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A TRANSLATION PLANE OF ORDER 81
AND ITS FULL COLLINEATION GROUP

VITO ABATANGELO

In this paper a new translation plane of order 8l is

constructed. Its collineation group is solvable and acts on the

line at infinity as a permutation group K which is the product

of a group of order 5 belonging to the center of K with a

group of order U8 . A 2-Sylow subgroup of K is the direct

product of a dihedral group of order 8 with a group of order

2 . K admits six orbits. They have lengths k, 6, 12, 12, 2k,

1. Introduction

Let GF(q) be a Galois field of odd order q (> 5) and let F be

the regular spread of PG(3, q) • Suppose that F contains a set R of

reguli satisfying the properties

(i) R consists of (<?+3)/2 reguli, R±, i?2> ...,
 R(q+^y2 >

(ii) any two reguli of R have exactly two lines in common,

(iii) no three reguli of R have a line in common.
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20 Vito Abatangelo

Let U be the partial spread consisting of all the lines of the

reguli R^ [i = 1, 2, ..., {q+3)/2) and let JR denote the point set

covered by U . If S! denotes the opposite regulus of R. , the set U'

of all the lines of R'. is not a spread of I- because any point P of

I~ belongs to two lines of U' . According to a result of Bruen [4], if a

subset V of U' is a partial spread then V contains (q+l)/2 lines of

each R'- such that the union of these half-reguli is V . If there exists

such a partial spread V then one can obtain a new spread G = (F-U) <•> V

by replacing U with V . G will be called 3-derived from F (with

respect to {U, V) ) . We can try to obtain a new partial spread V = hV

of Xg by choosing only a suitable half of the lines of each opposite

regulus. As for 6-derived spreads the existence problem is yet unsolved

except for q = 5, 7, 11, 13 • Specific examples are given in Bruen's

paper [4] when q = 5, 7 , in [5] and [72] when q = 11 and in [73] when

q = 13 -

In [4] Bruen also proved that if q - 7 the collineation group of a

B-derived spread is the inherited group, that is, it is the subgroup of the

collineation group of PG(35 q) which leaves F invariant. The

collineation groups of the translation planes arising from the above

mentioned examples are determined [5], [72], [73].

In this paper the first example of a 3-derived spread is constructed

for q = 9 and the collineation group of the corresponding translation

plane is determined. It is a solvable group satisfying the properties

listed in the summary.

2. Notation and terminology

Notation and terminology are the same as in Bruen's paper [4]. The

reader is assumed to be familiar with the theory of projective planes given

in Dembowski [6] and in Hughes and Piper [7] and with the theory of

permutation groups given in Wielandt [74].

Let GF(9) be the quadratic extension of GF(3) = {0, 1, 2} . In

particular let us consider the polynomial x + x + 2 (which is

irreducible in GF(3) 1, i { GF(3) such that i + i + 2 = 0 and
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Translation plane of order 81 21

3 = £ , U = i + 1 , 5 = i + 2 , 6 = 2£ , 7 = 1 + 2i , 8 = 2 + 2i ; so

GF(9) = {0, l, 2, 3, U, 5, 6, 7, 8} .

The homogeneous coordinates (x, y, z, u) denote points in

PG(3, q) • The line joining the point (x , y , z , u ) to the point

(̂ 2, y2, *2, «2) is denoted by { (a^, j^, s;L, u±) , (a^, i/2, s2> «2) ) ;

moreover if g, ht ..., w are elements of a group, then the subgroup

generated by g, h, , w is denoted by (g, h, ...,U> .

3. Preliminaries
Before the example, the general relation between the spread F and

the Miquelian inversive plane M{q) over GF(<?) is discussed briefly.

Assume that q is odd and denote by s a non-square element of

G?{q) , so GF[q2) = {a+bt \ a, b € GF(<7), t2 = s} . We define norm

N(a+bt) of a + bt of GFfa2) , N(a+bt) = a2 - sb2 . Clearly

N(a+bt) € GF(c?) ; moreover set ff(p) = {a+bt \ N(a+bt) = p} . M{q) is

considered the incidence structure whose points are the elements of

GF[q ) u {°°} and whose circles are the subsets of GF(<7 ) u {°°} of the

following types:

(I) a + bt + ff(p) = {x+yt | N{(a-x)+(b-y)t) = p} ;

(II) C(a+bt, e+dt) = {{a+bt)+\(e+dt) \ X € GF(q) o {<»}} .

