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A TRANSLATION PLANE OF ORDER 81
AND ITS FULL COLLINEATION GROUP

ViTo ABATANGELO

In this paper a new translation plane of order 81 is
constructed. Its collineation group is solvable and acts on the
line at infinity as a permutation group X which is the product
of a group of order 5 belonging to the center of XK with a
group of order 48 . A 2-Sylow subgroup of K 1is the direct
product of a dihedral group of order 8 with a group of order

2 . K admits six orbits. They have lengths L, 6, 12, 12, 2k,
24 .

1. Introduction

Let GF(q) be a Galois field of odd order q (= 5) and let F be
the regular spread of PG(3, q) . Suppose that F contains a set R of
reguli satisfying the properties

(i) R consists of (q+3)/2 reguli, Rl’ 32, cens R(q+3)/2 >

(ii) any two reguli of R have exactly two lines in common,

(iii) no three reguli of R have a line in common.
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Let U Ve the partial spread consisting of all the lines of the
reguii Ri (i =1, 2, .., (q+3)/2) and let IR denote the point set

covered by U . 1If Ré denotes the opposite regulus of Ri , the set U’
of all the lines of Ré is not a spread of IR because any point P of
IR belongs to two lines of U' . According to a result of Bruen [4], if a

subset V of U' is a partial spread then V contains (q+1)/2 1lines of
each Eé such that the union of these half-reguli is V . If there exists

such a partial spread V then one can obtain a new spread G = (F-U) v V
by replacing U with V . G will be called PB-derived from F (with
respect to (U, V) ). We can try to obtain a new partial spread V = XU
of IR by choosing only a suitable half of the lines of each opposite

regulus. As for B-derived spreads the existence problem is yet unsolved
except for q =5, 7, 11, 13 . Specific examples are given in Bruen's
paper [4] when g =5, 7T, in [5] and [72] when ¢ = 11 and in [13] when
g =13 .

In [4] Bruen also proved that if ¢ = 7 the collineation group of a
B-derived spread is the inherited group, that is, it is the subgroup of the
collineation group of PG(3, g) which leaves F invariant. The
collineation groups of the translation planes arising from the above

mentioned examples are determined [5], [12], [73].

In this paper the first example of a PB-derived spread is constructed
for q = 9 and the collineation group of the corresponding translation
plane is determined. It is a solvable group satisfying the properties

listed in the summary.

2. Notation and terminology

Notation and terminology are the same as in Bruen's paper [4]. The
reader is assumed to be familiar with the theory of projective planes given
in Dembowski [6] and in Hughes and Piper [7] and with the theory of

permutation groups given in Wielandt [14).
Let GF(9) be the quadratic extension of GF(3) = {0, 1, 2} . In
particular let us consider the polynomial x2 +x+ 2 (which is

irreducible in GF(3) ), % f GF(3) such that > +i +2 =0 and
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3=172, Wh=1i+1, 5=71+2, 6=2¢, T=1+2L, 8=2+2L ; so
Gr(9) = {0, 1, 2, 3, 4, 5,6, 7, 8} .

The homogeneous coordinates (x, ¥, 2, u) denote points in
PG(3, q) . The line joining the point Lrl, Yy» 35 ul] to the point
moreover if g, h, ..., W are elements of a group, then the subgroup

generated by ¢, h, ..., ¥ is denoted by (g, h, ..., w) .

3. Preliminaries
Before the example, the general relation between the spread F and

the Miquelian inversive plane M(q) over GF(q) is discussed briefly.
Assume that ¢q is odd and denote by & a non-square element of

GF(q) , so GF(qz) = {a+bt | a, b € GF(q), 2 s} . We define norm

2

N(a+bt) of a + bt of GF(@Q) , N(a+bt) = a” - sb® . Clearly

N(a+bt) € GF(q) ; moreover set N(p) = {a+bt I N(a+bt) = p} . M(q) is

considered the incidence structure whose points are the elements of

6F(¢°) v {»} and whose circles are the subsets of GF(qz) v {®»} of the
following types:

{xeyt | B((a-x)+(b-y)t) = o} ;
{(a+bt)+A(c+dt) | A € GF(q) v {=}} .

