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This serial work presents a linear-time-invariance (LTI) notion to the Koopman analysis,
findingconsistentandphysicallymeaningfulKoopmanmodesandaddressingalong-standing
problemoffluidmechanics:deterministicallyrelatingthefluidexcitationsandcorresponding
structure reactions. Part 1 (Li et al., Phys. Fluids, vol. 34, no. 12, p. 125136) developed the
Koopman-LTI architecture and applied it to a pedagogical prism wake. By a systematic
analytical procedure, the Koopman-LTI generated sampling-independent linear models that
captured all the recurring dynamics embedded in the input data, finding six corresponding,
orthogonal, and in-synch fluid–structure mechanisms. This Part 2 analyses the six modal
duplets tounderpin theirphysical implications,providingaphenomenological analysisof the
subcritical prism wake. Visualizing the newly proposed dynamic Koopman modes, results
show that two mechanisms at St1 = 0.1242 and St5 = 0.0497 describe shear layer dynamics,
the associated Bérnard–Kármán shedding and turbulence production, which together
overwhelm the upstream and crosswind walls by instigating a reattachment-type of reaction.
The on-wind walls’ dynamical similarity renders them a spectrally unified fluid–structure
interface. Another four harmonic counterparts, namely the subharmonic at St7 = 0.0683, the
second harmonic at St3 = 0.2422, and two ultra-harmonics at St7 = 0.1739 and St13 = 0.1935,
govern the downstream wall. Finally, this work discovered the vortex breathing phenomenon,
describing the constant energy exchange in the wake’s circulation-entrainment-deposition
processes. With the Koopman-LTI, one may pinpoint the exact excitations responsible for a
specific structure reaction, benefiting future investigations into fluid–structure interactions
and nonlinear, stochastic systems.
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1. Introduction

The omnipresence of fluid–structure systems calls for persistent research and exploration
into their fluid mechanics. To date, fluids’ volatility, their nonlinear interactive mechanisms
with structures and the unsolved Navier–Stokes equations leave this topic a persisting
enigma. Fortunately, recent advancements in data science have offered a brand-new
pathway to the solution (Budišić, Mohr & Mezić 2012; Kutz et al. 2016; Lusch, Kutz
& Brunton 2018; Raissi et al. 2019). Seven decades after the ingenious Koopman theory
(Koopman 1931; Koopman & Neumann 1932), its mathematical promise was brought to
life by the pioneers of data science (Mezić 2005; Rowley et al. 2009; Schmid 2010; Mauroy
& Mezić 2012). Since then, the Koopman analysis has been pervasively applied to fluid
problems with success, with many of them directly involving fluid–structure interactive or
reactive systems (Muld, Efraimsson & Henningson 2012; Carlsson et al. 2014; Magionesi
et al. 2018; Garicano-Mena et al. 2019; Miyanawala & Jaiman 2019; Page & Kerswell
2019; Eivazi et al. 2020; Li, Tse & Hu 2020a,b; Wu, Meneveau & Mittal 2020; Dotto
et al. 2021; Herrmann et al. 2021; Jang et al. 2021; Li et al. 2021; 2022c,d,e; Liu et al.
2021a,b,c; Chen et al. 2022; Li, Chen, & Tse 2022b). Several works have summarized the
current status of the Koopman analysis in fluid applications and subordinate data-driven
algorithms (Mezić 2013; Rowley & Dawson 2017; Taira et al. 2017; Schmid 2022; Li et al.
2023).

On a celebratory note, we observed that most organized research on the Koopman theory
was led by applied mathematicians and focused on algorithmic development (Schmid et al.
2011; Budišić et al. 2012; Brunton et al. 2016). Analysing the algorithmic output is often
left to individual, case-by-case interpretations. The present serial effort aims to highlight
Koopmanism’s unique potentials for analysing fluid–structure systems—deterministically
relating observed structure reactions to their flow excitation origins. In Part 1 (Li et al.
2022a), we proposed the linear-time-invariance (LTI) notion and developed an organized
and replicable analytical framework called the Koopman-LTI architecture (see figure 1).
With a pedagogical demonstration on the subcritical prism wake (i.e. a rigid, infinitely long
prism reacting to fluid excitations) and similarity-matrix dynamic mode decomposition
(DMD) algorithm as the Koopman approximator, Part 1 successfully:

(1) generated a sampling independent Koopman linearization that captured all the
prominent recurring dynamics. The mean reconstruction error, root-mean-square
(r.m.s.) reconstruction error and DMD approximation error of the Koopman modes
were all at numerical zeros, O−12, O−9 and O−8, respectively;

(2) disclosed w’s trivial role in the convection-dominated free-shear flow, Reynolds
stresses’ spectral description of cascading eddies, vortices’ sensitivity to dilation
and indifference to distortion, and structure reactions’ origin in vortex activities;

(3) reduced the subcritical wake during shear layer transition II into only six dominant
excitation-reaction dynamics. The upstream and crosswind walls constitute a
dynamically unified interface, which is dominated by only two mechanisms at
St = 0.1242 and St = 0.0497 (Class 1). The downstream wall remains a distinct
interface and is dominated by four other mechanisms at St = 0.1739, St = 0.0683,
St = 0.1925 and St = 0.2422 (Class 2).
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Figure 1. Koopman linear-time-invariance (Koopman-LTI) architecture. It consists of the input curation,
Koopman algorithm, linear-time-invariance, constitutive relationship and phenomenological relationship
modules. Each module contains several submodules with requirements or options. The Koopman-LTI is
purely data-driven, theoretically accommodating all input types and solution algorithms that can accurately
approximate the Koopman eigen tuples.

By completing the input curation, Koopman algorithm, linear-time-invariance and
constitutive relationship modules, the fluid–structure constitution has been established.
The complete analysis essentially comes down to understanding the six mechanisms,
which this Part 2 will address through the final phenomenological relationship module.

