A TRANSLATION PLANE OF ORDER 81 and ITS FULL COLLINEATION GROUP

Vito Abatangelo

Abstract

In this paper a new translation plane of order 81 is constructed. Its collineation group is solvable and acts on the line at infinity as a permutation group K which is the product of a group of order 5 belonging to the center of K with a group of order 48. A 2-Sylow subgroup of K is the direct product of a dihedral group of order 8 with a group of order 2 . K admits six orbits. They have lengths $4,6,12,12,24$, 24.

1. Introduction

Let $\operatorname{GF}(q)$ be a Galois field of odd order $q(\geq 5)$ and let F be the regular spread of $\operatorname{PG}(3, q)$. Suppose that F contains a set R of reguli satisfying the properties
(i) R consists of $(q+3) / 2$ reguli, $R_{1}, R_{2}, \ldots, R_{(q+3) / 2}$,
(ii) any two reguli of R have exactly two lines in common,
(iii) no three reguli of R have a line in common.

Received 2 September 1983. Research partially supported by MPI (Research project "Structture Geometriche Combinatorie e Loro Applicazioni"). The author wishes to thank G. Korchmaros for the discussion with him about the argument of the present paper.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.

Let U be the partial spread consisting of all the lines of the reguli $R_{i}(i=1,2, \ldots,(q+3) / 2)$ and let I_{R} denote the point set covered by U. If R_{i}^{\prime} denotes the opposite regulus of R_{i}, the set U^{\prime} of all the lines of R_{i}^{\prime} is not a spread of I_{R} because any point P of I_{R} belongs to two lines of U^{\prime}. According to a result of Bruen [4], if a subset V of U^{\prime} is a partial spread then V contains $(q+1) / 2$ lines of each R_{i}^{\prime} such that the union of these half-reguli is V. If there exists such a partial spread V then one can obtain a new spread $G=(F-U) \cup V$ by replacing U with V, G will be called β-derived from F (with respect to (U, V)). We can try to obtain a new partial spread $V=\frac{1}{2} U^{\prime}$ of I_{R} by choosing only a suitable half of the lines of each opposite regulus. As for β-derived spreads the existence problem is yet unsolved except for $q=5,7,11,13$. Specific examples are given in Bruen's paper [4] when $q=5,7$, in [5] and [12] when $q=11$ and in [13] when $q=13$.

In [4] Bruen also proved that if $q \geq 7$ the collineation group of a B-derived spread is the inherited group, that is, it is the subgroup of the collineation group of $\operatorname{PG}(3, q)$ which leaves F invariant. The collineation groups of the translation planes arising from the above mentioned examples are determined [5], [12], [13].

In this paper the first example of a B-derived spread is constructed for $q=9$ and the collineation group of the corresponding translation plane is determined. It is a solvable group satisfying the properties listed in the summary.

2. Notation and terminology

Notation and terminology are the same as in Bruen's paper [4]. The reader is assumed to be familiar with the theory of projective planes given in Dembowski [6] and in Hughes and Piper [7] and with the theory of permutation groups given in Wielandt [14].

Let $G F(9)$ be the quadratic extension of $G F(3)=\{0,1,2\}$. In particular let us consider the polynomial $x^{2}+x+2$ (which is irreducible in $G F(3)$), $i \notin G F(3)$ such that $i^{2}+i+2=0$ and
$3=i, 4=i+1,5=i+2,6=2 i, 7=1+2 i, 8=2+2 i ;$ so $\operatorname{GF}(9)=\{0,1,2,3,4,5,6,7,8\}$.

The homogeneous coordinates (x, y, z, u) denote points in $\operatorname{PG}(3, q)$. The line joining the point $\left(x_{1}, y_{1}, z_{1}, u_{1}\right)$ to the point $\left(x_{2}, y_{2}, z_{2}, u_{2}\right)$ is denoted by $\left\langle\left(x_{1}, y_{1}, z_{1}, u_{1}\right),\left(x_{2}, y_{2}, z_{2}, u_{2}\right)\right\rangle$; moreover if g, h, \ldots, w are elements of a group, then the subgroup generated by g, h, \ldots, w is denoted by (g, h, \ldots, w).

3. Preliminaries

Before the example, the general relation between the spread F and the Miquelian inversive plane $M(q)$ over $\operatorname{GF}(q)$ is discussed briefly.

Assume that q is odd and denote by s a non-square element of $\operatorname{GF}(q)$, so $\operatorname{GF}\left(q^{2}\right)=\left\{a+b t \mid a, b \in \operatorname{GF}(q), t^{2}=s\right\}$. We define norm $N(a+b t)$ of $a+b t$ of $G F\left(q^{2}\right), N(a+b t)=a^{2}-s b^{2}$. Clearly $N(a+b t) \in \mathrm{GF}(q)$; moreover set $N(\rho)=\{a+b t \mid N(a+b t)=\rho\} . M(q)$ is considered the incidence structure whose points are the elements of $G F\left(q^{2}\right) \cup\{\infty\}$ and whose circles are the subsets of $G F\left(q^{2}\right) \cup\{\infty\}$ of the following types:
(I) $a+b t+N(\rho)=\{x+y t \mid N((a-x)+(b-y) t)=\rho\} ;$
(II) $C(a+b t, c+d t)=\{(a+b t)+\lambda(c+d t) \mid \lambda \in G F(q) \cup\{\infty\}\}$.