(I) a + bt + N(p)

(1I) C(a+bt, c+dt)
The spread F is the union of all the lines
((l’ 0’ o! 0)’ (0, 1’ O’ 0))! ((a, Sb, 0’ l), (b’ a’ l’ 0))

where a, b run over GF(q) . By a theorem of Bruck's ([3], also [4]),
the map

m-’((l, 0’ 0, 0)’ (0’ l’ 0’ 0))

a + bt »{((a, 8b, 0, 1), (b, a, 2, 0))

is an incidence preserving isomorphism between M(q) , with its points and

circles, and F , with its lines and reguli.

By Bruck's theorem, the problem of finding sets R of reguli
satisfying the properties (i), (ii), (iii) is equivalent to that of

constructing chains C of circles in M(q) satisfying the properties
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(i)' C comsists of (q+3)/2 circles, (), Cpy vovs Crpiay/n o

(ii)' any two circles of ( have exactly two points in common,
(iii)' no three circles of C have a point in common.

Let W be the collineation group of PG(3, ¢) mapping F onto
itself. Every w € W determines a map W' of M(q) onto itself defined
as follows: let P be any point of M(q) and let »r be the line of F
which corresponds to P by ¥ ; then w'(P) is the point which
corresponds to w(r) by Y . Therefore a map ¢ is defined putting
d(w) =w' . Of course ® is a homomorphism of W into W' , where W'
denotes the automorphism group of M(q) . The kernel of ¢ is the group

M of all collineations of PG(3, q) fixing F 1linewise. M is a cyclic
group of order ¢ + 1 . Moreover W = FL(2, q2) and W' ~ PI'n(2, q2] .

Let H be the subgroup of W which leaves invariant a set R of
reguli satisfying the properties (i), (ii), (iii). If H' denotes the
subgroup of ¥' which leaves invariant the chain C of circles of M(q)

corresponding to R by Y , then ®(H) = H' . Hence H/M~H'

4. Two partial spreads U and VvV of PG(3, 9)
covering the same point set

Using the notation of Bruen's paper, our construction can be described

as follows.
If & = 3 , the norm-classes of GF(9) are

n(o) = {o} ,

N(1) = {1, 2, b+ht, 8+hz, 345¢, 6+45t, 3+Tt, 6+Tt, L+8¢, 8+8¢t) ,
N(2) = {5, T, 4+t, 8+t, L+2t, 8+2t, 3+3t, 6+3t, 3+6t, 6+6t} ,
N(3) = {5+3t, T+3t, 3+bt, 6+ht, 5t, 5+6t, T+6t, Tt, 3+8t, 6+8¢} ,
N(b) = {3+t, 6+t, 3+2t, 6+2t, 3t, 1+5t, 2+5t, 6t, 1+Tt, 2+Tt} ,
N(s) = {4, 8, 143t, 2+3t, 5+5t, T+5t, 1+6t, 2+6t, S5+Tt, T+Tt} ,
N(6) = {t, 2t, W+3t, 8+3t, L+kt, 2+ht, L+6t, 8+6t, 1+8t, 248t} ,
N(T) = {3, 6, 1+t, 2+t, 1+2¢t, 2+2t, S5+ht, T+bt, 5+8t, T7+8t} ,
N(8) = {5+t, T+t, 5+2¢t, T+2t, 4t, b+St, 8+5¢, L+Tt, B+7£, 8t} .

An easy calculation shows that the following circles of M(q) form a

chain C satisfying the properties (i)', (ii)', (iii)':
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C. : 2t + N(T) ,

1

L

c r: 5t + N(5) ,

02 : t+ NT) , 03 : Tt + N(5) ,

c5 : (0, 3+t) , 06 : (0, 3+2t) .