Phenomenology, the study of phenomena, is the essential path to solution for many
fluid–structure systems. As Roshko (1993) remarked:

‘The problem of bluff body flow remains almost entirely in the empirical, descriptive
realm of knowledge.’

In this paper, we propose a methodical improvement, the dynamic Koopman mode, to
visualize in-synch, instantaneously varying flow field coherent structures (Hussain 1986)
and the corresponding structure reactions, overcoming the phase issues that often trouble
static visualizations of the Koopman modes. The newly proposed dynamic Koopman
modes also give phenomenological consolidation to spectral fluid–structure constitutions,
disclosing the underlying mechanisms and enabling normalizable notions for inter-modal
comparisons. In composition, following the introduction here, § 2 analyses the Class 1
mechanisms, § 3 focuses on the Class 2 mechanisms, § 4 presents a newly discovered
vortex breathing phenomenon and § 5 offers a summary of the major findings.

2. A brief recapitulation

We briefly present some essential nomenclature and information inherited from Part 1
to facilitate better readability. Figure 1 presents the overall Koopman-LTI architecture, in
which this Part 2 focuses exclusively on the final phenomenological relationship section.
Table 1 summarizes the ten most dominant eigen tuples for each measurable (highlighted),
resulting in precisely 30 across the entire inventory. In total, 18 field and wall measurables
have been sampled as independent realizations (see table 2). Readers may find the relevant
definitions in Li et al. (2022c). The subsequent text refers to the upstream (AB), top
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Figure 2. Orientation and location of the prism walls.

(BC), downstream (CD) and bottom (DA) walls according to the orientation in figure 2.
After Liu (2019), this work also refers to the vorticity-based vortex identification criterion,
namely |ω|, as the first-generation vortex field, the eigenvalue-based criteria, namely q
and λ2, as the second-generation, and the ratio-based criteria, namely Ω and Ω̃R, as the
third-generation.

3. Phenomenological relationship (module 5) – Class 1

Before we begin, a limitation of modal visualization is clarified. Like any type of eigen
mode shape, a dynamic Koopman mode only illustrates the bin-wise-averaged relationship
of its spatiotemporal content, so the fluid–structure correspondence and synchrony are
governed by the resolution of spectral discretization, highlighting the criticality of the LTI
convergence. For this reason, we limit our discussion to the descriptive, phenomenological
realm of fluid mechanics. Even so, as the upcoming sections will demonstrate, the
physics embedded in the dynamic modes are already immensely rich. Readers are also
reminded that mode shapes only describe the relative relationships between coherent
dynamics, meaning the information contained in a mode is quintessentially identical to its
opposite-sign counterpart. Therefore, in the subsequent sections, all terms of ‘positive’ and
‘negative’ refer to relative correlations instead of mathematical constitution. According to
Lander et al. (2016), we also define the prism base as the streamwise distance between
the downstream wall and 2.5D and the near-wake as the after-wake up to 7D. The
ensuing discussions are also based on the dynamic Koopman modes, so each static mode
shape image is supplemented by a movie file. Please refer to the supplementary material,
available at https://doi.org/10.1017/jfm.2023.36, for the reduced-size and full HD files.

3.1. M1 – shear layer dynamics and Bérnard–Kármán shedding

3.1.1. Pressure field P
We begin with the Class 1 mechanisms. Figure 3 presents the normalized dynamic
Koopman mode M1 (St1 = 0.1242) of P inside the flow domain and on the walls of the
prism. The multimedia file depicts the alternating occurrence, development and shrinkage
of separation bubbles adhering to the crosswind walls, as well as the subsequent shedding
of coherent wake structures. By frequency-matching, we visualize the in-synch behaviours
of the flow field and the corresponding structure reactions.

Specifically, the upstream wall (AB) exhibits consistent morphology throughout the
shedding cycle. Only near edges A and B, two slivers of extreme pressure alternate
in sign. This is the familiar impression of stagnation and forced separation, as AB of
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Wall pressure Flow field Turbulence field Vortex field

BC P 〈u′v′〉 |ω|
[Top wall] [Total pressure] [Reynolds stress from u′ and v′] [Vorticity magnitude]

Helmholtz (1858)
DA u 〈u′w′〉 Q
[Bottom wall] [x-velocity] [Reynolds stress from u′ and w′] [q-criterion] Hunt, Wray

& Moin (1988)
AB v 〈u′w′〉 λ2
[Upstream wall] [y-velocity] [Reynolds stress from v′ and w′] [λ2-criterion] Jeong &

Hussain (1995)
CD w 〈k〉 Ω

[Downstream wall] [z-velocity] [Turbulence kinetic energy] [Ω-criterion] Liu et al.
(2016)

|U| Ω̃R
[Velocity magnitude] [Ω-Liutex criterion] Liu

et al. (2018)

Table 2. Summary of the inventory consisting of 18 measurables.

all other Koopman modes show monotonous morphologies with the only difference in the
frequency of the sign switch, meeting anticipations and explaining why the upstream wall
contains the most stationary dynamics and has the highest growth/decay rate compared to
its peers (figure 8 from Part 1).

However, the other three walls’ reactions are dissimilar. The sign-alternating separation
bubbles dictate the crosswind reactions. Take the top wall (BC) as an example (see
figure 3a). When the bubble is emerging, an intense pressure band forms near the rear edge
C (in blue), which is of opposite sign to the upstream (in red). As the bubble forms and
grows, the band becomes increasingly weaker. At the maximum bubble intensity, the band
becomes like-sign with the upstream and even the high-pressure portions (see figure 3b).
Furthermore, the downstream wall (CD) is anti-symmetrically alternating, which is in
evident congruence with the bisected architecture of the near-wake. Again, the downstream
wall traces back to the behaviours of the separation bubbles, or more, the root in shear layer
dynamics.