The spread F is the union of all the lines

$$
\langle(1,0,0,0),(0,1,0,0)\rangle,\langle(a, s b, 0,1),(b, a, 1,0)\rangle
$$

where a, b run over $\operatorname{GF}(q)$. By a theorem of Bruck's ([3], also [4]), the map

$$
\begin{aligned}
\infty & \rightarrow((1,0,0,0),(0,1,0,0)) \\
\psi: & \\
a+b t & \rightarrow(\langle a, s b, 0,1),(b, a, 1,0)\rangle
\end{aligned}
$$

is an incidence preserving isomorphism between $M(q)$, with its points and circles, and F, with its lines and reguli.

By Bruck's theorem, the problem of finding sets R of reguli satisfying the properties (i), (ii), (iii) is equivalent to that of constructing chains \mathcal{C} of circles in $M(q)$ satisfying the properties
(i)' C consists of $(q+3) / 2$ circles, $C_{1}, C_{2}, \ldots, C_{(q+3) / 2}$,
(ii)' any two circles of \mathcal{C} have exactly two points in common,
(iii)' no three circles of \mathcal{C} have a point in common.

Let W be the collineation group of $\operatorname{PG}(3, q)$ mapping F onto itself. Every $w \in W$ determines a map w^{\prime} of $M(q)$ onto itself defined as follows: let P be any point of $M(q)$ and let r be the line of F which corresponds to P by Ψ; then $\omega^{\prime}(P)$ is the point which corresponds to $\omega(r)$ by Ψ. Therefore a map Φ is defined putting $\Phi(w)=w^{\prime}$. Of course Φ is a homomorphism of W into W^{\prime}, where W^{\prime} denotes the automorphism group of $M(q)$. The kernel of Φ is the group M of all collineations of $\mathrm{PG}(3, q)$ fixing F linewise. M is a cyclic group of order $q+1$. Moreover $W \simeq \Gamma_{L}\left(2, q^{2}\right)$ and $W^{\prime} \simeq \operatorname{P\Gamma L}\left(2, q^{2}\right)$.

Let H be the subgroup of W which leaves invariant a set R of reguli satisfying the properties (i), (ii), (iii). If H^{\prime} denotes the subgroup of W^{\prime} which leaves invariant the chain \mathcal{C} of circles of $M(q)$ corresponding to \mathbb{R} by Ψ, then $\Phi(H)=H^{\prime}$. Hence $H / M \simeq H^{\prime}$.

4. Two partial spreads U and V of $\operatorname{PG}(3,9)$ covering the same point set

Using the notation of Bruen's paper, our construction can be described as follows.

$$
\begin{aligned}
& \text { If } s=3, \text { the norm-classes of } \mathrm{GF}(9) \text { are } \\
& N(0)=\{0\}, \\
& N(1)=\{1,2,4+4 t, 8+4 t, 3+5 t, 6+5 t, 3+7 t, 6+7 t, 4+8 t, 8+8 t\}, \\
& N(2)=\{5,7,4+t, 8+t, 4+2 t, 8+2 t, 3+3 t, 6+3 t, 3+6 t, 6+6 t\}, \\
& N(3)=\{5+3 t, 7+3 t, 3+4 t, 6+4 t, 5 t, 5+6 t, 7+6 t, 7 t, 3+8 t, 6+8 t\}, \\
& N(4)=\{3+t, 6+t, 3+2 t, 6+2 t, 3 t, 1+5 t, 2+5 t, 6 t, 1+7 t, 2+7 t\}, \\
& N(5)=\{4,8,1+3 t, 2+3 t, 5+5 t, 7+5 t, 1+6 t, 2+6 t, 5+7 t, 7+7 t\}, \\
& N(6)=\{t, 2 t, 4+3 t, 8+3 t, 1+4 t, 2+4 t, 4+6 t, 8+6 t, 1+8 t, 2+8 t\}, \\
& N(7)=\{3,6,1+t, 2+t, 1+2 t, 2+2 t, 5+4 t, 7+4 t, 5+8 t, 7+8 t\}, \\
& N(8)=\{5+t, 7+t, 5+2 t, 7+2 t, 4 t, 4+5 t, 8+5 t, 4+7 t, 8+7 t, 8 t\} .
\end{aligned}
$$

An easy calculation shows that the following circles of $M(q)$ form a chain C satisfying the properties (i)', (ii)', (iii)':

$$
\begin{array}{ll}
c_{1}: 2 t+N(7), & c_{2}: t+N(7), \\
c_{3}: 7 t+N(5)
\end{array},
$$

The corresponding reguli $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}$ contained in F form a set R satisfying the properties (i), (ii), (iii). The line $\langle(1,0,0,0),(0,1,0,0))$ is denoted by r_{∞} and the line $\{(a, 3 b, 0,1),(b, a, 1,0)\rangle$ by $r(a, b)$, then