The corresponding reguli Rl’ R2, R3, Rh’ RS’ R6 contained in F form a

set R satisfying the properties (i), (ii), (iii). The line
{1, 0, 0, 0), (0, 1, 0, O))

((a, 3b) o’ l)’ (b, a! l’ 0))

Rl =
R, = {r(1, 0), r(2,
Ry = {r(5, 0), r(7,

=
1

, = (5, 0), »(7,

RS = {r(0, 0), r(3,
Ry = {r(0, 0), r(6,
Therefore

0),

0),

0),

1),

1),

r(3,

r(1,

r(1,

r(6,

is denoted by r_ and the line

by r(a, b) , then

{r(1, 0), r(2, 0), »(1, 1), r(2, 1), r(3, 2),

r(6, 2), r(5, 3), (1, 3), r(5, 1), (7, T)} ,
1), r(6, 1), r(1, 2),
r(2, 2), r(5, 5), »(7, 5), »(5, 6), (7, 6)} ,
1), r(2, 1), r(1, 4),
r(2, 4), »(5, 5), »(1, 5), r(4, T), »(8, T)},

2), r(2, 2), r(L, 5),
r(8, 5), r(5, 1), »(7, 7), r(1, 8), r(2, 8)},

2), (7, 3), r(1, W),
r(k, 5), »(5, 6), r(8, 7), r(2, 8), .},

2), r(5, 3), r(2, 4),
r(8, 5), r(7, 6), r(k, 7), r(1, 8), r.} .

v = {r(1, 0), r(2, 0), r{1, 1), r(2, 1), r(3, 2),
r(6, 2), r(5, 3), r(7, 3), r(5, T), (7, T), (3, 1), »(6, 1), r(1, 2),
r(2, 2), »r(5, 5), »(7, 5), r(5, 6), (7, 6), r(5, 0), r(7, O), r(1, L),
r(2, 4), »(4, 7), r(8, 7), (b, 5), (8, 5),

r(1, 8), r(2, 8), r(0, 0), r} .

Denote by V the union of the following half-reguli

kR!

!
5R]

1]

{r'(Z, 1), »'(Z, 2), r'(Z, 3), »'(Z, &), r'(Z, 5)} :

{((2, 3’ 0’ 1)’ (0, l, l’ 0))’ ((2’ 0, o, 1), (17 1’ l, O)),

<(6, 6’ 0’ l)’ (2, 3, l’ 0))’ ((7, 8’ 0, l), (3’ S, 1’ 0)))

((7, 7’ O’ l), (7, 5’ l, 0))} s
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) = ({1, 0, 0,1), (2, 2,1, 0), (1, 6,0,1), (0, 2,1, 0)),
<(3, 3, 0’ l)a (11 6, l, 0)), ((5’ 5, 0: l)) (5, 7, l’ 0))3
(5, 4, 0, 1), (6, 7,1, 0)} ,

%Ré = {((l’ l, Os l), (l, 2, l’ 0))’ ((l, 3’ 09 l)’ (h’ 2’ l’ 0))’
((7’ h, 0, 1)’ (01 5’ l’ 0)), ((7’ 0! o’ 1)) (S’ 5’ 1’ 0)),
((8, 8,0,1), (7, 4, 1, 0)2} ,

%Rl; = {((2, 6, 0, 1), (8, 1, 1, 0)}, (2, 2, 0,1), (2,1, 1, 0)),
(4, 4, 0, 1), (5,8, 1,0), (5,0,0,1), (71, 7, 1, 0)?,
((s, 8, 0,1), (0, 7, 1, 0)},

%Ré = {{(%, 1, 0, 0), (0, O, 2, O)), (1, 1, O, 0), (0, O, 1, 1)),
((la Os o: O)a (0, 0’ ls 2))a ((8, l’ 09 0)9 (02 0) la 3))’
((5’ l’ 0’ 0)’ (0’ 0’ l! 6))} ?

¥rg = {«(0, 1, 0, 0), (0, 0, 1, b)), (6, 1, 0, 0), (0, 0, 1, 5)),

(1, 1, 0, 0), (0, 0,1, 7)), «3,1, 0, 0), (0, 0, 1, 8)),
((2, 1, 0, 0), (0, 0, O, 1))} .

