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Abstract

A method for constructing a pair of biorthogonal interpolatory multiscaling functions is
given and an explicit formula for constructing the corresponding biorthogonal multiwavelets
is obtained. A multiwavelet sampling theorem is also established. In addition, we improve
the stability of the biorthogonal interpolatory multiwavelet frame by the linear combination
of a pair of biorthogonal interpolatory multiwavelets. Finally, we give an example illustrat-
ing how to use our method to construct biorthogonal interpolatory multiscaling functions
and corresponding multiwavelets.
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1. Introduction

In recent years, multiscaling functions and multiwavelets have been studied exten-
sively (see [1,2,4,5,7,8]). Recently, biorthogonal multiwavelets have also been the
subject of considerable interest. In [6, 10-12], methods for constructing compactly
supported biorthogonal multiwavelets were given.

Sampling theorems play a fundamental role in digital signal processing. The
classical Shannon sampling theorem declares that bandlimited signals can be exactly
represented by their uniform samples as long as the sampling rate is not less than
the Nyquist rate. This theorem has been widely used in many fields, and generalized
into many different forms. For example, some wavelet sampling theorems have been
established within the last decade [14, 18]. In [18], Zhou investigated interpolatory
orthogonal multiscaling functions and multiwavelets, and established a multiwavelets
sampling theorem. In this paper, we study how to construct biorthogonal interpolatory
multiscaling functions and corresponding multiwavelets.
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The paper is organized as follows: In Section 2, we briefly recall the concept
of multiresolution analysis. In Section 3, we introduce a procedure for construct-
ing biorthogonal interpolatory multiscaling functions, and establish a multiwavelets
sampling theorem. In Section 4, we give a method for constructing biorthogonal in-
terpolatory multiwavelets. In Section 5, we improve the stability of the biorthogonal
interpolatory multiwavelets frame by the linear combination of a pair of biorthogonal
interpolatory multiwavelets. In Section 6, we give an example illustrating how to use
our method to construct a pair of biorthogonal interpolatory multiscaling functions
and corresponding multiwavelets.

2. Multiresolution Analysis

Let ®(x) = (¢1, ¢2)7, ¢1, 2 € L2(R), satisfy the two-scale matrix equation

(x) =) Pd(2x —k), 2.1)
keZ
where {P,} is a finitely supported sequence of 2 x 2 matrices called the two-scale
matrix sequence of ®. We call ®(x) a multiscaling function with multiplicity two.
By taking the Fourier transform of both sides of (2.1), we have
w _ _—iw/2
5 ) y =€ s
where P(z) = (1/2) 3, Pi2" is called the two-scale matrix symbol of { P} of ®.
Define a subspace V; C L%(R) by

dw) = P(z)&(

V; = closp g (¢z:j,k(x) £=1,2k e Z), jeZ.

Henceforth, for fy(x) € L% we will use the notation f,.(x) = 2//2f,(2/x — k).
Let W;, j € Z, denote the complementary subspace of V; in V,,,, and let the vector-
valued function W (x) = (¥ (x), ¥2(x))7, ¥,(x) € L% £ = 1,2 constitute a Riesz
basis for W;, that is,

W, = clospr) (Vejux) : €=1,2,k € Z), jeZ

It is clear that v, (x) and v, (x) are in Wy C V,. Hence there exists a sequence of
matrices {Qy}rez such that

V() =) Qud(2x —k). (22)

keZ

By the two-scale relation (2.2) of ¥(x), we have ¥(w) = Q(z)®(w/2), where
Q@) =(1/2) Zkez Qka-
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We call ®(x) = (¢1(x), $2(x))7 and ®(x) = (¢1(x), ¢(x))” a pair of biorthog-
onal multiscaling functions, if (®(.), <I>( —n)) = 8., n € Z. The functions

U(x) = (Y1(x), ¥2(x))T and ¥(x) = (Y (x), wz(x))T will be said to be a pair of
biorthogonal multiwavelets associated with & and ®, if &, & and ¥, ¥ satisfy

(@(), ¥(—n)) = (¥(), 8 —n) =0 and (¥(), ¥( = n)) =b,b,

forn € Z, where O and I, denote the zero and identity matrices, respectively.
For simplicity, let P(z) and Q(z) be the two-scale symbol matrices of & and W,
respectively.

3. Biorthogonal Interpolatory Multiscaling Functions

A multiscaling function ®(x) satisfying (2.1) is called interpolatory if ¢,(x) and
¢, (x) are continuous, compactly supported and satisfy fork € Z,£ =0, 1,

I ,
o; (k + 5) =8 objer1n J=1,2. (3.1

The interpolatory condition (3.1) means that ¢, (x) is cardinal at integers and vanishes
at half integers; ¢, (x) is cardinal at half integers and vanishes at integers.

