recovered individuals
increases in size when treatment is introduced. We
note that while neither prevalence nor incidence
reach equilibrium over the 40-year time-frame shown
in Figure 3, the ratio of prevalence to incidence equi-
librates very quickly. We also note that the introduc-
tion of treatment substantially changes the incidence
to prevalence ratio values.

Introduction of treatment

In practice, the distribution of TB in populations is
never completely at equilibrium, particularly when
interventions are being introduced. It is clear from
Figure 3 that incidence and prevalence continue to de-
cline for many years after such changes, while the

pbSI

(1 – p)bSI

mS mE

wR

mR

(t+c)I

(m+mT)I

vE
S E I R

P

Fig. 1. Model diagram showing classes and transitions of the model. Classes are susceptible (S), latently infected (E),
infectious (I) and recovered (R). Transitions are births (Π), natural mortality (μ), primary infection (pβI/N), latent infection
[(1− p)βI/N], latent reactivation (v), mortality due to TB (μT), relapse (ω) and recovery by treatment (τ) or natural (c)
causes.
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ratio of the two stabilizes much more rapidly. We con-
sidered simplified examples of how treatment might be
introduced using three scenarios: a point change from
no treatment in the population, a sequence of two

smaller point changes over 20 years and a situation
in which the rate of detection and treatment improves
linearly over these 20 years. In each scenario, the
changes were introduced into a system at equilibrium
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Fig. 2. (a) Modelled incidence and prevalence for a TB epidemic and then longer-term endemic equilibrium. (b) Modelled
component of incidence over time. (c) Behaviour of the ratio of incidence to prevalence over time. Parameters for this
simulation were β= 9, p= 0·075, v= 0·003915, μ= 0·0143, μT = 0·4137, c= 0·072, ω= 0·007, Π= 2,860, τ = 0, S0 = 200 000
and I0 = 1.
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and the mean time to treatment after intervention was
reduced to 6 months at the end of the period of
improvement.

As shown in Figure 4 the method of introducing
treatment change impacts on the behaviour of the
ratio over time. The single change method produces
a very short period between steady states. This is un-
likely to be achieved in a real world situation in a
large population. The continuous method stays
slightly ahead of the changing equilibrium value for
almost the whole duration of the change. The staged
approach simulates the effect of changes to policy
and treatment that occur at distinct intervals in time.
All three methods produce the same final impact as
that estimated by the analytical solution to the equi-
librium. The methods differ in two important
respects – time taken to reach equilibrium and values
during this time period.

The time required for the ratio to reach a new equi-
librium is relatively short for each approach to intro-
ducing treatment. When a change in treatment is
introduced as a single change (a) or using a stepped
approach (b), the ratio estimated values are within

5% of model predictions after 3 years. The transition
occurs more slowly with the continuous introduction
of the new treatment programme (c). In this approach
it takes 10 years for the ratio estimated values to draw
within 5% of model predictions after introduction of a
treatment programme. These results suggest that the
equilibrium ratio stated above can be used to estimate
incidence from prevalence far in advance of either
prevalence or incidence stabilizing to a new equilib-
rium value.

Figure 5 shows the impact of the stepped approach
to introducing a new treatment program on TB
disease incidence and prevalence. Panel (a) shows a
simulated prevalence trend following the initial intro-
duction of a treatment programme and stepped in-
crease in effectiveness after a 10-year interval. Panel
(b) confirms that ratio of incidence to prevalence
changes substantially when a new treatment pro-
gramme is introduced. Furthermore, the model-
derived estimate of the ratio of incidence to prevalence
(solid line) is closely approximated by formula-derived
value (dashed line). Panel (c) shows that, aside from
initial spikes following each step up in treatment,
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Fig. 4. Shows three different methods of introducing interventions into the model; single change (left), stepped (centre),
and continuous (right). Solid lines show incidence to prevalence ratio, as estimated by the model, and dashed lines show
equilibrium values for the incidence to prevalence ratio, as estimated by the formula (μ+ μT+ c+ τ). Three years after
the introduction of treatment the model is within 0·4% of the estimated equilibrium ratio for the instant single change
(a), 3·49% for the first step (b), 0·06% for the second step (b), 19·52% for the continuous change from no treatment
(c) and 3·58% for the continuous change from the halfway point (c). Parameters for this simulation were β= 9, p= 0·075,
v= 0·003915, μ= 0·0143, μT = 0·4137, c= 0·072, ω= 0·007, Π= 2860, S0 = 200 000 and I0 = 1. The intervention parameter τ
changes to correspond with average time to treatment between never treated (τ = 0) and 6 months (τ = 2).
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our equilibrium formula (dashed line) closely follows
the simulated (model-derived) incidence.