Note that %R; is contained in the opposite regulus R,IE of Ri . An
explicit calculation shows that U and V cover the same subset IR of

PG(3, 9) and have no lines in common. Therefore G = (F-U) vV is a

spread of PG(3, 9) . Clearly G is a PB-derived spread from F .

5. The automorphism group of the chain C

In this section the automorphism group H' of M(9) which leaves the
point set I covered by C invariant is determined. As a model of M(9)
we will take the geometry G(@) of the plane sections of an elliptic
quadric @ of PG(3, 9) . The passage from M(9) to G(&) can be
realized as follows. Let @ be the elliptic quadric of PG(3, 9) whose
equation is

2
Q : 3u = z° + 6y~ .
As it is well known, the map

bading (0’ 0’ l’ 0)

a + bt » (a, b, a2+6b2, 1)
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is an incidence preserving isomorphism between M(9) and @ with their
points and circles. Moreover {ef. [6], p. 274), if w' 1is an automorphism
of M(9) , then there is a unique collineation ®w of PG(3, 9) leaving @

invariant such that w' acts on M(9) as @ on @ . Thus

o(w'(P)) = w(o(P)) for every P € M(9)

O-I(Q(P)) = w’(O_l(P)) for every P € @ .

Therefore the problem of determining the automorphism group H' of M(9)
which leaves I invariant is equivalent to that of determining the
collineation group H of PG(3, 9) which maps § onto itself and leaves
o(I) invariant, where o(I) = {o(P) | P € I} . First some lemmas are

needed.

LEMMA 5.1. Let D be a circle of @ contained in o(I) ; then D
coincides with a circle O(Ci] .

Proof. By way of contradiction, let D be distinct from any circle
O(Ci) ; then for every 2 =1, 2, ..., 6 we have |Dn O(Ci)l <2 and
from this

6

Y |IDong(c.)| =2-6=12.

K 7

1=1
On the other hand each point of D 1lies exactly on two circles U(Ci) .
so
6
Y |Ipno{c.)] =2+210=20.
. 7

1=1
Therefore we would have 20 < 12 .

LEMMA 5.2. Let Z be a collineation group of PG(3, 9) which maps
Q onto itself leaving o(I) <invariant; them 2 preserves the chain
o(C) .

Proof. Let o € Z and O(Ci) € o(C) ; as a(c(Ci)) is a circle

contained in o(I) , the preceding Lemma 5.1 assures that a(o(Ci)) is a

circle of o(C) . This proves Lemma 5.2.
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Let ™, (Z =1, 2, ..., 6) be the plane of PG(3, 9) which meets @
in O(Ci) . Denote by Pi the polo of “i with respect to @ . Then, by

Lemma 5.2, H is the collineation group of PG(3, 9) which maps € onto
itself and leaves the set {Pl, Eé, P3, Ph’ PS’ P6} invariant. An easy

calculation shows that Pl(o, 2, 2,1), P2(0, 1, 2, 1), P3(0, 7, 1, 1) ,

Ph(O, 5, 1, 1), PS(l’ 1, 0, 0), PE(Z, 1, 0, 0) .

LEMMA 5.3. H fizes Y .
Proof. The lines joining Pl and P2 , P3 and Ph . P5 and P6
pass through Y_ ; there exist only three planes joining Y, and four

points among Pi (£=1,2, ..., 6) . So H must fix Y, .

Let E; be the stabilizer of Pi . First we note that

LEMMA 5.4. H =4H,, H3 = , H5 = He .

LEMMA 5.5. The identity collineation 1 is the only collineation of
H fixing each P, (1=1,2,...,6) .

Proof. The only non-identity collineation which leaves each Pi

invariant has equations

but this collineation does not preserve @ .

LEMMA 5.6. H acts faithfully on {Pl, Pyy ees p6} .