The spread F is the union of all the lines

<(1, 0, 0, 0), (0, 1, 0, 0)>, <(a, sb, 0, l), (b, a, 1, 0)>

where a, b run over GF(<7) . By a theorem of Bruck's (C3], also [4]),

the map

~ -<(1, 0, 0, 0), (0, 1, 0, 0)>

a + bt •* < (a, sb, 0, l), (fc, a, 1, 0) >

is an incidence preserving isomorphism between M(q) , with its points and

circles, and F , with its lines and reguli.

By Bruck's theorem, the problem of finding sets R of reguli

satisfying the properties (i), (ii), (iii) is equivalent to that of

constructing chains C of circles in M(q) satisfying the properties

https://doi.org/10.1017/S0004972700021237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021237


22 Vito Abatangelo

(i)1 C consists of (<7+3)/2 circles, C±, C^ ...,

(ii)1 any two circles of C have exactly two points in common,

(iii)' no three circles of C have a point in common.

Let W be the collineation group of PG(3, q) mapping F onto

itself. Every W € W determines a map w' of M{q) onto itself defined

as follows: let P be any point of M(q) and let r be the line of F

which corresponds to P by V ; then W(P) is the point which

corresponds to w(r) by 4* . Therefore a map $ is defined putting

$(w) = w' . Of course $ is a homomorphism of W into W , where W

denotes the automorphism group of M(q) . The kernel of $ is the group

M of all collineations of PG(3, <j) fixing F linewise. M is a cyclic

group of order q + 1 . Moreover W o* TL(2, c?n and V ^ PrL(2, q^ .

Let fl be the subgroup of W which leaves invariant a set R of

reguli satisfying the properties (i), (ii), (iii). If H' denotes the

subgroup of W which leaves invariant the chain C of circles of M(q)

corresponding to R by ¥ , then *(ff) = H' . Hence ff/Af cs fl' .

4. Two partial spreads U and K of PG(3, 9)
covering the same point set

Using the notation of Bruen's paper, our construction can be described

as follows.

If s = 3 , the norm-classes of GF(9) are

N{0) = {0} ,

N(l) = {1, 2 , k+kt, 8+Ut, 3+5*, 6+5*, 3+7*, 6+7*, ^+8*, 8+8*} ,

#(2) = {5, 7, U+t, 8+t, U+2*, 8+2*, 3+3*, 6+3*, 3+6*, 6+6*} ,

= (5+3*, 7+3*, 3+U*, 6+1**, 5*, 5+6*, 7+6*, 7*, 3+8*, 6+8*} ,

= {3+*, 6+*, 3+2*, 6+2*, 3*, 1+5*, 2+5*, 6*, 1+7*. 2+7*} ,

»(5) = ft, 8, 1+3*, 2+3*, 5+5*, 7+5*, 1+6*, 2+6*, 5+7*, 7+7*} ,

= {*, 2fc, U+3*, 8+3*, l+l»t, 2+ltt, U+6*, 8+6*, 1+8*, 2+8*} ,

= {3, 6, 1+t, 2+*, 1+2*, 2+2*, 5+1**, 7+1**, 5+8*, 7+8*} ,

N(Q) = (5+*, 7+*, 5+2*, 7+2*, kt, 1++5*, 8+5*, U+7*, 8+7*, 8*} .

An easy calculation shows that the following circles of M(q) form a

chain C satisfying the properties (i)', (ii)', (iii)1:
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Cx : 2* + i»(7) , C2 : t + ff(7) , ^ : 7* + »(5) ,

Cu': 5* + »(5) , C5 : (0, 3+*) , C^ : (0, 3+2*) .