Let ¢, = (1,0)7 and e; = (0, 1)7. Then the interpolatory condition (3.1) is
equivalent to the equations

1
(b(k) = (Sk‘oel and ¢ (k + '2") = 5,('062. (32)
By (2.1) and (3.2), we obtain
1
d’(k) = 5,"061 = PZkel and ¢ (k + E) = (sk_()ez = P2k+1el~ (33)

Equation (3.3) means that the first column of matrices P, can be obtained. Hence

| 111
P(z)e; = 2 |:Z Pyez* + Z P2k+1e122k+li| =3 [Z] . 34
% %

By (3.4), we know that if a multiscaling function @ (x) possesses the interpolatory
property, then the first column of its two-scale matrix symbol P (z) must have the form
(1/2)[1, z]".

Next, we suppose that a pair of biorthogonal multiscaling functions ®(x) and & (x)
are both interpolatory. Then the two-scale matrix symbols have the respective forms

I HE) 5o 1[1 HQ@
P(z)_§|:Z G(z)] and P(Z)_2|:z G(z)]' (3.5)
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where H(z), G(z) H(z) and G (z) are all Laurent polynomials.

Let ®(x) and d(x) be a pa1r of biorthogonal multiscaling functions, with two-
scale matrix symbols P(z) and P@2), respectively. Then P(z) and P@2) satisfy the
following identity [12]:

P@QPQR)*+P(-)P(-2)' =1, |z]1=1. (3.6)

Here and throughout, the asterisk denotes complex conjugation of the transpose.
In connection with Equation (3.5), Equation (3.6) is equivalent to H(z), G(z), H(2)
and G(z) satisfying the following four equations:

H@H@)* + H(-2)H(-2)* =2, (3.7)
GG+ G(-)G(-)* =2, (3.8)
H@)G @'+ H(-2)G(-z2)* =0, (3.9)
G()H@)* + G(-)H(-2)* = 0. , (3.10)

To construct P(z) and P(z), thatis, H(z), G(z), H (z) and G(z), we need the following
theorem.

THEOREM 3.1. Let ®(x) and <‘I~>(x) be a pair of biorthogonal multiscaling functions,
with two-scale matrix symbols P(z) and P(z), respectively. Then condition (3.6) holds
if and only if Equation (3.7) holds and

GQ) =g H(-2", G()= = ”’*'H( ~2)", 3.11)

where g is nonzero constant and p is in Z.
Further, ®(x) and ®(x) both satisfy the following equations:

- 1 = 1
Q(k) = d’(k) = 8/“001, L] (k + 5) = (k + 5) = 8k'0e2, keZ.

PROOF. Note that if a Laurent polynomial vanishes on the unit circle, then it is
identically zero on C\{0}. Let P(z) and P(z) be the two-scale matrix symbols
defined in Equation (3.5). Suppose that condition (3.6) holds. Hence, ¥z € C\{0}

P(2)P(2)* + P(-2) P(~2)*

_1 [2+H(z)H<z)*+H< H(-2)  H@GQE"+H(2)G(~2)" ]
T4 GA@'+G6(-2A-D"  2+G@G@" +G(-9G(-2)"
= 12.
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Comparison of the entries of this equation provides (3.7)—(3.10). It is clear that H (z)
and H (—z) have no common zero in C\{0}. Since H ()G (z)* + H(—z)G(—2)* = 0,
|z] = 1, there exists a Laurent polynomial g(z) such that

G(-2)*=§(H®@, lz|=1. (3.12)

By Equation (3.7), H (z)and H (—2) have also no common zero in C\ {0}. Similarly,
there exists a Laurent polynomial 4(z) such that

H(-7)) =h(@)G6R)", lzl=1. (3.13)
Considering Equations (3.8), (3.12) and (3.13), we have
HQG@ [1+E@h@] =0, lz1=1.
Since neither H(z) nor G(z)* is identically zero, g(z)ft(z) = —1,Vz € C\{0}. This
means that g(z) and A(z) have no zero in C\{0}. Therefore, let g(z) = gz°, where g

is some nonzero constant and § € Z. Then h(z) = -(1/g)z75.
Similarly, there exist two Laurent polynomials g(z) and A(z) such that

