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Abstract

Consider the single-server queue with an infinite buffer and a first-in–first-out discipline,
either of type M/M/1 or Geom/Geom/1. Denote by A the arrival process and by s

the services. Assume the stability condition to be satisfied. Denote by D the departure
process in equilibrium and by r the time spent by the customers at the very back of the
queue. We prove that (D, r) has the same law as (A, s), which is an extension of the
classical Burke theorem. In fact, r can be viewed as the sequence of departures from a
dual storage model. This duality between the two models also appears when studying the
transient behaviour of a tandem by means of the Robinson–Schensted–Knuth algorithm:
the first and last rows of the resulting semistandard Young tableau are respectively the
last instant of departure from the queue and the total number of departures from the store.
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1. Introduction

The main purpose of this paper is to clarify the interplay between two models of queueing
theory. The first model is the classical single-server queue with an infinite buffer and a first-in–
first-out (FIFO) discipline. The second, less common but very natural, model can be described
as a queue operating in slotted time with batch arrivals and services. It was studied, for
instance, in [4]. The literature on discrete-time queues is less complete than is its continuous-
time counterpart. The interest in discrete-time queues is, however, gaining ground, due to their
relevance in ATM-like communication systems [6], [36]. In this paper, to clearly distinguish
between the two models, we choose to describe the second one as a storage model, using
different terminology.

We first prove that the two models are linked in a very strong way. We set up an abstract
model with an ordered pair of input variables (A, s) and an ordered pair of output variables
(D, r) = �(A, s) = (�1(A, s), �2(A, s)). On the one hand, the queueing model corresponds
to D = �1(A, s), with A and s being the arrivals and services, respectively, and D the
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departures. On the other hand, the storage model corresponds to r = �2(A, s), with s and
A being the supplies (arrivals) and requests (services), respectively, and r the departures.
The interpretation of either r for the queue or D for the store is much less natural.

We then assume that the random variables driving the dynamics are either exponentially
or geometrically distributed, and we consider the models in equilibrium (under the stability
condition). In this situation, it is well known that a Burke-type theorem holds: the departures
and the arrivals have the same law [7], [30], [4]. This can be considered as one of the cornerstones
of queueing theory; see, for instance, the books [5], [15], and [31] for discussions and related
material. Here we prove a ‘joint’ version of the result, namely that (D, r) has the same law
as (A, s). This joint Burke theorem is new, although it is similar in spirit to the results proved
in [25] and [18] for a variant: queues with unused services. Also, in the geometric case, we use
an original method of proof based on the reversibility of a symmetrized version of the workload
process (instead of the queue length process). As in [25] and [18], the joint Burke theorem can
be used to obtain a representation theorem for the joint law of two independent random walks
with exponential or geometric jumps conditioned on never colliding.

A second facet of the duality between queues and stores appears when considering the
Robinson–Schensted–Knuth (RSK) algorithm. The RSK algorithm is an important object in
representation and symmetric functions theory, and it has been known for some time that it
has connections with queueing theory, although these connections have remained somewhat
mysterious until now. In this paper, we elucidate these connections completely via the above
duality. The results we obtain, apart from being interesting in their own right, can be used as
a starting point for the application of symmetric functions theory (and the associated analysis)
to obtain interchangeability as well as asymptotic results for models that are constructed by
putting the above queues and stores in series. These results are also applicable in the context
of the corresponding interacting particle systems, where there is much interest in obtaining
exactly solvable microscopic models for Burger-type equations.

Let us now detail the results. Consider K tandem queues (or stores): the departures from a
queue (or a store) are the arrivals (or supplies) at the next one. Initially, the network is empty
but for an infinite number of customers in the first queue (or an infinite supply at the first store).

The particle systems associated with the above tandems (of queues or stores) are described
in Section 5.2. One model is original and worth putting forward: the bus stop model, which is
the zero-range model associated with stores in tandem.