The corresponding reguli R , i?2, R , R,, R , R, contained in F form a

set R satisfying the properties (i), (ii), (iii). The line

< (1, 0, 0, 0), (0, 1, 0, 0)> is denoted by r^ and the line

<(a, 3b, 0, 1), (b, a, l, 0)> by r{a, b) , then

R± = M l , 0), r(2, 0), r(l, l), r(2, l), r>(3, 2),

r(6, 2), r(5, 3), r(7, 3), r(5, 7), r(7, 7)} ,

i?2 = M l , 0), r(2, 0), r(3, l), r(6, l), r(l, 2),

p(2, 2), r(5, 5), P(7, 5), r(5, 6), r(7, 6)} ,

i?3 = {r(5, 0), r(7, 0), r(l, 1), r(2, l), r(l, It),

r(2, U), r(5, 5), r(7, 5), r(h, 7), r(8, 7)> ,

Rk = {r(5, 0), r(7, 0), r(l, 2), r(2, 2), r(U, 5),

r(8, 5), r(5, 7), r(7, 7), r(l, 8), r(2, 8)} ,

i?5 = {r(0, 0), r(3, 1), r(6, 2), r(7, 3), r(l, U),

Hh, 5), r(5, 6), r(8, 7), r(2, 8), rm} ,

i?6 = {r(0, 0), r(6, 1), r(3, 2), r(5, 3), r(2, U),

r(8, 5), r(7, 6), p(U, 7), r(l, 8), r j .

Therefore

tf = M l , 0), r(2, 0), r(l, 1), r(2, 1), r(3, 2),

r(6, 2), r(5, 3), P ( 7 , 3), r(5, 7), r(7, 7), r(3, 1), r(6, 1), r(l, 2),

r(2, 2), r(5, 5), r(7, 5), r(5, 6), r(7, 6), r(5, 0), r»(7, 0), r(l, It),

r(2, It), r(U, 7), r(8, 7), r(l», 5), r(8, 5),

r(l, 8), r(2, 8), r(0, 0), r j .

Denote by V the vinion of the following half-reguli

HRl = {r'(£, 1), r'(i, 2), r'(i, 3), r'(i, It), r'(i, 5)} :

î?{ = {<(2, 3, 0, 1), (0, 1, 1, 0)>, <(2, 0, 0, 1), (1, 1, 1, 0)>,

<(6, 6, 0, 1), (2, 3, 1, 0)>, <(7, 8, 0, 1), (3, 5, 1, 0)>,

< (7, 7, 0, 1), (7, 5, 1, 0))} ,
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hR^ = (<(1, 0, 0, 1), (2, 2, l, 0)>, <(1, 6, 0, 1), (0, 2, 1, 0)>,

<(3, 3, 0, 1), (1, 6, l, 0)>, <(5, 5, 0, 1), (5, 7, 1, 0)>,

< (5, h, 0, 1), (6, 7, 1, 0)>} ,

hR'3 = (<(1, 1, 0, 1), (1, 2, 1, 0)>, <(1, 3, 0, 1), (k, 2, 1, 0)>,

<(7, U, 0, 1), (0, 5, 1, 0)>, <(7, 0, 0, 1), (5, 5, 1, 0)>,

<(8, 8, 0, 1), (7, h, l, 0)>} ,

V?£ = {<(2, 6, 0, 1), (8, 1, l, 0)>, <(2, 2, 0, 1), (2, l, 1, o)>,

<(U, k, 0, 1), (5, 8, l, 0)>, <(5, 0, 0, 1), (7, 7, 1, 0)>,

<(5, 8, 0, 1), (0, 7, 1, 0)>} ,

y?^ = {<(U, i, o, o), (o, o, i, o)>, <(7, i, o, o), (o, o, i, i)>,

< (1, 0, 0, 0), (0, 0, 1, 2)>, <(8, 1, 0, 0), (0, 0, 1, 3)>,

<(5, 1, 0, 0), (0, 0, I, 6)>} ,

\R'S = {<(0, 1, 0, 0), (0, 0, 1, U)>, <(6, 1, 0, 0), (0, 0, 1, 5)>,

<(1, 1, 0, 0), (0, 0, 1, 7)>, <(3, 1, 0, 0), (0, 0, 1, 8)>,

<(2, 1, 0, 0), (0, 0, 0, 1)>} .