$$
R_{1}=\{r(1,0), r(2,0), r(1,1), r(2,1), r(3,2),
$$

$$
r(6,2), r(5,3), r(7,3), r(5,7), r(7,7)\}
$$

$$
R_{2}=\{r(1,0), r(2,0), r(3,1), r(6,1), r(1,2),
$$

$$
r(2,2), r(5,5), r(7,5), r(5,6), r(7,6)\}
$$

$$
R_{3}=\{r(5,0), r(7,0), r(1,1), r(2,1), r(1,4),
$$

$$
r(2,4), r(5,5), r(7,5), r(4,7), r(8,7)\}
$$

$$
R_{4}=\{r(5,0), r(7,0), r(1,2), r(2,2), r(4,5),
$$

$$
r(8,5), r(5,7), r(7,7), r(1,8), r(2,8)\},
$$

$$
R_{5}=\{r(0,0), r(3,1), r(6,2), r(7,3), r(1,4),
$$

$$
\left.r(4,5), r(5,6), r(8,7), r(2,8), r_{\infty}\right\}
$$

$$
R_{6}=\{r(0,0), r(6,1), r(3,2), r(5,3), r(2,4),
$$

$$
\left.r(8,5), r(7,6), r(4,7), r(1,8), r_{\infty}\right\}
$$

Therefore

$$
\begin{aligned}
U= & \{r(1,0), r(2,0), r(1,1), r(2,1), r(3,2), \\
& r(6,2), r(5,3), r(7,3), r(5,7), r(7,7), r(3,1), r(6,1), r(1,2), \\
& r(2,2), r(5,5), r(7,5), r(5,6), r(7,6), r(5,0), r(7,0), r(1,4), \\
& r(2,4), r(4,7), r(8,7), r(4,5), r(8,5),
\end{aligned}
$$

$$
\left.r(1,8), r(2,8), r(0,0), r_{\infty}\right\}
$$

Denote by V the union of the following half-reguli

$$
\begin{array}{r}
\frac{1}{2} R_{i}^{\prime}=\left\{r^{\prime}(i, 1), r^{\prime}(i, 2), r^{\prime}(i, 3), r^{\prime}(i, 4), r^{\prime}(i, 5)\right\}: \\
\frac{1}{2} R_{1}^{\prime}=\{((2,3,0,1),(0,1,1,0)\rangle,\langle(2,0,0,1),(1,1,1,0)\rangle, \\
\{(6,6,0,1),(2,3,1,0)\rangle,((7,8,0,1),(3,5,1,0)), \\
\\
((7,7,0,1),(7,5,1,0)\rangle\},
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{2} R_{2}^{\prime}=\{\langle(1,0,0,1),(2,2,1,0)\rangle,\langle(1,6,0,1),(0,2,1,0)\rangle, \\
& ((3,3,0,1),(1,6,1,0)),((5,5,0,1),(5,7,1,0)\rangle \text {, } \\
& ((5,4,0,1) ;(6,7,1,0)\rangle), \\
& \frac{1}{2} R_{3}^{\prime}=\{\langle(1,1,0,1\rangle,(1,2,1,0)\rangle,\langle(1,3,0,1),(4,2,1,0)), \\
& ((7,4,0,1),(0,5,1,0)),((7,0,0,1),(5,5,1,0)), \\
& ((8,8,0,1),(7,4,1,0)\rangle\}, \\
& \frac{1}{2} R_{4}^{\prime}=\{\langle(2,6,0,1),(8,1,1,0)\rangle,\langle(2,2,0,1),(2,1,1,0)\}, \\
& ((4,4,0,1),(5,8,1,0)),((5,0,0,1),(7,7,1,0)\rangle, \\
& ((5,8,0,1),(0,7,1,0)\rangle\}, \\
& \frac{1}{2} R_{5}^{\prime}=\{\langle(4,1,0,0),(0,0,1,0)\rangle,\langle(7,1,0,0),(0,0,1,1)\rangle, \\
& \langle(1,0,0,0),(0,0,1,2)\rangle,((8,1,0,0),(0,0,1,3)\rangle, \\
& ((5,1,0,0),(0,0,1,6))\}, \\
& \frac{1}{2} R_{6}^{\prime}=\{\langle(0,1,0,0),(0,0,1,4)\rangle,\langle(6,1,0,0),(0,0,1,5)\rangle, \\
& ((1,1,0,0),(0,0,1,7)),((3,1,0,0),(0,0,1,8)) \text {, } \\
& \langle(2,1,0,0),(0,0,0,1)\rangle\} .
\end{aligned}
$$

Note that $\frac{1}{2} R_{i}^{\prime}$ is contained in the opposite regulus R_{i}^{\prime} of R_{i}. An explicit calculation shows that U and V cover the same subset I_{R} of $\operatorname{PG}(3,9)$ and have no lines in common. Therefore $G=(F-U) \cup V$ is a spread of $\operatorname{PG}(3,9)$. Clearly G is a B-derived spread from F.

5. The automorphism group of the chain \mathcal{C}

In this section the automorphism group H^{\prime} of $M(9)$ which leaves the point set I covered by C invariant is determined. As a model of $M(9)$ we will take the geometry $G(Q)$ of the plane sections of an elliptic quadric Q of $\operatorname{PG}(3,9)$. The passage from $M(9)$ to $G(Q)$ can be realized as follows. Let Q be the elliptic quadric of $P G(3,9)$ whose equation is

$$
Q: z u=x^{2}+6 y^{2}
$$

As it is well known, the map

$$
\begin{array}{cc}
\infty & \rightarrow(0,0,1,0) \\
\sigma: & \\
a+b t & \rightarrow\left(a, b, a^{2}+6 b^{2}, 1\right)
\end{array}
$$

is an incidence preserving isomorphism between $M(9)$ and Q with their points and circles. Moreover (cf. [6], p. 274), if w^{\prime} is an automorphism of $M(9)$, then there is a unique collineation \bar{w} of $\operatorname{PG}(3,9)$ leaving Q invariant such that ω^{\prime} acts on $M(9)$ as $\bar{\omega}$ on Q. Thus

$$
\sigma\left(w^{\prime}(P)\right)=\bar{w}(\sigma(P)) \quad \text { for every } \quad P \in M(9)
$$

and

$$
\sigma^{-1}(\bar{w}(P))=w^{\prime}\left(\sigma^{-1}(P)\right) \quad \text { for every } \quad P \in Q
$$