3.1.2. Velocity magnitude |U|
The velocity field is the most common realization of the flow field and may draw more
morphological familiarity to the readers. Figure 4 presents the normalized dynamic
Koopman mode M1 (St1 = 0.1242) of |U| inside the flow domain and on the walls of the
prism. The figure delineates two shear layers stemming off from the leading edges due to
forced separation. Their in-synch motion with P confirms the fact that separation bubbles
result from the closure circulation zones, which are directly turbulent without a laminar
transition (Kiya & Sasaki 1983; Wu et al. 2020). M1 also illustrates the shear layers’
dispersion from initially intense wall jets into waning streams as they convect downstream,
accompanied by continuous fluid entrainment and vorticity dilution. The shear layers also
gain curvature in the process, drawing wake structures increasingly close to the afterbody
and toward the downstream wall (figure 3b). The ultimate outcome is the impingement of
the leading vortex (Unal & Rockwell 1988a,b), also known as reattachment.

The aforenoted wall reactions link directly to the shear layers. Taking the top wall (BC)
as an example again, the pressure band near C propagates counter-streamwise toward
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Figure 3. Normalized dynamic Koopman mode (−1 to 1) M1 (St1 = 0.1242) of P inside the flow domain and
on the walls of the prism at (a) t* = 0 and (b) t* = 4.49960: iso-surfaces ±0.25 of P (top left); mid-prism-span
slice of P (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively
(bottom from left to right). Multimedia file slowed by a factor of 500.

B, through which negative pressure turns to positive in a sharp gradient across 1/5D
(see figure 4a). The pressure band results from fluid reversing into the circulating zone,
pushing against the forward-traveling mainstream. As the top shear layer disperses and
gains curvature, its tendency to close the separation bubble bottlenecks the reverse flow,
causing the band to decay in intensity. However, not until the exact moment of bubble
closure does the shear layer curvature effectuate into actual reattachment (figure 4b). An
immediate consequence is an intra-bubble pressure equalization. The low-pressure band
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Figure 4. Normalized dynamic Koopman mode (−1 to 1) of M1 (St1 = 0.1242) of |U| inside the flow domain
and on the walls of the prism at (a) t* = 0 and (b) t* = 2.89260: iso-surfaces ±0.25 of |U| (top left);
mid-prism-span slice of |U| (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD)
walls, respectively (bottom from left to right). Multimedia file slowed by a factor of 500.

also flips in sign as intense fluid carried by the shear layer impinges onto the wall upon
reattachment.

The downstream wall (CD) also shows evidence of reattachment. A bisecting pressure
band is observed, which separates the reaction pattern into two spanwise antisymmetric,
opposite-sign halves. The two halves’ intense pressures persist throughout the mode’s
periodicity and are only temporarily relieved as the wake structures cut off their turbulent
sheets with the upstream (Sarpkaya 1979). Only at the exact moment of shedding, the two
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halves rapidly switch signs and restore the pressure bi-polarity (see figure 4b). The pattern
results from the curved shear layers approaching the downstream wall, as the sign of the
two halves corresponds to that of the respective shear layer.

At this point, it is convenient to summarize the observations of M1 into a lucid
phenomenological process. An asymmetric wall jet resulting from forced, sharp-corner
separation develops at the leading edge, shearing the fast external and slow internal fluid
as a shear layer. The shear layer gains curvature and momentum thickness due to fluid
dispersion and entrainment, both drawing it closer to the afterbody. The strong convection
outside the shear layer also add to the curvature gain. The increasing curvature shortens the
shear layer’s lateral distance to the rear edge, bottlenecks the reverse flow and eventually
culminates into reattachment. The reattachment, manifested as the closure of separation
bubbles, suppresses the reverse flow altogether and stifles the shear layer’s momentum
transfer into the wake. Notwithstanding, the halt of momentum outlet is not accompanied
by that of generation. As such, momentum continues to build up inside the enclosed
bubble, dilating it in all directions. The dilation cannot penetrate the wall; it encounters
a strong, incessant resistance from the oncoming free-stream, and an even stronger one
from the leading edge jet. With no other option, the bubble’s membrane-like structure
succumbs to the continuous build-up at the feeblest point – the rear edge, unleashing
the pent-up momentum and shedding fluid of coherent patterns into the prism base. This
cyclic process was puzzled together after centuries of outstanding research (Nakamura &
Nakashima 1986; Zhao et al. 2014; Trias, Gorobets & Oliva 2015; Portela, Papadakis &
Vassilicos 2017; Bai & Alam 2018; Lander et al. 2018; Cao, Tamura & Kawai 2020; Chen
et al. 2020, 2021, 2023; He et al. 2022), and is now effectively isolated and visualized by
the Koopman-LTI.

Dissecting |U| into individual velocity components exposes a consistent morphology
in u and v, while w appeals to a different mechanism unrelated to the shear layers. Our
investigation also supports the overwhelming contribution of u in the total content of |U|,
as their dynamic behaviours display close resemblance (see figure 10 from Part 1). The
dynamic Koopman modes of M1 of u, v and w are presented in the Appendix figures 14–16
for concision.

3.1.3. q-criterion
A step forward is to examine vortex structures in the flow field. This paper presents q
and Ω̃R to exemplify the largely self-similar observations obtained from the second- and
third-generation vortex criteria. We spare the first-generation because Gao & Liu (2018)
and Jeong & Hussain (1995) made a critical distinction between vorticity and a vortex,
deeming |ω| as obsolete. Accordingly, figure 5 presents the normalized dynamic Koopman
mode M1 (St1 = 0.1242) of q inside the flow domain and on the walls of the prism.