Note that %R'. is contained in the opposite regulus R'. of R. . An

explicit calculation shows that U and V cover the same subset Jg of

PG(3, 9) and have no lines in common. Therefore G = (F-U) u V is a

spread of PG(3, 9) . Clearly G is a (J-derived spread from F .

5. The automorphism group of the chain C

In this section the automorphism group H' of Af( 9) which leaves the

point set I covered by C invariant is determined. As a model of Af(9)

we will take the geometry G(Q) of the plane sections of an elliptic

quadric Q of PG(3, 9) • The passage from M(9) to G{Q) can be

realized as follows. Let Q be the elliptic quadric of PG(3, 9) whose

equation is

2 2
Q : zu = x + 6y .

As it is well known, the map

« -> (0, 0, 1, 0)

a :

a + bt -*• [a, b, a +6fc , l)

https://doi.org/10.1017/S0004972700021237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021237


Translation plane of order 81 25

is an incidence preserving isomorphism between M(9) and Q with their

points and circles. Moreover {cf. [6], p. 27*0, if w' is an automorphism

of W(9) , then there is a unique collineation W of PG(3, 9) leaving Q

invariant such that w' acts on M(9) as W on Q . Thus

o[w'(P)) = w{a(P)) for every P € M(9)

and

o~1(u(P)) = u'(a~1(P)) for every P € Q .

Therefore the problem of determining the automorphism group H' of M(9)

which leaves J invariant is equivalent to that of determining the

collineation group H of PG(3, 9) which maps Q onto itself and leaves

a(J) invariant, where a(I) = {a(P) \ P € /} . First some lemmas are

needed.

LEMMA 5.1. Let D be a circle of Q contained in a(I) ; then D

coincides with a circle o[c.) .

Proof. By way of contradiction, let D be distinct from any circle

o(c.) ; then for every i = 1, 2, ..., 6 we have \D n a[c.)\ < 2 and

from this

6
I | O a[c.)\ < 2 • 6 = 12 .
i=l *

On the other hand each point of D lies exactly on two circles o[C.) ,

so

6
£ \D n o[C.) I = 2 • 10 = 20 .
i=l V

Therefore we would have 20 < 12 .

LEMMA 5.2. Let Z be a collineation group of PG(3, 9) which maps

Q onto itself leaving a(I) invariant; then Z preserves the chain

o(C) .

Proof. Let a € Z and a[Cj) € o{C) ; as a[a(C.)) is a circle

lined in o(J) , the preceding Lemma !

circle of 0"(C) . This proves Lemma 5.2.

contained in o(J) , the preceding Lemma 5-1 assures that a(a(c)) is a
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Let IT. (i = 1, 2, ..., 6) be the plane of PG(3, 9) which meets Q

in o[C.) . Denote by P. the polo of TT . with respect to Q . Then, by

Lemma 5.2, H is the collineation group of PG(3, 9) which maps Q onto

itself and leaves the set \P , P , P , P., P , PA invariant. An easy

calculation shows that P^O, 2, 2, l), ?2(0, 1, 2, l), P (0, 7, 1, D ,

Pk(0, 5, 1, 1) , P5(l, 1, 0, 0), P6(2, 1, 0, 0) .

LEMMA 5.3. H fixes Ym .

Proof. The lines joining P and P , P and P, , P and P,

pass through Y^ ; there exist only three planes joining Ym and four

points among P. (i = 1, 2, ... , 6) . So H must fix Ym .

Let H. be the stabilizer of P. . First we note that

LEMMA 5.4. \ = \ , \ = \ > ^ = \ •

LEMMA 5.5. The identity collineation 1 is the only collineation of

H fixing each P. (i - 1, 2, ..., 6) .

Proof. The only non-identity collineation which leaves each P.

invariant has equations

px' = x3 , py' = y3 , pz' = 2M 3 , pw' = 2z3 ;

but this collineation does not preserve Q .