LEMMA 5.7. ﬁé is a dihedral group of order 8 . ﬁg is generated

by the following collineations:

W:px'=5c, py'=5, pz' =2z, pu' =u,

i’ =x, py'=y, pz'=u, pu' =z,

0l

h and s act on {P , P Pel as follows:

A
B (P1P3P2Ph) (Ps) (Bg) and 5 : (pP) (P3) (7,) (PS) (7g) -

Proof. By Lemmas 5.4 and 5.6 we have that Eg is a subgroup of the
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symmetric group Sh on four objects. An easy calculation shows that h

o P6} as said before and Z“ = 52 = (25)2

|
[

and 8 act on {P . 2,

So (Z; §) 1is a dihedral group of order 8 contained in ﬁé . As

Hl = H2 we have Hl n H6 = H2 n H6 and so H6 cannot contain any element

of order 3 . Thus |§é| = 8 and therefore ﬁg ={h, 8) .
As Iﬁgl = 8 and the orbit of P6 has length at most 6 , the
following lemma holds.
LEMMA 5.8. |H| <18 .
Let us consider the collineation
c:px' =5 +Tu, py'=5, pa'=x+z+u, pu’' =z +22 +2u .

An easy calculation shows

LEMMA 5.9. (3) has order 6 and is contained in H . &>
centralizes ﬁg .

Next we prove

LEMMA 5.10. (&) n H = {1} .

Proof. By Lemma 5.9, |{(c) o ﬁ6l <2. 1 |@ n §6| = 2 , then

a3 ¢ Eg and, by Lemma 5.7, 33 = 2 , as %° is the central involution of

ﬁg . But one can verify that 3R .

THEOREM 5.11. H =(h, s, e), |H| =48 and a 2-Sylow subgroup of
H 1is the direct product of a dihedral group of order 8 with a group of
order 2.

Proof. By Lemmas 5.7, 5.10, ﬁ;
least 48 of H . By Lemma 5.8, |A|
lE] = 48 . The latter assertion of the theorem follows from Lemmas 5.7 and
5.9.

§, ¢) 1is a subgroup of order at
<

, thus H=(h, 8, @) and

6. The collineation group H preserving U

Let us denote by 1 the identity collineation of PG(3, 9) and put
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(6.1) my

rpx' = +y , py' =3 tay, pz' =0z + 3y, pu' =z +ou,
where o € GF(9). Then
LEMMA 6.1. The cyclic group of order 10 ,

M= {m, | ae€cr(9)} v},

fizxes U linewise; moreover M = (m3) . M is the full collineation
group of PG(3, 9) which fizes U linewise.

Lermas 6.2 and 6.3 follow from Lemma 6.1.

LEMMA 6.2. M <s the subgrowp of H fixing each regulus R, .
Therefore HIM acts on {Rl, R2, vers R6} faithfully.

Proof. Let ¢ ©be the correspondence defined in Section 3. Then

®(H) = H and ®(H) acts on {R , R R6} as H on

by tees
{p,, Py vees P6} . By Lemma 6.6, H is faithful on {Pl, Py oy P6} .
Thus Ker ¢ is the subgroup of H fixing each Ri . As we have shown in

Section 3, Ker $ = M . This proves Lemma 6.2.
Since |H| = 48 and |M| = 10 , from Lemma 6.2 it follows that

LEMMA 6.3. |#]| = 480 .

Let us consider the collineations

(6.2) h : px' = 5z, py' = 5y, pz' = z, pu' =u ,
(6.3) 8 : px’' =2, py' = 6u, pz' = 6z, ou' =y ,
(6.4) ¢ : px' =5y + 7z, py’' = 8z + hu, p2’' = 3z + 3u, pu' = 2y + 2z .
It is easy to check that %, s, ¢ have order U, 2, 6 respectively
and
h(r,) =r_ ,
(6.5)

h(r(a, b)) = r(sa, 5b) ,

9
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s(r,) = r(0, 0) ,
(6.6) {s(r(0, 0)) =r_,
s (r(a, b)) = r(a(a®+6b%)7L, b(a%+6b2)™Y) for (a, b) # (0, O) ,
e(r,) = »(7, 0) ,
(6.7) 1c(r(2, 0)=r_,

e(rla, b)) = r((1a®+b%+5) ((a+1)2+66°) ™2, 1b((a+1)2+6b°) )
L for f{a, b) # (2, 0) .