The most apparent coherent structures are identified alongside the shear layers. They are
opposite-sign and outline the shear layers’ momentum thickness, depicting two shearing
interfaces between the jet stream and the surrounding flow. This is an elegant picture
of the Kelvin–Helmholtz (KH) instability during shear layer transition II (Lander et al.
2016, 2018). We examine the top shear layer as an example. Fluid convects at low or even
negative velocities inside the recirculation zone, so intense viscous shearing generates
the inner interface as the forward-traveling jet encounters slow/reverse flow, causing the
roll-up of the interfacial KH vortices. By contrast, the outer interface results from the jet
stream shearing with the corner accelerated, external flow. Expectedly, figure 5 shows that
the outer and inner KH vortices have opposite-sign, appropriately describing the relative
relationship between the two shearing interfaces. Afterwards, the KH structures convect
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Figure 5. Normalized dynamic Koopman mode (−1 to 1) of M1 (St1 = 0.1242) of q inside the flow domain
and on the walls of the prism at (a) t* = 0 and (b) t* = 2.89260: iso-surfaces ±0.25 of q (top left);
mid-prism-span slice of q (top right); the bottom (DA), upstream (AB), top (BC), and downstream (CD) walls,
respectively (bottom from left to right). Multimedia file slowed by a factor of 500.

downstream alongside the curved shear layers. Figure 5(a) lucidly depicts how the rear
corner cuts into a shear layer’s inner interface, presenting unambiguous evidence of the
leading vortex impingement and the destined collision of the KH vortices into the prism
wall as the result of reattachment.

On a different note, though q appropriately depicts the KH instability, it fails to identify
coherent vortex structures in the wake. The failure reflects the issue that Liu et al.
(2019) discussed – the eigenvalue-based, second-generation criteria depend highly on
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the user-defined threshold. Finding an appropriate one that suits both the global and
local vortex scales is often difficult, if at all achievable. Threshold prescription is even
trickier when the spatiotemporal content is transcribed into the Fourier space by the
Koopman analysis. Therefore, though q, or the second-generation criteria in general, has
rich information, controlling its threshold can be practically intractable after decomposing
data into Koopman eigen tuples.

3.1.4. Ω̃R–criterion
Avoiding the issue of threshold, Figure 6 presents the normalized dynamic Koopman mode
M1 (St1 = 0.1242) of the third-generation criterion Ω̃R inside the flow domain and on
the walls of the prism. An immediate observation is its resemblance with the velocity
field, reaffirming the that the coherent structures observed in §§ 3.1.1 and 3.1.2 indeed
result from vortical activities. However, there is an intriguing catch. A comparison of |U|
(figure 3b) and Ω̃R (figure 5b) shows the shedding of the primary structures is escorted
by an entourage of small-scale vortices. These smaller vortices are scattered in the near
wake and do not necessarily conform to the borders of the primary structure. However, as
the shedding progresses, the smaller vortices quickly dissipate, and only those within the
primary structure survive (figures 3a and 6a). A vortex’s rotation acts as the shelter for
small coherent structures.

On a methodical note, the downside of Ω̃R is apparent too. The price of a universal
threshold is the loss of local details. Though still vaguely visible, Ω̃R’s description of the
shear layer’s momentum thickness is less favourable, let alone the more intricate details
of the interfacial KH vortices. To this end, the ratio-based criteria are not, at least for the
scopes herein, necessarily an improvement of the eigenvalue-based criteria. It simply lends
an alternative lens to examine vortex dynamics.

3.1.5. Broadband content
It shall be noted that the same exhaustive analysis has been conducted for every dynamic
Koopman mode, but, for concision, only the most relevant discussions are presented in the
subsequence. The less pivotal figures are assorted in the Appendix.

The preceding discussions motivated an examination of the broadband content of
the primary mode M1. The dynamic Koopman modes of M2 (St2 = 0.1180) and
M4 (St4 = 0.1304) of |U| inside the flow domain and on the walls of the prism are
presented in the Appendix figures 17 and 18. Analysis corroborates that M2 and M4,
though less energy-potent, are morphologically identical to M1, confirming their shared,
broadband origin. The observation also extends to several other modes of adjacent
frequencies, namely M8 (St8 = 0.1428), M10 (St10 = 0.1118), M11 (St11 = 0.1366), M12
(St12 = 0.1056) and M14 (St14 = 0.1553). The similitude confirms the conclusion drawn
from Part 1, suggesting the broadband content of the primary peak is distributed across
several frequency bins within St = 0.1–0.15 (see figure 14(a) from Part 1).

3.1.6. Longitudinal rolls
M1 and its subsidiaries are related to shear layer dynamics, which result in the
Bérnard–Kármán vortex shedding’s primary structure – the rolls (Hussain 1986).
Originating from forced separation, foreshadowed by fluid dispersion and shear layer
curvature, instigated by reattachment and shear layers roll-up (Wu et al. 1996), and
supplemented by the intra-shear layer Kelvin–Helmholtz instability (Bloor 1964; Gerrard
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Figure 6. Normalized dynamic Koopman mode (−1 to 1) of M1 (St1 = 0.1242) of Ω̃R inside the flow domain
and on the walls of the prism at (a) t* = 0 and (b) t* = 2.89260: iso-surfaces ±0.25 of Ω̃R (top left);
mid-prism-span slice of Ω̃R (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD)
walls, respectively (bottom from left to right). Multimedia file slowed by a factor of 500.

1966; Khor, Sheridan & Hourigan 2011), vorticity-infused fluid culminates into the
span-wise longitudinal rolls, otherwise known as the Strouhal vortex (Wu et al. 1996).

The Koopman-LTI analysis isolated and pinpointed the structure’s reattachment-type
reactions due to the rolls. For engineering practice, the reduction of unsteady crosswind
lift effectively comes down to the diminution of separation and reattachment. For example,
chamfering the leading corners reduces the wall jets’ intensity (Kwok, Wilhelm & Wilkie
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1988), shortening the afterbody length prevents reattachment (Ongoren & Rockwell 1988;
Luo et al. 1994; Zhao et al. 2014) and freestream turbulence weakens separation and so
the correlations of forces (Vickery 1966; Lee 1975; McLean & Gartshore 1992; Lyn &
Rodi 1994). Fascinatingly, based on the preceding analysis, one may infer that chamfering
a prism’s leading or trailing corners have fundamentally different effects.