LEMMA 5.6. fl acts faithfully on {p , P , ..., Pg} .

LEMMA 5.7. H, is a dihedral group of order 8 . H, is generated

by the following collineations:

h : px' = 5x 3 py' = 5y , pz' = 2z , pu' = u ,

i : p x ' = x , py' = y , pz' = u , pu' = z .

h and s act on {p , P , ..., pA as follows:

h : {P-f/^) (P5) (P6) and I : (P^) {PJ (P̂ ) (P?) (Pg) .

Proof. By Lemmas 5.k and 5-6 we have that H, is a subgroup of the
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symmetric group 5, on four objects. An easy calculation shows that h

and s act on \P, P , . . . , PA as said before and h = s = (hs) = 1 .

So <fr, i> is a dihedral group of order 8 contained in tfg . As

H = fl_ we have fln n # . = ff n H, and so //^ cannot contain any element
1 d l o c o b

of order 3 . Thus |#,,| 5 8 and therefore ff, = <7i, s ) .

As |ff,| = 8 and the orbi t of P-- has length at most 6 , the

following lemma holds.

LEMMA 5.8. |ff| s U8 .

Let us consider the collineation

c : p a : ' = 5 z + 7 w , P J / ' = 5 j / , P 2 r = x + z + w , p w ' = a ; + 2 3 + 2 M .

A n e a s y c a l c u l a t i o n s h o w s

LEMMA 5 . 9 . <c> has order 6 and i s contained in H . a

centralizes H, .

Next we prove

LEMMA 5 . 1 0 . <5> n « 6 = { 1 } .

Proof. By Lemma 5 . 9 , |<c> n ffJ < 2 . I f |<e> n g | = 2 , t h e n

_o _3 _o —2
e € H, and, by Lemma 5 -7 , c = h , as 7i i s t h e c e n t r a l i n v o l u t i o n of

— —3 ~2
/L- . But one can v e r i f y t h a t c + h.

THEOREM 5.11. ~h~ = (h, I , c) , |ff| = It8 and a 2-Sylow subgroup of

H is the direct product of a dihedral group of order 8 with a group of

order 2 .

Proof. By Lemmas 5 - 7 , 5 -10 , ih, s, c) i s a subgroup of o r d e r a t

l e a s t U8 of H . By Lemma 5 . 8 , |ff| 5 k8 , t h u s H = (h, I , e> and

\H\ = U 8 . The l a t t e r a s s e r t i o n of t h e theorem fo l lows from Lemmas 5.7 and

5-9.

6. The collineation group H preserving u

Let us denote by 1 the identity collineation of PG(3, 9) and put
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(6.1) ma : px' = ax + y , py' = 3x + ay , pz' = as + 3y , pw' = 3 + aw ,

where a € GF(9). Then

LEMMA 6 . 1 . The cyalio group of order 10 ,

M = {ma | a € GF(9)} " ( l ) ,

fixes U linewise; moreover M = lm^\ . M is the full aollineation

group of PG(3, 9) which fixes U linewise.

Lemmas 6.2 and 6.3 follow from Lemma 6.1.

LEMMA 6.2. M is the subgroup of H fixing eaah regulus R. .

Therefore HIM oats on {i^, R^, ... , R^ faithfully.

Proof. Let * be the correspondence defined in Section 3. Then

*(ff) = H and 9(H) acts on [R , R , .... R^} as fl on

{P , ?2, .... Pg} . By Lemma 6.6, H is faithful on [P^, V^, ..., Pg} .

Thus Ker $ is the subgroup of H fixing each R. . As we have shown in

Section 3, Ker * = M . This proves Lemma 6.2.

Since \I\ = U8 and \M\ = 10 , from Lemma 6.2 it follows that

LEMMA 6.3. \H\ = 1+80 .

Let us consider the collineations

(6.2) h : px' = 5x, py' = 5y, pz' = z, pu' = u ,

(6.3) s : px' = z, py' = 6u, pz' = 6x, pu' = y ,

(6.4) a : px' = 5y + Tz, py' = Ox + hu, pz' = 3x + 3u, pu' = 2y + 2z .