Therefore

LEMMA 6.4. (h, s, ¢, M) 1is a subgroup of H .

From (6.5}, (6.6) and (6.7) we infer that h, s, ¢ act on

{Rl, R2, cees R6} as follows:

(6.9) ho: (R1R3R2Rh)(R5)(R6) , 8 : (Rle)(R3)(Rh)(R5)(R6) ,

e : (R1R6R3R2R5Rh) .

Thus h, 8, ¢ act on {R , R, ..., R6} as h,s,¢ on

{Pl’ Pyy ey P6} . As the subgroup (%, 8, &) of Sg gives a faithful

representation of H on {Pl’ P2, cees P6} , we get

(h, s, c, M}/M =(h, &, &) . Therefore from Lemma 6.3 it follows that
LEMMA 6.5. H=(h, s, c, M) .
Next we prove

LEMMA 6.6. (h, s, e¢) oM = {1} .

Proof. The orbit of X, in (h, s, ¢) consists of the points X_ ,
‘Yw’ Zm’ o, (l’ O’ O, l)’ (O’ l’ l’ 0), (2, 0’ 0, 1), (0, 2’ 1, 0),
(s, 0, 0, 1), (0, 5, 1, 0), (7, 0, 0, 1), (0, 7, 1, O) . The collineation

m, maps X, into (@, 3, 0,0) , so m, f(h, s, ¢) if o #0 . Now let

us consider my it maps (1, 1, 0, 0) into (L4, 1, O, 0) ; the orbit

of (1,1, 0, 0) in (h, 8, ¢} consists of the points (1, 1, 0, 0) ,
(0, 0,1,1), (r,1,1, 1), (8,1, 0, 0), (o, 0, 6, 1), (2, 2,1, 1) s

(5, 5,1, 1), (1, 7, 1, 1), (1, 6, 6, 1), (2, 3, 6, 1), (7, b, 6, 1),

(5, 8, 6, 1) . Therefore m, §Ch, 8, ).
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From the preceding lemmas we obtain

THEOREM 6.7. The collineation group H of PG(3, 9) which maps F
into itself and leaves U <invariant is (h, s, ¢) * M . Moreover
(h, s, ¢)~H (ef. Theorem 5.11) and (h, s, ¢) acts on

{R)» Rys oo Rs} as H on {Pl,P2, P6} .

7. The inherited group «

" Bruen [4] proved that if g = 7 +the collineation group K preserving
the partial spread G = (F-U) v V is the inherited group, that is, the
subgroup of H fixing G . In our case K 1is a proper subgroup of X .

In fact one can check that m does not preserve V . On the other hand

3

h,s,c,miék,as

R (rf(1, D)r'(3, 3)2'(2, 2)r'(, 5)) (»'(1, 2)r'(3, b)r'(2, 1)r'(k, b))
(2'(1, 3)2'(3, 5)r'(2, 3)r'(4, 3))(r'(1, B)r'(3, 2)r'(2, S)r'(k, 1))
(#'(1, 5)r'(3, 1)r'(2, ¥)r'(4, 2)) ('(5, 1)) (r'(5, 2)) (='(5, 3))
(r'(5, W) (r'(5, 5))(»"(6, 1))

("6, 2))(»'(6, 3)) (»'(6, M)} ('(6, 5)) ,

(r'(1, D)r'(2, D)} (r'(1, 2)r'(2, 2))(r'(1, 3)r'(2, 3))

(r'(1, W)r'(2, W) (r'(2, 5)r'(2, 5)) ('(3, 1)r'(3, 2))

(r'(3, 3)r'(3, W) (»'(3, 5)) (#'(4, Vr' (L, 2)) (r' (L, 3))

(2 (4, Wr' L, 5))(r'(5, 1)2'(5, 3))(r'(5, 2)r'(5, ¥)){r'(5, 5))
(r'(6, 1)r'(6, 5))(r'(6, 2))(r'(6, 3)r'(6, 1)) ,