Re-infection

Re-infection can be added to the model through the
introduction of re-infection rates in the latent and
recovered populations equal to αβI where α can be
interpreted as the protection from re-infection offered
by being latently infected or recovered. Setting α to 0·5
changes the distribution of stabilization rates mark-
edly, especially in the worse-case scenario of a naive
population with no existing treatment programme.
In the more realistic scenario with existing treatment
programmes the time to stabilization is still within
5 years for 87·5% of simulations.

Sensitivity analysis

Our formula for the ratio of incidence to prevalence is
determined by four parameters: rates of removal from
infectiousness via treatment, natural recovery, natural
mortality, and TB mortality. It can be seen from the
formula that each parameter has a linear effect on

the ratio, and from Table 1 we see that relative to
the effect of variation between the four treatment sce-
narios (τ), the effect of variation in the natural recovery
rate (c) and mortality rates (μ and μT) is very small due
to the much smaller magnitude of these parameters.

We explored the effect of model parameters on the
stabilization of the ratio after the introduction of
treatment using Latin Hypercube sampling (LHS)
from the parameter distributions given in Table 1 to
create 1000 model simulations using the time until
the equilibrium ratio is within 5% of the value simu-
lated from the model (see Fig. 6a for the distribution
of stabilization times). Using partial ranked corre-
lation coefficients (PRCC) we determined that the
case-fatality rate of TB (μT) had a moderate negative
correlation with stabilization time, with the correla-
tions for other parameters being almost an order of
magnitude smaller (see Table 2 for PRCC values).

Figure 6b shows the effect of the size of the re-
duction in the reproduction number, R0 (see
Appendix for the formula for R0) induced by the
size of the treatment effect τ. As τ increases, we find
that the time to stabilize decreases (note that output
is summarized at an annual level).
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DISCUSSION

Our model simulates the epidemiology of TB in popu-
lations. It facilitates assessment of the relationship be-
tween incidence and prevalence and the effect of the
introduction of treatment programmes on this re-
lationship. We have shown that a simple ratio between
these indicators derived from the equilibrium

behaviour of the model gives reasonable estimates
shortly after changes induced by treatment. This
ratio depends on very few parameters but is heavily
dependent on the efficacy and timeliness of treatment
programmes (in particular, the mean duration of
infectiousness). In contrast, we show Styblo’s ratio

Table 1. Model parameters

Symbol Parameter Units
Min
value

Median
value

Max
value Notes

β Effective
contact rate

Persons/year 5 9 13 See [16]

1/μ Mean life
expectancy

Years 60 70 80 This range corresponds to a natural
mortality rate of 0·0125-0·0167 [17]

Π Recruitment
rate

Persons/year — — — Set to μ*S0 (the initial population size)

P Proportion of
primary
infections

0·05 0·075 0·10 See [16, 18]

V Progression
rate to TB

/Person/year 0·00256 0·003915 0·00527 This range corresponds to a range of
5–10% progression in 20 years [9]

μT Mortality rate
with active TB

/Person/year 0·139 0·300 0·461 0·139 corresponds to 50% death rate within
5 years [19]

ω Rate of relapse
to active TB

/Person/year 0 0·0075 0·015 See [16]

C Natural
recovery rate

/Person/year 0·058 0·072 0·086 0·058 corresponds to a 25% recovery rate
in 5 years [19]

τ Treatment rate
of removal

/Person/year 0 1 2 Corresponds to an average detection time
of never to 6 months [20]

All parameters were sampled from a uniform distribution.
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of incidence to prevalence is inconsistent with even
weakly effective treatment programs.

The approach of using ratios to estimate incidence
has several advantages over using models directly.
Ratios are easier to calculate and interpret for non-
modellers, such as clinicians and epidemiologists.
Further our formula for calculating the ratio of inci-
dence to prevalence does not require knowledge of
certain model parameters that are difficult to measure,
such as the transmission coefficient (β). Using the ratio
requires knowledge of only four parameters and the
prevalence of TB. Prevalence can be estimated accu-
rately in cross-sectional surveys such as those being
conducted in many countries [11]. Some investigation
of ratios of incidence to mortality and ARTI were
made but these are less useful as in this model both
quantities are directly proportional to prevalence
and so there is no additional information gained at
the cost of needing case fatality or transmission
data, which can be difficult to obtain.

Our study has been motivated by the importance of
estimating incidence in high-burden countries and the
well documented challenges in doing so. Van der Werf
& Borgdorff find that all 22 high-burden countries
have had problems using surveillance data to track
progress against WHO targets for TB control [12].
Dye et al. discuss the problem of incomplete case de-
tection and reporting and the cost of directly measur-
ing incidence through cohort studies in high-burden
countries [4]. In contrast, recent prevalence surveys
(e.g. [13]) demonstrate the feasibility of collecting
and reporting reliable and valid data on the preva-
lence of TB in high-burden settings. A simple method
for estimating incidence using data from prevalence
surveys could potentially resolve a major problem in
disease surveillance and monitoring.