G(-2)'=g@H®E, H(-2=h@GR" =1,

where g(z) = gz° and h(z) = —(1/g)z".
Hence we have

GG +G(-6(-2)" =gz~ [HQAQ" + H-DH (-2
=2gg7 " =2.
Therefore gg = 1l and s = §.
By Equation (3.13), we have
- . 1 ..
H(=2) = h(2)G(2)"* = —Ez"g(—Z)‘H(—z) = (=1)’"'H(-2).
However, H (—z) is not identically zero. Hence s is odd. Therefore

- - 1
6@ =g A0 amd G = FHED

for some nonzero constant g and p € Z. This proves condition (3.11) of Theorem 3.1.
Conversely, if (3.7) and (3.11) are true, then condition (3.6) can be easily obtained.
Next, we prove the second statement of Theorem 3.1. Suppose that ®(x) satisfies

(2.1). Noticing that P(z) defined in (3.5) is the symbol of the sequence { P} associated

with ®(x) and applying (2.1), we have

Bk) =) P®k —£) = Puey =001, keZ.
teZ
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Similarly,

1
L] (k + E) = Z P,<1>(2k +1- E) = sz+1€1 = (Sk_oez, keZ.
teZ
In the same way,
dk) = Z P®(2k — £) = Pye, = 6,08, ke Z,

teZ

- 1 Y 5
o (k + 5) = Z P®(2k +1—¢€) = Pyyi€1 =806, keZ.
tezZ

This means that $ (x) and ®(x) are interpolatory. This completes the proof. a

Next we characterize interpolatory multiscaling functions. Our characterization is
based on the joint spectral radius which was defined by Rota and Strang [9] and which
was introduced into the investigation of wavelets by Daubechies and Lagarias [3].

Let o/ be a set of N x N matrices. With an arbitrary matrix norm || - |, the joint
spectral radius of & is defined to be

Poo(#) = lim max {41 Az -+ Al 1 Ay, Ay, ..., A e &)
n—0o0

For the computation of the joint spectral radius, see [13, 16].

Our characterization involves the joint spectral radius of two matrices 2/ restricted
to certain common invariant subspaces. For v € CV, denote V(v) as the minimal
subspace containing v, which is invariant under each matrix in &. Then oo (% |y ()
denotes the joint spectral radius of the restrictions of matrices in & to V (v).

In our case, the elements in &/ are two matrices. Suppose that { P} is a sequence of
2 x 2 matrices supported on [N;, N,] with Ny < N,: two integers. Then two matrices
are defined by

Ny—1

Aj= [P2k—l+j]k_l=Nl , J=0,1 (3.19)

Given a two-scale matrix sequence, the existence of compactly supported distribu-
tional solutions of the two-scale matrix equation (2.1) can be checked by the criteria in
[15]. Considering a continuous solution, its function values at integers v(j) = ®(})
satisfy

D Pyav®) =v(j), VieZ

keZ

In [17], it was shown that for a two-scale matrix sequence P, supported on [N}, N,]
and a finitely supported sequence of 2-vectors satisfying (3.14), there exists a vector

https://doi.org/10.1017/51446181100012694 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100012694

(7] Biorthogonal interpolatory multiscaling functions and corresponding multiwavelets 91

®(x) = [¢(x), $2(x)]" of compactly supported continuous functions on R such that
(2.1) holds, and ® (k) = v(k) if and only if v is supported in [N, + 1, N, — 1], and

0 ({A0|V(Vu)1 AllV(Vu)}) <1

Here Vv = v — v(- + 1). In this case, ®(x) is supported in [N;, N,].

In[18], applying the above conclusion with v(j) = §; ¢4, a necessary and sufficient
condition for the two-scale matrix equation (2.1) to have a continuous compactly
supported solution ®(x) satisfying interpolatory condition (3.1) was established.

THEOREM 3.2. Suppose that P(z) P(z) defined in (3.5) are 2 sequences of2x2
matrices supported by [Ny, N,), [N 1y Nz] respectively. Then P(z), P(z) can generate
a pair of biorthogonal interpolatory multiscaling functions if and only if the following
conditions hold:

(a) N1<O<N2,ﬁ,<0<ﬁ2;

() poo({Aclvewsy, Ailven}) < 1, pw({ZO|V(V6); KllV(Va)}) < 1, where § is the
delta sequence;

(c) P(2), ﬁ(z) defined in (3.5) satisfy (3.7) and (3.11).