)r'(6, 5)r'(3, 3)r'(2, 1)r'(5, 1)r'(4, 4))

(r'(1, 2)r'(6, 1)r'(3, b)r'(2, 2)r'(5, 3)r'(kL, 5))

(z'(1, 3)r'(6, 2)r'(3, 5)r'(2, 3)r'(5, S)r'(L, 3))

(r'(1, W)r'(6, B)r'(3, 2)r'(2, H)r'(5, 2)r'(k, 2))
(r'(1, 5)r'(6, 3)r'(3, 1)r'(2, 5)2'(5, b)r'(4, 1)) ,

e : {r'(1,1

: (e7(1, L)r'(1, 3)r'(1, 2)r'(2, Lr'(1, 5))

(r'(2, 1)r'(2, 5)r'(2, W)r'(2, 2)r'(2, 3))

(r'(3, 1)r'(3, 3)r'(3, 5)r'(3, &)r'(3, 2))

(r'(k, 1)r'(h, 2)r' (L, S)r'(k, 3)r'(k, L))

(»'(5, 1)r'(5, 5)r'(5, 3)r'(5, 2)r'(5, 4))
(r'(6, 1)r'(6, 2)r'(6, 5)r'(6, 3)r'(6, 4)) .
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Therefore we can state the following:

LEMMA 7.1. (h, s, e) =K , my t K, m§ €K .

Thus (h, s, c, mg) is a subgroup of K . Since K nM = (mg) ,
!(mg)l = |M|/2 , it follows that [H : K] =2 . By K#H ,

K= (h, s, e, mg) . Moreover (mg) is a normal subgroup of XK . So we

have the following:

THEOREM 7.2. The collineation group K preserving the spread
= (F-U) vV <s the gsemidirect product of a group of order 5 lying in
the center of K with a group isomorphic to H . Therefore K 1is a
solvable group of order 24 . Moreover the orbits of K are

(»(3, 0)r(k, 0)r(6, 0)r(8, 0)) ,

(r(0, 1)r(0, 2)r(0, 3)r(0, 4)r(0, 5)r(0, 6)r(0, T)r(0, 8)r(3, 3)
r(3, 5)r(3, 6)r(3, T)r(h, L)r(k, 2)r(k, W)r(k, 8)r(6, 3)r(6.5)
r(6, 6)r(6, T)r(8, 1)r(8, 2)r(8, 4)r(8, 8)) ,

(r(1, 3)r(1, 5)r(1, 6)r(1, T)r(2, 3)r(2, 5)r(2, 6)r(2, T)r(3, b)
r(3, 8)r(L, 3)r(k, 6)r(5, 1)r(5, 2)r(5, 4)r(5, 8)r(6, L4)r(6, 8)
r»(7, V)r(7, 2)r(7, W)r(7, 8)r(8, 3)r(8, 6)) ,

(r'(1, V)r'(1, 2)r'(2, 1)r'(2, 2)r'(3, 3)r'(3, W)r'(4, Wr'(4, 5)
r'(5, 1)r'(5, 3)r'(6, 1)r'(6, 5)) ,

(r'(1, 3)2’'(2, 3)2'(3, 5)r'(L, 3)r'(5, 5)r'(6, 2)) ,

(r'(1, ¥)r'(1, 5)r'(2, W)r'(2, 5)r'(3, 1)r'(3, 2)r'(4, L)r'(4, 2)
r'(5, 2)r'(5, Wr'(6, 3)r'(6, 1)) .

8. The translation complement

As it is well known a translation plane 1T of order q2 arises from

any spread of PG(3, q) (ef. [6], p. 220 and [11] and [2]). Here we give
an outline for the case q =9 .