It is easy to check that h, s, o have order It, 2, 6 respectively

and

(6.5)
fc(r(a, b)) =r{5a, 5b) ,
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(6 .6)

(6 .7)

s(rj = r(0, 0) ,

s(r(0, 0)) = rm ,

s{r(a, b)) = riaicf+eb2)-1, b(a2+62>2)~X) for (a , b) f (0 , 0) ,

a(rj = r(7, 0) ,

e(r(2, 0)) = r^ ,

e(r(a, b)) = r(('

for (a, 6) * (2, 0) .

Therefore

LEMMA 6.4. (h, s, c, M) is a subgroup of H .

From (6.5), (6.6) and (6-7) we infer that h, s, a act on

{R , R , ..., R,} as follows:
1 2 D

(6.9) ( ) () () {) () () () [)h :

a :

Thus h, s, a act on

P

[R , R , , RA as h, s, a on

{P , P , ..., Pg} . As the subgroup <h, s, c) of S, gives a faithful

representation of H on \P, P?, ..., PA , we get

<?i, s, c, M>/A? = <?T, s, e> . Therefore from Lemma 6.3 it follows that

LEMMA 6.5. H = <h, s, c, M) .

Next we prove

LEMMA 6.6. (h, s, c) n M = (l) .

Proof. The orbit of Xm in (h, s, a) consists of the points Xm ,

*„>> Zm, 0, (1, 0, 0, 1), (0, 1, 1, 0), (2, 0, 0, 1), (0, 2, 1, 0),

(5, 0, 0, 1), (0, 5, 1, 0), (7, 0, 0, 1), (0, 7, 1, 0) . The collineation

maps Xm into (a, 3, 0, 0) , so m^ ^ <h, s, c) if am 0 . Now let

us consider m : i t maps ( 1 , 1, 0, 0) in to (U, 1, 0, 0) ; the orbi t

of ( 1 , 1 , 0, 0) in <h, s, c) consis ts of the points ( l , 1, 0, 0) ,

(0 , 0 , 1 , 1 ) , ( 1 , 1 , 1 , 1 ) , (8 , 1 , 0, 0 ) , (0 , 0, 6, 1 ) , (2 , 2 , 1 , 1) ,

(5 , 5, 1, 1 ) , (7 , 7, 1 , 1 ) , ( 1 , 6, 6, 1 ) , (2 , 3 , 6, 1 ) , (7 , U, 6, l ) ,

(5 , 8, 6, 1) . Therefore m \ ih, s, a) .
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From the preceding lemmas we obtain

THEOREM 6.7. The collineation group H of PG(3, 9) which maps F

into itself and leaves U invariant is (h, s, c) • M . Moreover

(h, s, c) ~ H (cf. Theorem 5 • 11) cmd (h, s , c > acts on

{R±, R2, ..., R^) as H on \P±, ?2, ..., Pg} .

7. The inherited group K

Bruen [4] proved that if <? - 7 the collineation group K preserving

the partial spread G = (F-U) " V is the inherited group, that is, the

subgroup of H fixing G . In our case K is a proper subgroup of H .

In fact one can check that m does not preserve V . On the other hand

2
h, s, c, m € K , as

h : (r'(l, l)r'(3, 3)r'(2, 2)r'(k, 5))(*"(l, 2)r'(3, k)r'(2, l)r'(h, h))

[r'(l, 3)r'(3, 5)*"(2, 3)r'(U, 3)) (r'(l, U)r'(3, 2)r'(2, 5)r'(k, 1))

U, 2))(r'(5, l)) (r>'(5, 2))(r'(5, 3))

, l))

(r'(6, 2))(r'(6, 3)) [r'(6, h)){r'(6, 5)) ,

l)r'(2, l))(r'(l, 2)r'(2, 2))(r'(l, 3)r'(2, 3))

k)r'(2, U))(P'(1, 5)r'(2, 5))(r'(3, l)r'(3, 2))