Dye [7] also discusses Styblo’s approach to estimat-
ing incidence, finding that his ratios are no longer

valid due to the widespread implementation of treat-
ment programmes and changes to living conditions
that invalidate his modelling assumptions. Our model-
ling assumptions are consistent with modern TB con-
trol programmes and living conditions resulting in
ratios that better reflect the current epidemiology of
TB. Our results show that the introduction of treat-
ment can substantially alter the ratio of prevalence
to incidence, in keeping with analysis by van Leth
et al. [8].

Our model uses the treatment parameter (τ) to
incorporate all the impacts of treatment programmes.
This parameter must be estimated carefully for our
approach to be effective. In practice the treatment
parameter reflects a combination of success rate,
time to detection, time to treatment initiation and
population coverage. In essence it describes the
change in the duration of infectiousness following
introduction of treatment programmes. Treatment
success rates are routinely estimated in the cohort
analysis common to current TB control programmes,
although patient follow-up may not always be
complete [14]. Potentially, delays in the detection
and initiation of treatment could be estimated by
collecting data on the duration of symptoms at in-
itiation of treatment in a representative sample of
patients [15]. Prevalence surveys currently being con-
ducted in many countries [11, 13] could be used to
estimate the population coverage of treatment pro-
grammes by collecting data on the duration of symp-
toms and diagnosis and treatment status of detected
prevalent cases. However, we recognize that there re-
main significant challenges in accurately assessing
the duration of infectiousness prior to either diagnosis
in routine practice or detection in prevalence surveys.

Limitations of our model include the absence of
stratification by age, gender, HIV status or other
risk factors in reference to either infection or disease
risks. The model also has a very simple implemen-
tation of treatment programmes. Re-infection is not
considered in the model. These simplifications help fa-
cilitate an intuitive understanding of the ratio, with
validation against external data and more complex
models a logical next step.

In summary we have devised a new method ofesti-
mating a ratio of incidence to prevalence with flexibil-
ity to incorporate treatment and be adapted to
different settings. We see potential to refine the ratio
formula to account for stratified risks and to test its
practicality using prevalence data from a high-burden
setting.

Table 2. Partial ranked correlation coefficient
(PRCC) analysis

Symbol Parameter PRCC P value

μT Mortality rate with active TB −0·8611 <0·0001
P Proportion of primary

infections
0·2066 <0·0001

V Progression rate to TB −0·1200 0·0001
C Natural recovery rate −0·1172 0·0002
μ Natural mortality rate 0·1066 0·0008
β Effective contact rate −0·1066 0·0008
ω Rate of relapse to active TB −0·0727 0·0220
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APPENDIX

Model equations

Our model equations are

S′ = Π− βSI
N

− μS,

E′ = (1− p)βSI
N

− (v+ μ)E,

I ′ = vE + pβSI
N

+ ωR− (τ + c+ μ+ μT )I ,
R′ = (τ + c)I − (ω+ μ)R,

with prevalence determined by I, force of infection
(or ARTI) determined by pβSI/N, incidence of disease
determined by vE + pβSI/N + ωR and case fatality
determined by μTI. Incidence of disease can be further
split into primary or fast progression determined by
pβSI/N, latent reactivation or slow progression deter-
mined by vE, and relapse progression determined by
ωR.

The effective reproductive ratio for this model can
be determined to be

Reff = β

μ+ μT + c+ τ

( )
p+ 1− p

( )
v

v+ μ

( )

× 1+
ω c+ τ( )
ω+ μ

( )

μ+ μT + c+ τ
( )− ω c+ τ( )

ω− μ

( )( )
⎛
⎜⎜⎝

⎞
⎟⎟⎠.

The endemic ratio of incidence to prevalence can be
found by setting

I ′= 0,

and then

vE + pβSI
N

+ ωR− τ + c+ μ+ μT
( )

I = 0,

vE + pβSI
N

+ ωR = τ + c+ μ+ μT
( )

I ,

vE + pβSI
N

+ ωR

I
= τ + c+ μ+ μT,

incidence
prevalence

= τ + c+ μ+ μT,

Similarly the other ratios can be found to be

incidence
mortality

= τ + c+ μ+ μT
( )

μT
,

incidence
ARTI

= τ + c+ μ+ μT
( )

β/N
,

Continuous introduction of treatment

We also explored the effect of parameter variation on
the stabilization time of the ratio for the continuously
improving treatment programme scenario (Fig. 4c)
using the same set of 1000 Latin Hypercube samples
used to explore this variation in relation to the stepped
scenario in the main text (Fig. 6). Under this scenario
the distribution of stabilization times (as shown in
Fig. 7) is about 2·5 times longer than in the stepped
scenario but with all simulations stabilizing within
15 years of programme initiation.

PRCC analysis

Table 2 shows the results of the PRCC analysis of the
covariates for time taken to stabilize in the stepped
scenario.
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