Therefore the problem of determining the automorphism group H^{\prime} of $M(9)$ which leaves I invariant is equivalent to that of determining the collineation group \bar{H} of $\operatorname{PG}(3,9)$ which maps Q onto itself and leaves $\sigma(I)$ invariant, where $\sigma(I)=\{\sigma(P) \mid P \in I\}$. First some lemmas are needed.

LEMMA 5.1. Let D be a circle of Q contained in $\sigma(I)$; then D coincides with a circle $\sigma\left(C_{i}\right)$.

Proof. By way of contradiction, let D be distinct from any circle $\sigma\left(C_{i}\right) ;$ then for every $i=1,2, \ldots, 6$ we have $\left|D \cap \sigma\left(C_{i}\right)\right| \leq 2$ and from this

$$
\sum_{i=1}^{6}\left|D \cap \sigma\left(c_{i}\right)\right| \leq 2 \cdot 6=12 \text {. }
$$

On the other hand each point of D lies exactly on two circles $\sigma\left(C_{i}\right)$, so

$$
\sum_{i=1}^{6}\left|D \cap \sigma\left(C_{i}\right)\right|=2 \cdot 10=20
$$

Therefore we would have $20 \leq 12$.
LEMMA 5.2. Let Z be a collineation group of $\operatorname{PG}(3,9)$ which maps Q onto itself leaving $\sigma(I)$ invariant; then Z preserves the chain $\sigma(C)$.

Proof. Let $\alpha \in Z$ and $\sigma\left(C_{i}\right) \in \sigma(C)$; as $\alpha\left(\sigma\left(C_{i}\right)\right)$ is a circle contained in $\sigma(I)$, the preceding Lemma 5.1 assures that $\alpha\left(\sigma\left(C_{i}\right)\right)$ is a circle of $\sigma(C)$. This proves Lemma 5.2.

Let $\pi_{i}(i=1,2, \ldots, 6)$ be the plane of $\operatorname{PG}(3,9)$ which meets Q in $\sigma\left(c_{i}\right)$. Denote by P_{i} the polo of π_{i} with respect to Q. Then, by Lemma 5.2, \bar{H} is the collineation group of $\operatorname{PG}(3,9)$ which maps Q onto itself and leaves the set $\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ invariant. An easy calculation shows that $P_{1}(0,2,2,1), P_{2}(0,1,2,1), P_{3}(0,7,1,1)$, $P_{4}(0,5,1,1), P_{5}(1,1,0,0), P_{6}(2,1,0,0)$.

LEMMA 5.3. \bar{H} fixes Y_{∞}.
Proof. The lines joining P_{1} and P_{2}, P_{3} and P_{4}, P_{5} and P_{6} pass through Y_{∞}; there exist only three planes joining Y_{∞} and four points among $P_{i}(i=1,2, \ldots, 6)$. So \bar{H} must fix Y_{∞}.

Let \bar{H}_{i} be the stabilizer of P_{i}. First we note that
LEMM 5.4. $\bar{H}_{1}=\bar{H}_{2}, \quad \bar{H}_{3}=\bar{H}_{4}, \quad \bar{H}_{5}=\bar{H}_{6}$.
LEMMA 5.5. The identity collineation 1 is the only collineation of \bar{H} fixing each $P_{i}(i=1,2, \ldots, 6)$.

Proof. The only non-identity collineation which leaves each P_{i} invariant has equations

$$
\rho x^{\prime}=x^{3}, \quad \rho y^{\prime}=y^{3}, \quad \rho z^{\prime}=2 u^{3}, \quad \rho u^{\prime}=2 z^{3} ;
$$

but this collineation does not preserve Q.
LEMMA 5.6. \bar{H} acts faithfully on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$.
LEMMA 5.7. \bar{H}_{6} is a dihedral group of order $8 . \bar{H}_{6}$ is generated by the following collineations:

$$
\begin{array}{ll}
\bar{h}: \rho x^{\prime}=5 x, & \rho y^{\prime}=5 y, \quad \rho z^{\prime}=2 z, \quad \rho u^{\prime}=u, \\
\bar{s}: \rho x^{\prime}=x, \quad \rho y^{\prime}=y, \quad \rho z^{\prime}=u, \quad \rho u^{\prime}=z .
\end{array}
$$

\bar{h} and \bar{s} act on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$ as follows:

$$
\bar{h}:\left(P_{1} P_{3} P_{2} P_{4}\right)\left(P_{5}\right)\left(P_{6}\right) \text { and } \bar{s}:\left(P_{1} P_{2}\right)\left(P_{3}\right)\left(P_{4}\right)\left(P_{5}\right)\left(P_{6}\right)
$$

Proof. By Lemmas 5.4 and 5.6 we have that \bar{H}_{6} is a subgroup of the
symmetric group S_{4} on four objects. An easy calculation shows that \bar{h} and \bar{s} act on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$ as said before and $\bar{h}^{4}=\bar{s}^{2}=(\bar{h} \bar{s})^{2}=1$. So $\langle\bar{h}, \bar{s}\rangle$ is a dihedral group of order 8 contained in \bar{H}_{6}. As $\bar{H}_{1}=\bar{H}_{2}$ we have $\bar{H}_{1} \cap \bar{H}_{6}=\bar{H}_{2} \cap \bar{H}_{6}$ and so \bar{H}_{6} cannot contain any element of order 3 . Thus $\left|\bar{H}_{6}\right| \leq 8$ and therefore $\bar{H}_{6}=\langle\bar{h}, \bar{s}\rangle$.