3)r'(3, U))(r'(3, 5)) (r'(U, l)r'(U, 2))[r'(h, 3))

l*)r'(U, 5))fr'(5, l)r'(5, 3)) (r'(5, 2)r'(5, U))(r'(5, 5))

(r'(6, 1)P'(6, 5))(P'(6, 2))(P'(6, 3)P'(6, U)) ,

1)P'(6, 5)r'(3, 3)P'(2, 1)P'(5, l)r'(U, U))

2)P'(6, 1)P'(3, U)P'(2, 2)P'(5, 3)P'(U, 5))

3)P'(6, 2)P'(3, 5)r'(2, 3)P'(5, 5)r'(U, 3))

U)p'(6, U)P'(3, 2)P'(2, J»)P'(5, 2)P'(U, 2))

fp'(l, 5)r'(6, 3)P'(3, 1)P'(2, 5)r'(5, U)P'(U, l)) ,

'(1, 5))

, 5)P'(2, J»)P'(2, 2)P'(2, 3))

, 3)P'(3, 5)r'(3, "»)P'(3, 2))

, 2)P'(U, 5)r>(k, 3)r'(h, k))

, 5)r'(5, 3)P'(5, 2)r'(5, U))

'(6, 2)P'(6, 5)r'(6, 3)r'(6, It)) .
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Therefore we can state the following:

LEMMA 7 . 1 . (h, s , c) < K , m \ K , r£ € K .

2 2

Thus (h, s, c, m } is a subgroup of K . Since K n M = {w_^ ,

= \M\/2 , it follows that [H : K] = 2 . By K * H ,

2 2
X = (7z, s, c, m \ . Moreover (m } is a normal subgroup of K . So we

have the following:

THEOREM 7.2. The eollineation group K preserving the spread

G = (F-U) u V is the semidireat product of a group of order 5 lying in

the center of K with a group isomorphic to H . Therefore K is a

solvable group of order 2k . Moreover the orbits of K are

(r(3, O)r(h, 0)r(6, 0)r(8, 0)) ,

[p{0, l)r(0, 2)r(0, 3)r(0, k)r(O, 5)r(0, 6)r(0, T)r(0, 8)r(3, 3)

r(3, 5)H3, 6)r(3, l)r(k, l)r(k, 2)r(k, h)r(k, 8)r(6, 3)r(6.5)

r(6, 6)r(6, 7)r(8, l)r(8, 2)r(8, U)r(8, 8)) ,

(p(l, 3)r(l, 5)r(l, 6)r(l, 7)r(2, 3)r(2, 5)r(2, 6)r(2, 7)r(3, «t)

r(3, 8)r(U, 3)r(U, 6)r(5, l)r(5, 2)r(5, U)p(5, 8)r(6, U)r(6, 8)

r(7, Dr(7, 2)r(7, U)r(7, 8)r(8, 3)r(8, 6)) ,

(r'(l, l)r'(l, 2)r'(2, l)r'(2, 2)r'(3, 3)r'(3, h)r'(k, k)r'(k, 5)

p'(5, D P ' ( 5 , 3)P'(6, l)r'(6, 5)) ,

(p'(l, 3)P'(2, 3)P'(3, 5)r'(k, 3)P'(5, 5)P'(6, 2)) ,

(p'(l, U)p'(l, 5)P'(2, U)p'(2, 5)P'(3, 1)P'(3, 2)r'(h, l)r'(h, 2)

P'(5, 2)P'(5, »»)P'(6, 3)P'(6, U)) .