3.2. M5 – turbulence production

3.2.1. Tail-blob substructures
After M1, this section analyses the secondary mode of Class 1, M5. Figure 7 presents
the normalized dynamic Koopman mode M5 (St5 = 0.0497) of P inside the flow domain
and on the walls of the prism. The morphology notably differs from that of M1, in which
two main types of wake substructures are observed (also shown by Ω̃R in the Appendix
figure 19). The first, referred to as the tails, depicts the longitudinal, tail-like coherent
structures that appear anti-symmetrically about the wake centreline. The tails cover the
entire streamwise distance of the near-wake (figure 7a). The second, referred to as the blob,
depicts a blob of fluid that adheres to the downstream wall (figure 7b). Interestingly, the
tails and blob are separated by an opposite-sign cavity. Structure-wise, reattachment-type
reactions are still observed on the crosswind walls. Nonetheless, the downstream wall,
instead of the symmetric pattern of M1, reflects the overwhelming effect of the blob
substructure: the negative pressure at mid-span depends directly on the size and intensity
of the wall-adhering fluid.

Apart from P, the normalized dynamic Koopman mode M5 of |U|, especially
figure 8(b), unveils a note-worthy observation – M5 originates from the shear layers,
implying that M1 and M5 share origin and are interrelated. After a comprehensive
analysis, it is concluded that M5 describes the mechanisms of turbulence production. The
tails are characteristic of the time-averaged production that includes the shear production
with sufficient convection. In most turbulent free-shear flows, the mean velocity gradient
and the mean momentum transfer are like-sign, resulting in a positive production and
generation of the tail structures. This was originally observed by Hussain (1986) on
turbulent jets (figure 9a).

3.2.2. Turbulence production in the prism wake
If one considers the prism wake as two stacked mixing layers or asymmetric wall
jets, then the antisymmetric twin tail morphology comes as no surprise. However, the
shear layers’ non-symmetry brings about the issue of negative production, in which the
zeros of the mean velocity gradient and the mean momentum transfer do not always
coincide. The incongruence produces small regions where the mean velocity gradient
and the mean momentum transfer are opposite-sign (figure 8a). The appearance of the
cavity in figure 7(b) is precisely due to the negative production. The dynamic Koopman
mode animates the cavity’s gradual formation and intrusion into the originally one-piece
structure, breaking it apart into the near-wake tail and wall-adhering blob substructures.

The source of turbulence production is vortex stretching and fluid entrainment.
According to the serial work of Hussain, a substructure, known as ribs, arises from the
stretching of the primary longitudinal rolls (Hussain & Zaman 1980; Hussain 1981, 1986;
Hussain & Hasan 1985). While the shear layers continuously deposit vorticity into the rolls
(the process illustrated by M1), the ribs wrap around them in a helical fashion to enrich the
longitudinal core’s spanwise content. Vortex stretching drives the incessant entrainment of
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Figure 7. Normalized dynamic Koopman mode (−1 to 1) of M5 (St5 = 0.0497) of P inside the flow domain
and on the walls of the prism at (a) t* = 0 and (b) t* = 2.24980: iso-surfaces ±0.25 of P (top left);
mid-prism-span slice of P (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls,
respectively (bottom from left to right). Multimedia file slowed by a factor of 500.

irrotational fluid into the vortex structures, and the location of fluid mixing is precisely at
the rib–roll interface. This rib–roll entrainment process is like how a helically ribbed shaft
rotates and draws meat into a meat grinder. As the shear layer curves towards the prism
base, the negative production isolates the blob from the tail. Consequently, the rib–roll
helix is imprinted onto the downstream wall, causing a staggered pattern in which the
separatrix of the ribs separates the positive and negative regions (see figure 8b).
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Figure 8. Normalized mode shapes (−1 to 1) of M5 (St5 = 0.0497) of |U| inside the flow domain and on the
walls of the prism (a) t* = 0 and (b) t* = 2.24980: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of
|U| (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom
from left to right). Multimedia file slowed by a factor of 500.

In sum, one may trace the shared origin of the Class 1 mechanisms, namely M1 and
M5, to the shear layer dynamics, the associated Bérnard–Kármán shedding and turbulence
production. Class 1 corresponds to the most natural, energetic flow field structures that
dominate the reactions of the on-wind wall. Their similarity in dynamical content also
renders the three on-wind walls as a spectrally coupled fluid–structure interface, despite
their geometric differences. However, the role of vortex stretching in turbulence production
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Figure 9. (a) Contour of time-averaged production and negative production (dotted) showing coherent
structures in the near field of an axisymmetric jet at the instant of pairing in the jet column mode at x ≈ 1.75D.
Image taken from figure 3 of Hussain (1986). (b) Direct numerical simulation (top left) and a schematic
illustration (top right) of rib–roll dynamics; flow details around a saddle (bottom left) and a more realistic
picture of ribs and rolls. Image taken from figure 12 of Hussain (1986).

can be summarized as the consistent thinning (on statistical average) of fluid elements
in the direction perpendicular to the stretching, reducing the radial length scale of the
associated vortical structures and ultimately driving the downward cascade into the
dissipative scales.
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Figure 10. Normalized mode shapes (−1 to 1) of M3 (St3 = 0.2422) of |U| inside the flow domain and on the
walls of the prism at (a) t* = 0 and (b) t* = 1.92840: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice
of |U| (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom
from left to right). Multimedia file slowed by a factor of 500.
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4. Phenomenological relationship (module 5) – Class 2

While the Class 1 mechanisms overwhelm the on-wind walls, their influence on the
downstream wall is far from a monopoly. Part 1 identified four ancillary peaks at
St3 = 0.2422 (M3), St7 = 0.0683 (M7), St9 = 0.1739 (M9) and St13 = 0.1925 (M13), which
overshadow the downstream wall. This section will analyse the phenomenology of the
Class 2 mechanisms.