As $\left|\bar{H}_{6}\right|=8$ and the orbit of P_{6} has length at most 6 , the following lemma holds.

LEMMA 5.8. $|\bar{H}| \leq 48$.
Let us consider the collineation

$$
\bar{c}: \rho x^{\prime}=5 z+7 u, \rho y^{\prime}=5 y, \rho z^{\prime}=x+z+u, \rho u^{\prime}=x+2 z+2 u .
$$

An easy calculation shows
LEMMA 5.9. $\langle\bar{c}\rangle$ has order 6 and is contained in $\bar{H} \cdot \bar{c}^{3}$ centralizes \vec{H}_{6}.

Next we prove
LEMMA 5.10. (\bar{c}) $\cap \bar{H}_{6}=\{1\}$.
Proof. By Lemma 5.9, $|\bar{c}\rangle \cap \bar{H}_{6} \mid \leq 2$. If $\left|\langle\bar{c}\rangle \cap \bar{H}_{6}\right|=2$, then $\bar{c}^{3} \in \bar{H}_{6}$ and, by Lemma 5.7, $\bar{c}^{3}=\bar{h}^{2}$, as \bar{h}^{2} is the central involution of \bar{H}_{6}. But one can verify that $\bar{c}^{3} \neq \bar{h}^{2}$.

THEOREM 5.11. $\bar{H}=\langle\bar{h}, \bar{s}, \bar{c}\rangle,|\bar{H}|=48$ and a 2-Sylow subgroup of \bar{H} is the direct product of a dihedral group of order 8 with a group of order 2 .

Proof. By Lemmas 5.7,5.10, $(\bar{h}, \bar{s}, \bar{c}\rangle$ is a subgroup of order at least 48 of \bar{H}. By Lerma 5.8, $|\bar{H}| \leq 48$, thus $\bar{H}=\langle\bar{h}, \bar{s}, \bar{c}\rangle$ and $|\bar{H}|=48$. The latter assertion of the theorem follows from Lemmas 5.7 and 5.9.
6. The collineation group H preserving U

Let us denote by 1 the identity collineation of $\operatorname{PG}(3,9)$ and put
(6.1) $m_{\alpha}: \rho x^{\prime}=\alpha x+y, \rho y^{\prime}=3 x+\alpha y, \rho z^{\prime}=\alpha z+3 y, \rho u^{\prime}=z+\alpha u$, where $\alpha \in \operatorname{GF}(9)$. Then

LEMMA 6.1. The cyclic group of order 10 ,

$$
M=\left\{m_{\alpha} \mid \alpha \in \operatorname{GF}(9)\right\} \cup\{1\}
$$

fixes U linewise; moreover $M=\left\langle m_{3}\right\rangle . M$ is the full collineation group of $\operatorname{PG}(3,9)$ which fixes U linewise.

Lemmas 6.2 and 6.3 follow from Lemma 6.1.
LEMMA 6.2. M is the subgroup of H fixing each regulus R_{i}. Therefore H / M acts on $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ faithfully.

Proof. Let Φ be the correspondence defined in Section 3. Then $\Phi(H)=\bar{H}$ and $\Phi(H)$ acts on $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ as \bar{H} on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$. By Lerma 6.6, \bar{H} is faithful on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$. Thus Ker Φ is the subgroup of H fixing each R_{i}. As we have shown in Section 3, Ker $\Phi=M$. This proves Lemma 6.2.

Since $|\bar{H}|=48$ and $|M|=10$, from Lemma 6.2 it follows that
LEMMA 6.3. $|H|=480$.
Let us consider the collineations
(6.2) $h: \rho x^{\prime}=5 x, \quad \rho y^{\prime}=5 y, \quad \rho z^{\prime}=z, \quad \rho u^{\prime}=u$,
(6.3) s : $\rho x^{\prime}=z, \quad \rho y^{\prime}=6 u, \quad \rho z^{\prime}=6 x, \quad \rho u^{\prime}=y$,
(6.4) $c: \rho x^{\prime}=5 y+7 z, \rho y^{\prime}=8 x+4 u, \rho z^{\prime}=3 x+3 u, \rho u^{\prime}=2 y+2 z$.

