ON THE MÖBIUS LADDERS

Richard K. Guy and Frank Harary ${ }^{1}$
(received March 14, 1967)

Consider the graph M_{n}, where $n=2 r \geq 6$, consisting of a polygon of length n and all $n / 2$ chords joining opposite pairs of vertices. This graph has $2 r$ vertices which we denote by $1,2,3, \ldots, 2 r$, and the $3 r$ (undirected) edges

$$
\begin{gathered}
(1,2),(2,3), \ldots,(2 r-1,2 r),(2 r, 1) ; \\
(1, r+1),(2, r+2), \ldots,(r, 2 r) .
\end{gathered}
$$

$M_{8}:$

$\mathrm{M}_{10}:$

Figure 1
We call M_{n} the n-ladder, defined thus far only for n even. The three smallest n-ladders with n even are shown in Figure 1. It is easy to see that M_{6} is isomorphic with $\mathrm{K}_{3,3}$,

[^0]Canad. Math. Bull. vol. 10, no. 4, 1967
the complete bipartite graph on 2 sets'of 3 vertices each, i.e., the (second) Kuratowski graph of 3 houses 1,3,5 and 3 utilities (electricity, gas, water) 2,4,6.

The crossing number $C(G)$ of a graph G is defined $[3,1]$ as the minimum possible number of intersections of pairs of edges when G is drawn in the plane. What is the crossing number $C\left(M_{2 r}\right)$ of the n-ladders with n even? One might conjecture from Figure 1 that the answer is a monotonic increasing function of n. Surprisingly the answer is always $C\left(M_{2 r}\right)=1$. To prove this, we show that $C\left(M_{2 r}\right) \leq 1$ and $C\left(M_{2 r}\right) \geq 1$. The first of these two inequalities follows from the fact that $M_{2 r}$ can be drawn with just one crossing, as in Figure 2. It was this particular representation of $\mathrm{M}_{2 \mathrm{r}}$ (which is reminiscent of the Möbius strip) that led to the title of this note.

Figure 2
To prove that $C\left(M_{2 r}\right) \geq 1$, we need to show that the $2 r$-ladder is nonplanar. Observe that the deletion of any r-3 chords from $M_{2 r}$ results in a subgraph homeomorphic with $\mathrm{K}_{3,3}$. Thus $\mathrm{M}_{2 \mathrm{r}}$ must be nonplanar by the well-known theorem of Kuratowski [4].

One can also define the Möbius ladders M_{n} for odd $\mathrm{n}=2 \mathrm{r}+1, \mathrm{r} \geq 2$, as the graph consisting of an n -gon together with two chords at each vertex joining it to the two most opposite vertices of the polygon. Obviously, M_{5}, the smallest odd n -ladder, is isomorphic to the complete graph K_{5} with 5 vertices, also known as the first Kuratowski graph. Thus the two smallest n -ladders, M_{5} and M_{6}, are the two Kuratowski graphs and so the family of graphs M_{n} may be regarded as a generalization of the Kuratowski graphs.

What is the crossing number of the odd n-ladders? It is perhaps more surprising than the result for the even n-ladders that the answer is again 1!

Figure 3
As for even ladders, it follows from the drawing in Figure 3 that $C\left(M_{2 r+1}\right) \leq 1$ and from Kuratowski's Theorem that $C\left(M_{2 r+1}\right) \geq 1$. In fact, since the odd n-ladders are regular of degree 4, the degree of each vertex is even. Hence, as noted by Zeeman [5], the parity of the number of crossings in one drawing of an odd n-ladder in the plane agrees with the parity in any other drawing. Since this parity is odd in Figure 3,
it cannot be made zero.

One of us [2] defined a graph to be minimally nonplanar if its crossing number is one. Our observations can be summarized.

THEOREM. Every Möbius ladder is minimally nonplanar.

REF ERENCES

1. R.K. Guy, A combinatorial problem. Bull. Malayan Math. Soc. 7 (1960), 68-72.
2. F. Harary, On minimally nonplanar graphs. Ann. Univ. Sci. Budapest. Eőtvős Sec. Math. 8 (1965), 13-15.
3. F. Harary and A. Hill, On the number of crossings in a complete graph. Proc. Edinburgh Math. Soc. 13 (1963), 333-338.
4. K. Kuratowski, Sur le problème des courbes gauches en topologie. Fund. Math. 15 (1930), 271-283.
5. E. C. Zeeman, Unknotting 2-spheres in 5 dimensions. Bull. Amer. Math. Soc. 66 (1960), 198.

University of Calgary
University of Michigan and University College, London

[^0]: ${ }^{1}$ Work supported in part by the U.S. Air Force Office of Scientific Research under grant AF-AFOSR-754-65.