4.1. M3 – second harmonic
To begin, figure 10 presents the normalized dynamic Koopman mode M3 (St3 = 0.2422)
of |U| inside the flow domain and on the walls of the prism. The coherent structures
are typical of the widely reported harmonic excitation (Ducoin, Loiseau & Robinet
2016; Kutz et al. 2016). It is also well known that the development of turbulence links
closely to spatiotemporal wavefronts (Sengupta, Rao & Venkatasubbaiah 2006; Sengupta
& Bhaumik 2011; Bhaumik & Sengupta 2014), so the detection of harmonics supports the
investigation’s correctness. The frequency St3–2St1 confirms M3 is the second harmonic.
Though spared from presentation, we also identified higher harmonics like the third
harmonic M16 (St16 = 0.3664) St16–3St1. M3 plays a significant role in the spatiotemporal
composition of the flow field (ranks the 4th in table 1) and the downstream wall (ranks the
9th), but its impacts on the on-wind walls are peripheral (ranks the 14th, 13th and 19th
for BC, DA and AB, respectively). The observation substantiates a rudimentary principle
– a dominant flow field mechanism does not necessarily incite strong reactions from
the structure. Even after the global linearization optimally eliminated nonlinearities, the
mechanisms of fluid–structure reactions/interactions are still perplexingly entwined.

As expected, the crosswind walls display the reattachment-type reactions, conforming
to its harmonic lineage. The downstream wall displays a twin-band pattern instead of the
mono-band structure of M1. For example, in figure 10(a), the negative pressure resides in
the midspan, and the positive pressures appear near edges C and D. The opposite pressures
are separated by two symmetric bands, doubling that of the fundamental mode in echo of
the second harmonic. The structure reaction results from an axis-centric wake structure,
which detaches the downstream wall starting from the midspan while its two legs linger on
the rear edges. This arc oval shape induces a midspan suction with two positive-pressure
zones near the edges (see figure 10a).

4.2. M7 – subharmonic
Next, figure 11 presents the normalized dynamic Koopman mode M7 (St7 = 0.0683) of
|U| inside the flow domain and on the walls of the prism. Aside from their frequency,
M7 and M3 exhibit striking similarities. M7, too, originates from the shear layers. Its
coherent structures are axis-centric about the wake centreline (particularly evident in P in
the Appendix figure 20). Like M3, M7 also has a considerable role in the flow field (ranks
the 8th) and the downstream wall (ranks the 6th), but only triggers lukewarm reactions
from the on-wind walls (ranks the 11th, 21st and 17th for BC, DA and AB, respectively),
The indifference of the on-wind walls (or the susceptibility of the downstream wall) to
Class 2 mechanisms is in sharp contrast with the Class 1 mechanisms, supporting the
shared lineage of M7 and M3. For its frequency St7–0.5St1, M7 is the subharmonic
of the primary structure M1. Our analysis also discovered that M6 (St6 = 0.0745) is the
broadband twin of M7, whose mode shape is merely opposite-sign (Appendix figures 21
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and 22). Ducoin et al. (2016) also made similar observations on the subharmonic peak in
the wake of an SD7003 airfoil.

4.3. M9 – ultra-harmonic
After pinpointing the second harmonic M3, third harmonic M16 and subharmonic M7,
a natural next step is to search for the ultra-harmonic: M9 is located with a frequency
St9–1.5St1. Figure 12 presents the normalized dynamic Koopman mode M9 (St7 = 0.1739)
of P inside the flow domain and on the walls of the prism, illustrating the axis-centric and
sequential arrangement of the coherent structures (also |U| in the Appendix figure 23).
As anticipated, the downstream wall is again acutely sensitive to the excitation of the
ultra-harmonic. M9, ranking only the 11th in the flow field dominance, generates the 2nd
most impactful Class 2 reaction on the downstream wall.

Class 2 mechanisms root from harmonic excitation and are responsible for complicated
patterns on the downstream wall. The similarity between M3, M7 and M9 unilaterally:

(1) originate from the shear layers with a clear connection to the Class 1 mechanisms
(i.e. development of turbulence);

(2) form inside the prism base (<2.5D) where negative base pressure is incurred; and
(3) remain axis-centric as coherent structures convect downstream.

4.4. M13 – 2P mode
At last, figure 13 presents the normalized dynamic Koopman mode M13 (St13 = 0.1935)
of P inside the flow domain and on the walls of the prism. M13 resembles the other
harmonics by dominating dynamics on the downstream wall, but fundamentally differs
because its coherent structures are not axis-centric. Instead, two parallel, antisymmetric
sequences form on either side of the wake axis. The reaction M13 instigated on the
downstream wall is also different from its harmonic peers. The mono-band picture appeals
to that of the primary structure M1 (also |U| in the Appendix figure 24).

To rationalize M13, we look into its morphology. Three opposite-sign pairs are found in
the wake between 0 and 5D. In the same region, only two opposite-sign pairs are found for
M1. Considering its frequency St13–1.5St1, M13 is likely a second ultra-harmonic of the
fundamental structure. However, unlike the axis-centric sequence of M9, the bi-sequential
layout of M13 suggests its strong connection with the Kármán street.

M13’s morphology alludes to the 2P mode originally observed in the wake of a vibrating
cylinder after surpassing the initial branch (Williamson 1996; Williamson & Govardhan
2004). As described by Williamson & Roshko (1988), the 2P transition is incited when
a cylinder’s crosswind motion surpasses a critical value, generating a phase difference
between two sub-vortices in a single shedding cycle. The phase difference prevents
like-sign vortex amalgamation, and hence 2-Pairs (2P) of vortices instead of 2-Single (2S)
ones form in the Kármán street. On this note, we must highlight the differences between
the test subject in Williamson & Roshko (1988) and herein, which are aeroelastic versus
stiff, and cylinder versus prism.