It is easy to check that h, s, c have order $4,2,6$ respectively and

$$
\left\{\begin{array}{l}
h\left(r_{\infty}\right)=r_{\infty} \tag{6.5}\\
h(r(a, b))=r(5 a, 5 b)
\end{array}\right.
$$

(6.6) $\left\{\begin{array}{l}s\left(r_{\infty}\right)=r(0,0), \\ s(r(0,0))=r_{\infty}, \\ s(r(a, b))=r\left(a\left(a^{2}+6 b^{2}\right)^{-1}, b\left(a^{2}+6 b^{2}\right)^{-1}\right) \text { for }(a, b) \neq(0,0),\end{array}\right.$
(6.7) $\left\{\begin{array}{l}c\left(r_{\infty}\right)=r(7,0), \\ c(r(2,0))=r_{\infty}, \\ c(r(a, b))=r\left(\left(7 a^{2}+4 b^{2}+5\right)\left((a+1)^{2}+6 b^{2}\right)^{-1}, 7 b\left((a+1)^{2}+6 b^{2}\right)^{-1}\right) \\ \text { for }(a, b) \neq(2,0) .\end{array}\right.$

Therefore
LEMMA 6.4. (h, s, c, M) is a subgroup of H.
From (6.5), (6.6) and (6.7) we infer that h, s, c act on $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ as follows:

$$
\begin{align*}
& h:\left(R_{1} R_{3} R_{2} R_{4}\right)\left(R_{5}\right)\left(R_{6}\right), s:\left(R_{1} R_{2}\right)\left(R_{3}\right)\left(R_{4}\right)\left(R_{5}\right)\left(R_{6}\right), \tag{6.9}\\
& c:\left(R_{1} R_{6} R_{3} R_{2} R_{5} R_{4}\right)
\end{align*}
$$

Thus h, s, c act on $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ as $\bar{h}, \bar{s}, \bar{c}$ on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$. As the subgroup $(\bar{h}, \bar{s}, \bar{c})$ of S_{6} gives a faithful representation of \bar{H} on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$, we get $(h, s, c, M) / M=(\bar{h}, \bar{s}, \bar{c})$. Therefore from Lemma 6.3 it follows that

LEMMA 6.5. $H=\langle h, s, c, M)$.
Next we prove
LEMMA 6.6. $\langle h, s, c\rangle \cap M=\{1\}$.
Proof. The orbit of X_{∞} in $\langle h, s, c\rangle$ consists of the points X_{∞}, $y_{\infty}, Z_{\infty}, 0,(1,0,0,1),(0,1,1,0),(2,0,0,1),(0,2,1,0)$, $(5,0,0,1),(0,5,1,0),(7,0,0,1),(0,7,1,0)$. The collineation m_{α} maps X_{∞} into $(\alpha, 3,0,0)$, so $m_{\alpha} k(h, s, c)$ if $\alpha \neq 0$. Now let us consider m_{0} : it maps ($1,1,0,0$) into ($4,1,0,0$); the orbit of $(1,1,0,0)$ in $\langle h, s, c\rangle$ consists of the points $(1,1,0,0)$, $(0,0,1,1),(1,1,1,1),(8,1,0,0),(0,0,6,1),(2,2,1,1)$, $(5,5,1,1),(7,7,1,1),(1,6,6,1),(2,3,6,1),(7,4,6,1)$, $(5,8,6,1)$. Therefore $m_{0} k(h, s, c)$.

From the preceding lemmas we obtain
THEOREM 6.7. The collineation group H of $\mathrm{PG}(3,9)$ which maps F into itself and leaves U invariant is $\langle h, s, c\rangle \cdot M$. Moreover $(h, s, c) \simeq \bar{H}$ (cf. Theorem 5.11) and (h, s, c) acts on $\left\{R_{1}, R_{2}, \ldots, R_{6}\right\}$ as \bar{H} on $\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$.

7. The inherited group K

Bruen [4] proved that if $q \geq 7$ the collineation group K preserving the partial spread $G=(F-U) \cup V$ is the inherited group, that is, the subgroup of H fixing G. In our case K is a proper subgroup of H. In fact one can check that m_{3} does not preserve V. On the other hand $h, s, c, m_{3}^{2} \in K$, as

$$
\begin{aligned}
h: & \left(r^{\prime}(1,1) r^{\prime}(3,3) r^{\prime}(2,2) r^{\prime}(4,5)\right)\left(r^{\prime}(1,2) r^{\prime}(3,4) r^{\prime}(2,1) r^{\prime}(4,4)\right) \\
& \left(r^{\prime}(1,3) r^{\prime}(3,5) r^{\prime}(2,3) r^{\prime}(4,3)\right)\left(r^{\prime}(1,4) r^{\prime}(3,2) r^{\prime}(2,5) r^{\prime}(4,1)\right) \\
& \left(r^{\prime}(1,5) r^{\prime}(3,1) r^{\prime}(2,4) r^{\prime}(4,2)\right)\left(r^{\prime}(5,1)\right)\left(r^{\prime}(5,2)\right)\left(r^{\prime}(5,3)\right) \\
& \left(r^{\prime}(5,4)\right)\left(r^{\prime}(5,5)\right)\left(r^{\prime}(6,1)\right)
\end{aligned}
$$

$$
\left(r^{\prime}(6,2)\right)\left(r^{\prime}(6,3)\right)\left(r^{\prime}(6,4)\right)\left(r^{\prime}(6,5)\right)
$$