The points of T are those of PG(4, 9) - PG(3, 9) , the lines of T
are the planes of PG(L4, 9) which meet PG(3, 9) in a line of the spread
and do not belong to PG(3, 9) . If we consider PG(L4, 9) - PG(3, 9) as a
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vector space VL(9) of dimension L4 over GF(9) , the points of T can
be identified with the vectors of Vh(9) , the lines through the zero

vector 0 are some 2-dimensional subspaces (called also components), the
other lines of T are translates of the components. The group of
collineations of T fixing 0 is called the "translation complement” and

consists of some linear or semilinear transformations of Vh(9) . In
particular such a transformation o of Vh(9) belongs to the translation

complement of T if and only if the collineation of PG(3, 9) defined by
the matrix of O leaves the spread invariant. Moreover if we denote the

translation complement of T by AO , the cyeclic group of order 8 of all
dilations with center 0 Dby Ao and the collineation group of PG(3, 9)
which leaves the spread invariant by X , then K o~ AO/A0 .

As T 1is the translation plane arising from the spread
G = (F-U) vV , by Theorem 7.2 we get

THEOREM 8.1. The translation complement Ay of T is

(A, O, Y, W), where

’

Az = 5z, y 5Y » z' =2z, u' =u,

! !

6u, z' = 6z, u' =y,

fl
]

o:x' =2z, y

8c + bhu, 2' = 3 + 3u, u'

Y rx' =5y + Tz, y' 2y + 2z ,

8 +y, y' =3x+8y, 2" =8z + 3u, u' =2z + 8u.

=
8
1]

As (u) is a normal subgroup of Ao and (A, g, Y) n(p) = {1} ,
AO is semidirect product of (A, o, y) and (u) . Therefore A0 is a

solvable group of order 240 « 8 = 1920 .

References

[7] L.M. Abatangelo and Vito Abatangelo, "On Bruen's plane of order
25 ", submitted.

https://doi.org/10.1017/50004972700021237 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021237

Translation plane of order 8l 33

[2] Adriano Barlotti, "Representation and construction of projective
planes and other geometric structures from projective spaces",
Jber. Deutsch. Math.-Verein. 77 (1975), 28-38.

[3] R.H. Bruck, "Construction problems in finite projective spaces",
Construction problems in finite projective spaces
(C.I.M.E., II Ciclo, Bressanone, 1972. Edizioni Cremonese,
Rome, 1973).

[4] Aiden A. Bruen, "Inversive geometry and some new translation planes,
1", Geom. Dedicata 7 (1978), 81-98.

2 ", J. Combin. Theory

[51 M. Capursi, "A translation plane of order 11
Ser. A 35 (1983), 289-300.

[6] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer
Grenzgebiete, 44. Springer-Verlag, Berlin, Heidelberg, New
York, 1968.

[7] Daniel R. Hughes and Fred C. Piper, Projective planes {Graduate Texts
in Mathematics, 6. Springer-Verlag, New York, Heidelberg,
Berlin, 1973).

[8] Gabor Korchmdros, "The full collineation group of Bruen's plane of
order 49 ", submitted.

(9] G&bor Korchmdros, "A translation plane of order 49 with nonsolvable
collineation group", submitted.

[10]) B. Larato and G. Raguso, "Il gruppo delle collineazioni di un piano

di ordine 132 "

di Incidenza, 1 {(Passo della Mendola, Trento, Italia, 1982.

, Atti del Convegno di Geometria Combinatoria e

Rendiconti del Seminario Matematico, Brescia, to appear).
[11] T.G. Ostrom, Finite translation planes (Lecture Notes in Mathematics,
158. Springer-Verlag, Berlin, Heidelberg, New York, 1970).

[12] Giuseppe Pellegrino and Gabor Korchmaros, "Translation planes of

order ll2 ", Combinatorial and geometric structures and their
applications, Trento, 1980, 249-264 (North-Holland Mathematical
Studies, 63. North-Holland, Amsterdam, 1982).

[73] G. Raguso, "Un piano di traslazione di ordine 132 ", submitted.

https://doi.org/10.1017/50004972700021237 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021237

34 Vito Abatangelo

(141 Helmut Wielandt, Finite permutation groups (translated by R. Bercov.
Academic Press, New York, London, 1964).

Dipartimento di Matematica,
Via Re David 200,

70125 Bari,

Italy.

https://doi.org/10.1017/50004972700021237 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021237