Nevertheless, is it possible that the 2P mode is a natural ultra-harmonic structure of
the bluff body wake? One may rationalize how an oscillating cylinder generates phase
differences in the Bérnard–Kármán vortex shedding: lacking sharp edges, a cylinder
must rely on crosswind motions to prematurely break the turbulent sheet before vortex
amalgamation. If the motions are not substantial enough, the wake remains in the preferred
2S state. However, in the reference frame of the cylinder, the only difference between a
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Figure 11. Normalized mode shapes (−1 to 1) of M7 (St7 = 0.0683) of |U| inside the flow domain and on the
walls of the prism at (a) t* = 0 and (b) t* = 4.49960: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice
of |U| (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom
from left to right). Multimedia file slowed by a factor of 500.

rigid and vibrating cylinder is the curvature of the shear layers, such that the greater the
oscillation, the more curved the shear layers and the earlier the reattachment.
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Figure 12. Normalized mode shapes (−1 to 1) of M9 (St9 = 0.1739) of P inside the flow domain and on the
walls of the prism at (a) t* = 0 and (b) t* = 1.92840: iso-surfaces ±0.25 of P (top left); mid-prism-span slice
of P (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom
from left to right). Multimedia file slowed by a factor of 500.
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Figure 13. Normalized mode shapes (−1 to 1) of M13 (St13 = 0.1925) of P inside the flow domain and on the
walls of the prism at (a) t* = 0 and (b) t* = 2.89260: iso-surfaces ±0.25 of P (top left); mid-prism-span slice
of P (top right); the bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom
from left to right). Multimedia file slowed by a factor of 500.
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What if other mechanisms can enhance the curvature for premature reattachment to
the same effect? The shortening of the formation length with Re is widely known for
the prism wake (Gerrard 1966; Williamson & Govardhan 2004), which is indeed due
to increasingly curved shear layers. Compared to a curvilinear cylinder, a prism’s sharp
edges can incisively cut turbulent sheets when reattachment takes place. This means
structure oscillation, as a way to encourage vortex shedding, is substitutable by sharp
edges, nurturing a possibility for the premature shedding of phase-shifted vortices. If
so, the 2P shedding in the rigid prism wake becomes spectrally embedded dynamics.
Finally, the layouts of the other harmonics display a striking resemblance with that of
the 2S mode (Williamson & Govardhan 2004; Morse & Williamson 2009) – axis-centric,
alternating and vividly mono-sequential. Despite the phenomenological inferences, this
topic demands further investigations.

5. New phenomenon: vortex breathing

At this point, the origins of the six dominant excitation-reaction mechanisms have been
underpinned. The dynamic Koopman modes described the prism wake phenomenology
with accuracy and insights. This paper also demonstrated the methodical procedure to
arrive at the conclusions, which is replicable to other flows. One may also extend the
conclusions to practical benefit: users can now target a specific fluid phenomenon to
eliminate an undesired structural reaction. For example, one can use a splitter plate to
prevent the axis-centric harmonic excitations, thus eliminating pressure extremities on
the downstream wall and weaken turbulence development in the wake (Unal & Rockwell
1988b; Song et al. 2017).

In light of the preceding discussions, a new phenomenon was discovered. We detected
an intriguing feature of the detached wake structures via dynamic visualization. Take
the multimedia file of figure 3 as an example, the coherent structures decay in intensity
immediately after breaking their turbulent sheets with the separation bubbles. The decay,
manifested as the contraction of the iso-surfaces and fading of colour between D and 3D, is
dissipation-wise natural and fully expected. However, surprisingly, these structures expand
in size and grow in intensity between 3D and 5D. This contraction-expansion motion
repeats itself as if the vortices are inhaling and exhaling, and hence the vortex breathing.

The vortex breathing is fascinatingly perplexing because it disobeys intuitions. On a
global scale, the total energy decays when all the modes are added together. Yet, for a single
mode, if the initial intensity decay is related to the inter-molecular viscous dissipation,
then what mechanisms account for the subsequent growth? After inspection, the breathing
phenomenon is attributed to the energy exchange in and out of the discrete frequency
bins. Given disparities in periodicity, the inhale of one Koopman mode corresponds
to the exhale of some others. This exchange of modal energy is an accurate reflection
of the wake’s dynamic nature. A vortex’s downstream convection incessantly injects
vorticity into the irrotational fluid in its path, reeling them into circulation. It, too,
constantly deposits viscously dissipated fluid in its trail. Therefore, there is a constant
energy exchange in the circulation-entrainment-deposition process, which is captured
by the energy in and out of a specific eigenfrequency. The onset, development and
dissipation of turbulence also conform to spatiotemporal wavefronts, which certainly
involve periodic/harmonic exchanges of energy. This also explains why sinusoids are
excellent descriptors of the wake dynamics (see figure 8 in Part 1). The local, mode-wise
vortex breathing phenomenon also calls for thoughts on its link to the energy cascade –
the globally downward trend that permits inverse energy transfer (i.e. inverse cascade) on
the local scale.
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On a methodical note, vortex breathing demonstrates the importance of the dynamic
Koopman mode. From figures 3(a) and 3(b) alone, the coherent structures between
3D and 5D appear, and quite naturally, less intense, less compact and more dispersed
compared to their successors between D and 3D. The breathing motion would have been
overlooked by a static Koopman mode. Conversely, a logical explanation would have been
extremely difficult if the static snapshot was taken at the moment of exhaling, in which the
downstream vortex appears more energetic. Dynamics of acute spatiotemporal sensitivity
could have also been easily overlooked by static images due to the issue of phase.