$s:\left(r^{\prime}(1,1) r^{\prime}(2,1)\right)\left(r^{\prime}(1,2) r^{\prime}(2,2)\right)\left(r^{\prime}(1,3) r^{\prime}(2,3)\right)$
$\left(r^{\prime}(1,4) r^{\prime}(2,4)\right)\left(r^{\prime}(1,5) r^{\prime}(2,5)\right)\left(r^{\prime}(3,1) r^{\prime}(3,2)\right)$
$\left(r^{\prime}(3,3) r^{\prime}(3,4)\right)\left(r^{\prime}(3,5)\right)\left(r^{\prime}(4,1) r^{\prime}(4,2)\right)\left(r^{\prime}(4,3)\right)$
$\left(r^{\prime}(4,4) r^{\prime}(4,5)\right)\left(r^{\prime}(5,1) r^{\prime}(5,3)\right)\left(r^{\prime}(5,2) r^{\prime}(5,4)\right)\left(r^{\prime}(5,5)\right)$

$$
\left(r^{\prime}(6,1) r^{\prime}(6,5)\right)\left(r^{\prime}(6,2)\right)\left(r^{\prime}(6,3) r^{\prime}(6,4)\right)
$$

$c:\left(r^{\prime}(1,1) r^{\prime}(6,5) r^{\prime}(3,3) r^{\prime}(2,1) r^{\prime}(5,1) r^{\prime}(4,4)\right)$
$\left(r^{\prime}(1,2) r^{\prime}(6,1) r^{\prime}(3,4) r^{\prime}(2,2) r^{\prime}(5,3) r^{\prime}(4,5)\right)$
$\left(r^{\prime}(1,3) r^{\prime}(6,2) r^{\prime}(3,5) r^{\prime}(2,3) r^{\prime}(5,5) r^{\prime}(4,3)\right)$
$\left(r^{\prime}(1,4) r^{\prime}(6,4) r^{\prime}(3,2) r^{\prime}(2,4) r^{\prime}(5,2) r^{\prime}(4,2)\right)$
$\left(r^{\prime}(1,5) r^{\prime}(6,3) r^{\prime}(3,1) r^{\prime}(2,5) r^{\prime}(5,4) r^{\prime}(4,1)\right)$,

$$
\begin{aligned}
m_{3}^{2}: & \left(r^{\prime}(1,1) r^{\prime}(1,3) r^{\prime}(1,2) r^{\prime}(1,4) r^{\prime}(1,5)\right) \\
& \left(r^{\prime}(2,1) r^{\prime}(2,5) r^{\prime}(2,4) r^{\prime}(2,2) r^{\prime}(2,3)\right) \\
& \left(r^{\prime}(3,1) r^{\prime}(3,3) r^{\prime}(3,5) r^{\prime}(3,4) r^{\prime}(3,2)\right) \\
& \left(r^{\prime}(4,1) r^{\prime}(4,2) r^{\prime}(4,5) r^{\prime}(4,3) r^{\prime}(4,4)\right) \\
& \left(r^{\prime}(5,1) r^{\prime}(5,5) r^{\prime}(5,3) r^{\prime}(5,2) r^{\prime}(5,4)\right) \\
& \left(r^{\prime}(6,1) r^{\prime}(6,2) r^{\prime}(6,5) r^{\prime}(6,3) r^{\prime}(6,4)\right) .
\end{aligned}
$$

Therefore we can state the following:
LEMMA 7.1. $\langle h, s, c\rangle \leq K, m_{3} \neq K, m_{3}^{2} \in K$.
Thus $\left\langle h, s, c, m_{3}^{2}\right\rangle$ is a subgroup of K. Since $K \cap M=\left\langle m_{3}^{2}\right\rangle$, $\left|\left\langle m_{3}^{2}\right\rangle\right|=|M| / 2$, it follows that $[H: K]=2$. By $K \neq H$, $K=\left\langle h, s, c, m_{3}^{2}\right\rangle$. Moreover $\left\langle m_{3}^{2}\right\rangle$ is a normal subgroup of K. So we have the following:

THEOREM 7.2. The collineation group K preserving the spread $G=(F-U) \cup V$ is the semidirect product of a group of order 5 lying in the center of K with a group isomorphic to \bar{H}. Therefore K is a solvable group of order 24 . Moreover the orbits of K are

$$
\left(r^{\prime}(1,1) r^{\prime}(1,2) r^{\prime}(2,1) r^{\prime}(2,2) r^{\prime}(3,3) r^{\prime}(3,4) r^{\prime}(4,4) r^{\prime}(4,5)\right.
$$

$$
\left.r^{\prime}(5,1) r^{\prime}(5,3) r^{\prime}(6,1) r^{\prime}(6,5)\right),
$$

$$
\left(r^{\prime}(1,3) r^{\prime}(2,3) r^{\prime}(3,5) r^{\prime}(4,3) r^{\prime}(5,5) r^{\prime}(6,2)\right),
$$

$$
\left(r^{\prime}(1,4) r^{\prime}(1,5) r^{\prime}(2,4) r^{\prime}(2,5) r^{\prime}(3,1) r^{\prime}(3,2) r^{\prime}(4,1) r^{\prime}(4,2)\right.
$$

$$
\left.r^{\prime}(5,2) r^{\prime}(5,4) r^{\prime}(6,3) r^{\prime}(6,4)\right] .
$$

8. The translation complement

As it is well known a translation plane τ of order q^{2} arises from any spread of $\operatorname{PG}(3, q)$ (cf. [6], p. 220 and [11] and [2]). Here we give an outline for the case $q=9$.