8. The translation complement

2
As it is well known a translation plane T of order q arises from

any spread of PG(3, q) (cf. [6], p. 220 and [I/] and [2]). Here we give

an outline for the case q = 9 •

The points of T are those of PG(U, 9) - PG(3, 9) , the lines of T

are the planes of PG(U, 9) which meet PG(3, 9) in a line of the spread

and do not belong to PG(3, 9) • If we consider PG(U, 9) - PG(3, 9) as a
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vector space ^V(9) of dimension U over GF(9) , the points of T can

be identified with the vectors of V,(9) , the lines through the zero

vector 0 are some 2-dimensional subspaces (called also components), the

other lines of T are translates of the components. The group of

collineations of T fixing 0 is called the "translation complement" and

consists of some linear or semilinear transformations of V\,(9) • In

particular such a transformation a of V,[9) belongs to the translation

complement of T if and only if the collineation of PG(3, 9) defined by

the matrix of a leaves the spread invariant. Moreover if we denote the

translation complement of T by A , the cyclic group of order 8 of all

dilations with center 0 by A and the collineation group of PG(3, 9)

which leaves the spread invariant by K , then K ̂  Ao/A •

As T is the translation plane arising from the spread

G = (F-U) u V , by Theorem 1.2 we get

THEOREM 8.1. The translation complement AQ of T is

< A, a, y, V* i where

A : x' = 5x, y' = 5y, z' = z, u' = u ,

a : x' = z, y'=6u, z' = 6x, u' = y ,

Y : x' = 5y + 7z, y' = 8x + ku, z' = 3x + 3M, U' = 2y + 2s ,

y : x' = 8x + y, y' = 3x + 8y, z' = 8z + 3u, u' = z + 8u .

As < y> is a normal subgroup of A. and < A, a, Y> n < y> = {1} ,

An is semidirect product of < A, a, y) and <u> . Therefore A_ is a

solvable group of order 2U0 • 8 = 1920 .

References

[J] L.M. Abatangelo and Vito Abatangelo, "On Bruen's plane of order

25 ", submitted.

https://doi.org/10.1017/S0004972700021237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021237


T r a n s l a t i o n p l a n e o f o r d e r 81 33

[2] Adriano Barlotti , "Representation and construction of protective

planes and other geometric structures from protective spaces",

Jber. Deutsch. Math.-Verein. 77 (1975), 28-38.

[3] R.H. Bruck, "Construction problems in finite projective spaces",

Construction problems in finite projective spaces

(C.I.M.E., II Ciclo, Bressanone, 1972. Edizioni Cremonese,

Rome, 1973).

[4] Aiden A. Bruen, "Inversive geometry and some new translation planes,

I" , Geom. Dedicate 7 (1978), 81-98.
2

[5] M. Capursi, "A translation plane of order 11 " , J. Combin. Theory

Ser. A 35 (1983), 289-300.

[6] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer

Grenzgebiete, 44. Springer-Verlag, Berlin, Heidelberg, New

York, 1968.

[7] Daniel R. Hughes and Fred C. Piper, Projective planes (Graduate Texts

in Mathematics, 6. Springer-Verlag, New York, Heidelberg,

Berlin, 1973).

[8] Gabor Korchmaros, "The full collineation group of Bruen's plane of

order 1+9 " , submitted.

[9] Gabor Korchmaros, "A translation plane of order U9 with nonsolvable

collineation group", submitted.

[70] B. Larato and G. Raguso, "II gruppo delle collineazioni di un piano

o
di ordine 13 " , Atti del Convegno di Geometria Combinatoria e

di Inaidenza, 7 (Passo della Mendola, Trento, I t a l i a , 1982.

Rendiconti del Seminario Matematico, Brescia, to appear).

[7 7] T.G. Ostrom, Finite translation planes (Lecture Notes in Mathematics,

158. Springer-Verlag, Berlin, Heidelberg, New York, 1970).

[72] Giuseppe Pellegrino and Gabor Korchmaros, "Translation planes of

2
order 11 " , Combinatorial and geometric structures and their

applications, Trento, 1980, 2*»9-26U (North-Holland Mathematical

Studies, 63. North-Holland, Amsterdam, 1982).
2

[73] G. Raguso, "Un piano di traslazione di ordine 13 " , submitted.

https://doi.org/10.1017/S0004972700021237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021237


34 Vito Abatangelo

[14] Helmut Wielandt, Finite permutation groups (translated by R. Bercov.

Academic Press, New York, London, 196U).

Dipartimento di Matematica,

M\S Re David 200,

70125 Bari,

Italy.

https://doi.org/10.1017/S0004972700021237 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021237