PROOF. According to Theorem 5.1 of [18], P(z) and P(z) can generate two interpo-
latory multiscaling functions ¢(x) and ®(x) if and only if conditions (a) and (b) hold.
Again by Theorem 3.1, ®(x) and & (x) constitute a pair of biorthogonal multiscaling

functions if and only if condition (c) holds.
Sampling theorems play a fundamental role in digital signal processing. Next, we

give a multiwavelet sampling theorem based on a pair of biorthogonal interpolatory
multiscaling functions. O

THEOREM 3.3. Let ®(x) = (¢(x), p2(x))7 and ®(x) = (1(x), $(x))7 be a
pair of biorthogonal multiscaling functions. If the two functions have the same
interpolatory property, and satisfy the interpolatory condition (3.1), then for any
continuous signal f(x) € Vy, we have

1
f(x) = Zz-wz[ ( ) f(zeN +2~+1>] By o(x). (3.15)

teZ

Similarly, for any any continuous signal g(x) € Vv, we have

14 .
g(x) = 22-”/2[( )g<2N+2N—ﬂ,)]¢N,e(x>. (3.16)

teZ
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PROOF. Let Vy be the closed subspace spanned by
[®nex) =2""0(2"x - ¢), teZ}.
If a continuous signal f(x) € Vy, then it has the following decomposition:

f(x) = Z C§_¢¢N.t(x)a

teZ

with each CL' . being a 2-vector. According to the interpolatory property (3.1) or (3.2),
the coefficients C;' . can be exactly given by the samples of the signal

£ 4 1
_ A=N/2
=i () (54 )

This means (3.15) holds. Similarly, we can prove that (3.16) also holds. (]

4. Biorthogonal Interpolatory Multiwavelets

In the previous section, we gave a method for constructing biorthogonal multiscal-
ing functions with multiplicity 2 using the matrix symbols P(z) and P(z). In this
section, we construct the corresponding biorthogonal interpolatory multiwavelets.

Let ®(x) and ®(x) bea pair of biorthogonal multiscaling functions and let P(z) and
P(z) be two-scale matrix symbols. Suppose W (x) and W (x) are a pair of biorthogonal
multiwavelets associated with ®(x) and ®(x), respectively, and Q(z) and Q(z) are
the corresponding two-scale matrix symbols. Then

P(2)Q@)* + P(-2)Q(-2)* = 0,
P()Q@)* + P(-2)Q(-2)* = 0, @.1)
0@)0@)" + Q(-2)Q(-2)* = L.

To construct biorthogonal interpolatory multiwavelets associated with & (x) and & (x),
define two matrices Q(z) and Q(z) respectively by

_I1  -H@)

Q(Z) = 5 [Z —gZzP'Hﬁ(—Z)‘] and (42)
- 11 —H(2) .
@)= 3 L _%zzpn H(_z).] : (4.3)
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THEOREM 4.1. Let P(z) and P(z) defined in (3.5) be 2 two-scale matrix symbols
and let G(z) and G(z2) be given by (3.11). Also let H(z) and H(z) satisfy (3.7).
Let ®(x) and ®(x) be a pair of biorthogonal multiscaling functions with two-scale
matrix symbols P(z) and P(z), respectively. Then the symbols Q(z) and Q(z) given by
(4.2) and (4.3), respectively, can generate a pair of biorthogonal multiwavelets ¥ (x)
and \il(x) associated with ®(x) and (i(x).

Moreover, if ®(x) and ®(x) are continuous and interpolatory, then ¥ (x) and ¥ (x)
have the same interpolatory property, that is,

. 1\ - 1
W(k) = (k) =06, and W (k + 5) =¥ (k + 5) = 8002, ke Z.

PROOF. To prove Theorem 4.1, we need to check that the symbols P(z), P(2),
Q(z) and J(z) satisfy (4.1). In fact,

P()0@)* = Z

1 1 — H(2)H (2)* 7-
z— g2 H(—2)*H(2)* 1 - H@)H @)*

ﬁfz“‘H(z)H(—a}

Hence P(z) 0(2)* + P(—2) @(—z)* = O. In the same way,

P@O@*'+ P(-)Q(-=2)*=0 and Q(2)0@)" + Q(-2)Q(=2)" = b.