The points of τ are those of $\operatorname{PG}(4,9)-\operatorname{PG}(3,9)$, the lines of τ are the planes of $\operatorname{PG}(4,9)$ which meet $\operatorname{PG}(3,9)$ in a line of the spread and do not belong to $\operatorname{PG}(3,9)$. If we consider $P G(4,9)-P G(3,9)$ as a

$$
\begin{aligned}
& \left(r(3,0)_{r}(4,0)_{r}(6,0) r(8,0)\right), \\
& \left(r(0,1) r(0,2)_{r}(0,3) r(0,4) r(0,5)_{r}(0,6)_{r}(0,7)_{r}(0,8)_{r}(3,3)\right. \\
& r(3,5) r(3,6) r(3,7) r(4,1) r(4,2) r(4,4) r(4,8) r(6,3) r(6.5) \\
& \left.r(6,6) r(6,7) r(8,1) r(8,2)_{r}(8,4) r(8,8)\right), \\
& (r(1,3) r(1,5) r(1,6) r(1,7) r(2,3) r(2,5) r(2,6) r(2,7) r(3,4) \\
& r(3,8) r(4,3) r(4,6) r(5,1) r(5,2) r(5,4) r(5,8) r(6,4) r(6,8) \\
& r(7,1) r(7,2) r(7,4) r(7,8) r(8,3) r(8,6)),
\end{aligned}
$$

vector space $V_{4}(9)$ of dimension 4 over $G F(9)$, the points of τ can be identified with the vectors of $V_{4}(9)$, the lines through the zero vector 0 are some 2 -dimensional subspaces (called also components), the other lines of τ are translates of the components. The group of collineations of τ fixing 0 is called the "translation complement" and consists of some linear or semilinear transformations of $V_{4}(9)$. In particular such a transformation α of $V_{4}(9)$ belongs to the translation complement of τ if and only if the collineation of $P G(3,9)$ defined by the matrix of α leaves the spread invariant. Moreover if we denote the translation complement of τ by Λ_{0}, the cyclic group of order 8 of all dilations with center 0 by Δ_{0} and the collineation group of $P G(3,9)$ which leaves the spread invariant by K, then $K \simeq \Lambda_{0} / \Delta_{0}$.

As τ is the translation plane arising from the spread $G=(F-U) \cup V$, by Theorem 7.2 we get

THEOREM 8.1. The translation complement Λ_{0} of τ is $(\lambda, \sigma, \gamma, \mu)$, where

$$
\begin{array}{llll}
\lambda: x^{\prime}=5 x, & y^{\prime}=5 y, & z^{\prime}=z, & u^{\prime}=u, \\
\sigma: x^{\prime}=z, & y^{\prime}=6 u, & z^{\prime}=6 x, & u^{\prime}=y, \\
\gamma: x^{\prime}=5 y+7 z, & y^{\prime}=8 x+4 u, z^{\prime}=3 x+3 u, u^{\prime}=2 y+2 z, \\
\mu: x^{\prime}=8 x+y, & y^{\prime}=3 x+8 y, z^{\prime}=8 z+3 u, u^{\prime}=z+8 u .
\end{array}
$$

As $\langle\mu\rangle$ is a normal subgroup of Λ_{0} and $(\lambda, \sigma, \gamma) \cap(\mu)=\{\lambda\}$, Λ_{0} is semidirect product of $(\lambda, \sigma, \gamma\rangle$ and $\langle\mu\rangle$. Therefore Λ_{0} is a solvable group of order $240 \cdot 8=1920$.

References

[1] L.M. Abatangelo and Vito Abatangelo, "On Bruen's plane of order 25 ", submitted.
[2] Adriano Barlotti, "Representation and construction of projective planes and other geometric structures from projective spaces", Jber. Deutsch. Math.-Verein. 77 (1975), 28-38.
[3] R.H. Bruck, "Construction problems in finite projective spaces", Construction problems in finite projective spaces (C.I.M.E., II Ciclo, Bressanone, 1972. Edizioni Cremonese, Rome, 1973).
[4] Aiden A. Bruen, "Inversive geometry and some new translation planes, I", Geom. Dedicata 7 (1978), 81-98.
[5] M. Capursi, "A translation plane of order 11^{2} ", J. Combin. Theory Ser. A 35 (1983), 289-300.
[6] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer Grenzgebiete, 44. Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[7] Daniel R. Hughes and Fred C. Piper, Projective planes (Graduate Texts in Mathematics, 6. Springer-Verlag, New York, Heidelberg, Berlin, 1973).
[8] Gábor Korchmáros, "The full collineation group of Bruen's plane of order 49 ", submitted.
[9] Gábor Korchmáros, "A translation plane of order 49 with nonsolvable collineation group", submitted.
[10] B. Larato and G. Raguso, "Il gruppo delle collineazioni di un piano di ordine 13^{2} ", Atti del Convegno di Geometria Combinatoria e di Incidenza, 7 (Passo della Mendola, Trento, Italia, 1982. Rendiconti del Seminario Matematico, Brescia, to appear).
[11] T.G. Ostrom, Finite translation planes (Lecture Notes in Mathematics, 158. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[12] Giuseppe Pellegrino and Gabor Korchmaros, "Translation planes of order $2 l^{2}$ ", Combinatorial and geometric structures and their applications, Trento, 1980, 249-264 (North-Holland Mathematical Studies, 63. North-Holland, Amsterdam, 1982).
[13] G. Raguso, "Un piano di traslazione di ordine 13^{2} ", submitted.
[14] Helmut Wielandt, Finite permutation groups (translated by R. Bercov. Academic Press, New York, London, 1964).

Dipartimento di Matematica, Via Re David 200, 70125 Bari, italy.