6. Conclusions

This serial effort proposed a linear-time-invariance (LTI) notion, or the Koopman
linearly time-invariant (Koopman-LTI) modular architecture, to associate fluid excitations
and structure reactions. The LTI models reduced the pedagogical prism wake in the
shear layer transition II to six dominant excitation-reaction mechanisms in Part 1. This
Part 2 dynamically visualized the Koopman modes and unveiled new insights into
the phenomenology of the prism wake. Specifically, two dynamic Koopman modes at
St1 = 0.1242 and St5 = 0.0497 describe shear layer dynamics, Bérnard–Kármán shedding
and turbulence production, which overwhelm the upstream and crosswind walls by the
instigating reattachment-type of reactions. The dynamical similarity of the three walls
also means they can be treated as a spectrally unified fluid–structure interface, despite
their geometric disparity. Another four harmonic counterparts, namely the subharmonic
at St7 = 0.0683, the second harmonic at St3 = 0.2422 and two distinct ultra-harmonics at
St7 = 0.1739 and St13 = 0.1935, dominate the downstream wall and only marginally affect
the others. The 2P wake mode is also observed as an embedded harmonic of the bluff-body
wake. This work also methodically proposed the dynamic Koopman mode, through which
the vortex breathing phenomenon was discovered, which describes the constant and
periodic energy exchanges in wake’s circulation-entrainment-deposition processes and
turbulence development.
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Figure 14. Normalized mode shapes (−1 to 1) of M1 (St1 = 0.1242) of u inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of u (top left); mid-prism-span slice of u (top right); the bottom (DA),
upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.
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Figure 15. Normalized mode shapes (−1 to 1) of M1 (St1 = 0.1242) of v inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of v (top left); mid-prism-span slice of v (top right); the bottom (DA),
upstream (AB), top (BC), and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.
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Figure 16. Normalized mode shapes (−1 to 1) of M1 (St1 = 0.1242) of w inside the flow domain and on the
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Figure 17. Normalized mode shapes (−1 to 1) of M2 (St2 = 0.1180) of |U| inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of |U| (top right); the bottom (DA),
upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.

0 –1.0

–0.5

0

0.5

1.0

D

D

0

0

0

–2D
–D

–D

D
D

2D

0

–2D
4D

2D
0

2D

3D3D 5D
5D

7D
7D

2D

3D

4D

A
0 –1.0

–0.5

0

0.5

1.0

A

D

2D

3D

4D

B
0 –1.0

–0.5

0

0.5

1.0

B

D

2D

3D

4D

C
0 –1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

C

D

2D

3D

4D

D

St4 = 0.1304   t∗ = 0

M13 - |U |

Figure 18. Normalized mode shapes (−1 to 1) of M4 (St4 = 0.1304) of |U| inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of |U| (top right); the bottom (DA),
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Figure 19. Normalized mode shapes (−1 to 1) of M5 (St5 = 0.0497) of Ω̃R inside the flow domain and
on the walls of the prism: iso-surfaces ±0.25 of Ω̃R (top left); mid-prism-span slice of Ω̃R (top right); the
bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right).
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Figure 21. Normalized mode shapes (−1 to 1) of M6 (St6 = 0.0745) of |U| inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of |U| (top right); the bottom (DA),
upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.
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Figure 22. Normalized mode shapes (−1 to 1) of M6 (St6 = 0.0745) of P inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of P (top left); mid-prism-span slice of P (top right); the bottom (DA),
upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.

959 A15-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.36


C.Y. Li and others

0 –1.0

–0.5

0

0.5

1.0

D

D

0

0

0

–2D
–D

–D

D
D

2D

0

–2D
4D

2D
0

2D

3D3D 5D
5D

7D
7D

2D

3D

4D

A
0 –1.0

–0.5

0

0.5

1.0

A

D

2D

3D

4D

B
0 –1.0

–0.5

0

0.5

1.0

B

D

2D

3D

4D

C
0 –1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

C

D

2D

3D

4D

D

St9 = 0.1739   t∗ = 0

M9 - |U |

Figure 23. Normalized mode shapes (−1 to 1) of M9 (St9 = 0.1739) of |U| inside the flow domain and on the
walls of the prism: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of |U| (top right); the bottom (DA),
upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right). Multimedia file
slowed by a factor of 500.
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Figure 24. Normalized mode shapes (−1 to 1) of M13 (St13 = 0.1925) of |U| inside the flow domain and
on the walls of the prism: iso-surfaces ±0.25 of |U| (top left); mid-prism-span slice of |U| (top right); the
bottom (DA), upstream (AB), top (BC) and downstream (CD) walls, respectively (bottom from left to right).
Multimedia file slowed by a factor of 500.
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MEZIĆ, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech.
45 (1), 357–378.

MIYANAWALA, T.P. & JAIMAN, R.K. 2019 Decomposition of wake dynamics in fluid–structure interaction
via low-dimensional models. J. Fluid Mech. 867, 723–764.

MORSE, T.L. & WILLIAMSON, C.H.K. 2009 Fluid forcing, wake modes, and transitions for a cylinder
undergoing controlled oscillations. J. Fluids Struct. 25 (4), 697–712.

MULD, T.W., EFRAIMSSON, G. & HENNINGSON, D.S. 2012 Flow structures around a high-speed train
extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput. Fluids
57, 87–97.

NAKAMURA, Y. & NAKASHIMA, M. 1986 Vortex excitation of prisms with elongated rectangular, H and
[vdash] cross-sections. J. Fluid Mech. 163, 149–169.

ONGOREN, A. & ROCKWELL, D. 1988 Flow structure from an oscillating cylinder Part 1. Mechanisms of
phase shift and recovery in the near wake. J. Fluid Mech. 191, 197–223.

PAGE, J. & KERSWELL, R.R. 2019 Koopman mode expansions between simple invariant solutions. J. Fluid
Mech. 879, 1–27.

PORTELA, A.F., PAPADAKIS, G. & VASSILICOS, J.C. 2017 The turbulence cascade in the near wake of a
square prism. J. Fluid Mech. 825, 315–352.

RAISSI, M., WANG, Z., TRIANTAFYLLOU, M.S. & KARNIADAKIS, G.E. 2019 Deep learning of
vortex-induced vibrations. J. Fluid Mech. 861, 119–137.

ROSHKO, A. 1993 Perspectives on bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 49 (1–3), 79–100.
ROWLEY, C.W. & DAWSON, S.T.M.M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid

Mech. 49 (1), 387–417.
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