Noticing that Q(z) defined in (4.2) is the symbol of the sequence {Q,} associated
with ¥ (x) and applying (2.2), we have

(k) =D Q:b(2k —8) = Ques =061, ke Z.

leZ
Similarly,
1
1\ (k + 5) = Z Qe®2k +1—€) = Qusi1 =502, keZ
1474

In the same way, we can prove that W (k) = &, 0e; and W(k + 1/2) = &, ¢€3, k € Z.
This means that W(x) and ¥(x) are interpolatory. This completes the proof. a

5. Improvement of the Corresponding Multiwavelet Frame

The multiscaling function ®(x) = (¢, #2)7 is said to be stable if there are two
positive constants 0 < A < B < oo such that for any f(x) € Vy

2
AIFI2 < 3 3|80, ive @) < BIRIR. 5.1)

i=1 teZ
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A frame is called a tight frame, if A = B. Let ®(x) and & (x) be a pair of biorthogonal
multiscaling functions. Further, suppose Vy = Vy. Then in terms of frame theory,

2
%ufnz < Zuzzj [e bune)| < %ufuz (52)
and

2
12 = (6,8 = 3 D (60, i e ) (£, i)

i=1 teZ
By Theorem 3.3, we have, VO < < 1,

¢ ¢ 1 .
fx)=3 2M" [f(z_N) 1 f(z_N + 2~+1)] [aq>N_,(x) +(1— a)@N_,(x)]. (5.3)

tez

Equation (5.3) means that {a®y ,(x) + (1 — a)@,v,,(x)} constitutes a frame.
As we know, the more approximate a frame bounding A and B is, the stabler the
frame is. In terms of frame theory, we found an interesting result, as follows.

THEOREM 5.1. Under the conditions of Theorem 3.3, suppose that ®(x) satisfies
(5.1), and Vy = Vy. Then {a®y ((x) + (1 — )Py ((x)}, where 0 < a < 1, also form
a frame, and one which is stabler than the frame {®y ,(x)}.

PROOF. Let 8 = 1 — «. Thus, we have

i Z '(f(x), adine(x) + (1 - Ol)fi;i:N,e(/\’v))’2

i=1 leZ

= 22: Z ’(f(x)’ adi.y,(x) + ﬁd;"-'”"(x))r

i=1 teZ

_ XZ: Ea2 |(f(x); ¢i;N,¢(x))|2 + 8 I(f(x), ‘l;i:N,t(x)Hz

i=1 teZ

+ 2B (1(2), i o)) (£, B o)

2
=Y Y e i), dene ) + 2| {£0), B o) + 2288

i=1 teZ

In connection with (5.1) and (5.2), we have

2
(azA HBZ+ 2aﬁ> 112 < 3 3 (6600, i e6) + B )|

i=1 teZ

1
< (azB + ﬂzz + Zaﬂ) £l
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The above inequalities mean that {a Py (x)+ (- a)(i,v_((x)} is a frame, and with
frame bounds a®>A + B%/B + 2af and a*B + B?/A + 2af. Since A < B,

a’AB +2aBA + B? < a®AB + 208B + B2

Thatis, A[a’?B+2af+8?/A] < Bla®?A+2aB+B?/B]. Hence we have the following
inequality:

A o?A+ B+ 208

B " a?B+pL + 208

The above inequalities imply that the frame {a(b,v'[(x) + (- a)@N,,(x)} is stabler
than the frame {®y ((x)}. O

6. Example

We will provide an illustrative example of how to use our method to construct
biorthogonal interpolatory multiscaling functions and multiwavelets.

EXAMPLE 1. Let

H(z)=—1/—§z'2+{ - 3f+?z—%z" and
H()—f "+{+£4-2-z.

One can check that H (z) and H (z) satisfy (3.7). Suppose g = 1 and p = 0. By
(3.11),

V2, V2. 2
G(Z)-———4—Z +-2—Z——4— d

V2, N2, 3W2 V2 V2,
CQ=-gv-—Fo+ 773

PG =~ [1 ol E 2R 4 e %Zz} and 6.1)
P = [1 ER {Z | ] . 6.2)
o FREREN SN AR

Applying Theorem 3.2, P(z) and P (z) defined in (6.1) and (6.2) respectively, can
generate a pair of biorthogonal interpolatory multiscaling functions ®(x) and ®(x).
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By (4.2) and (4.3), we have
[0 -2 0 —¥2 1 -2
= 8 = 4 = 4
Q—2 L0 0 ] » Q—l -0 O ] ’ QO [0 % y
(0 -2 [0 £
o= 1 __%jl , O = 0 _{_5 , and
- o -2 A -2 I I
Q—] = O JTi ’ QO - O JT'ZZ ’ Ql = 1 _QT/E s
- [0 0 - [0 O
6:=[y 4] m o= g]

By Theorem 4.1, Q(z) = (1/2) 32__, 042" and Q(z) = (1/2) Zi=—| 0,2* can
generate a pair of biorthogonal interpolatory multiwavelets ¥ (x) and ¥ (x) associated
with ®(x) and &(x).
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