Here we assume only that the variables driving the dynamics are N-valued. Building on ideas
developed in [3] and [22], we can study the transient evolution as follows. Consider the family
of random variables (RVs) (u(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ K), where u(i, j) is the service of the
ith customer in queue j , or the request at time slot i at store K+1−j . Apply the RSK algorithm
[17], [32], [34] to this family and let P be the resulting semistandardYoung tableau (here we do
not consider the recording tableau Q). Let λ1 ≥ · · · ≥ λK ≥ 0 be the lengths of the successive
rows of P . Classically [17], we have λ1 = maxπ∈�

∑
(i,j)∈π u(i, j), where � is the set of paths

from (1, 1) to (N, K) in N
2 that are increasing and consist of adjacent points. Moreover, it is

well known in queueing theory [11], [21], [37], [35] that maxπ∈�
∑

(i,j)∈π u(i, j) is the instant
of departure of customer N from queue K , which we denote by D. Combining the two results
gives the accepted result that λ1 = D. Here we complete the picture by proving that λK = R,
where R is the total number of departures from the last store in the tandem up to time slot N .
Again, this identity is proved in two steps by showing that λK = minπ∈�̃

∑
(i,j)∈π u(i, j) = R,

where �̃ is a different set of paths in the lattice. To summarize, we obtain on the same Young
tableau the total departures for the two tandem models.
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A short version of the paper, with proofs omitted, appears in the proceedings of the conference
Discrete Random Walks 2003 [10].

2. Notation

We work on a probability space (�, F , P). The indicator function of an event E ∈ F is
denoted by 1E . We use the symbol ‘

d=’ to denote the equality in distribution of random variables.
Depending on the context, |A| is the cardinality of the set A or the length of the word A. We set
N
∗ = N \ {0}, R

∗+ = R+ \ {0}, and x+ = x ∨ 0 = max(x, 0). We use the convention that∑k
i=j ui = 0 when j > k.
Below, a point process is a stochastic simple point process on R with an infinite number of

positive and negative points. We identify a point process A with the random ordered sequence
of its points, i.e. A = (An)n∈Z with An < An+1 for all n. Observe that the numbering of the
points is defined up to a translation in the indices. For any interval I , we define the counting
random variable A(I ) =∑

n∈Z 1{An∈I }.
A marked point process is a couple (A, c) = (An, cn)n∈Z in which A = (An)n∈Z is a

point process and c = (cn)n∈Z is a sequence of RVs valued in some state space. We say that
the mark cn is associated with the point An of the point process. For more details on point
processes, see [9].

Given a point process A = (An)n∈Z, the reversed point process R(A) is the point process
obtained by reversing the direction of time, i.e.R(A) = (−A−n)n∈Z. Given a marked point pro-
cess (A, c) = (An, cn)n∈Z, the reversed marked point process is R(A, c) = (−A−n, c−n)n∈Z.

Given a càdlàg, i.e. right-continuous and left-limited, random process Y = (Y (t))t∈R valued
in R, we define the reversed process R ◦ Y = (R ◦ Y (t))t∈R as the càdlàg modification of the
process (Y (−t))t∈R. Denote by N+(Y ) and N−(Y ) the point processes (with possibly finite
numbers of points) corresponding respectively to the positive and negative jumps of Y ; that is,
for any interval I of R,

N+(Y )(I ) =
∫

I

1{Y (u)>Y(u−)} du, N−(Y )(I ) =
∫

I

1{Y (u)<Y(u−)} du.

3. The model

Let A = (An)n∈Z be a point process and assume that A0 ≤ 0 < A1. We define the sequence
of R

∗+-valued RVs a = (an)n∈Z by an = An+1 −An. Let s = (sn)n∈Z be another sequence of
R
∗+-valued RVs. The marked point process (A, s) is the input of the model.
Define the sequence of RVs D = (Dn)n∈Z by

Dn = sup
k≤n

[
Ak +

n∑
i=k

si

]
. (3.1)

A priori, the Dn are valued in R ∪ {∞}. Assume from now on that (A, s) is such that the
Dn are almost surely finite. They satisfy the recursive equations

Dn+1 = max(Dn, An+1)+ sn+1. (3.2)

Set dn = Dn+1 −Dn and define an additional sequence of R
∗+-valued RVs r = (rn)n∈Z by

rn = min(Dn, An+1)− An. (3.3)
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The marked point process (D, r) is the output of the model. By summing (3.2) and (3.3),
we obtain the following interesting relation between the input and output variables:

rn + dn = an + sn+1. (3.4)

For the purposes of our future analysis, it is convenient to define the following auxiliary
variables. Let w = (wn)n∈Z be the sequence of R

∗+-valued RVs defined by

wn = Dn − sn − An = sup
k≤n−1

[ n−1∑
i=k

(si − ai)

]+
. (3.5)

These RVs satisfy the recursive equations

wn+1 = [wn + sn − an]+. (3.6)

Using the variables wn, we can give alternative definitions of Dn and rn:

Dn =
[
wl + Al +

n∑
i=l

si

]
∨ max

l<k≤n

[
Ak +

n∑
i=k

si

]
for all l ≤ n,

rn = min(wn + sn, an) = sn + wn − wn+1. (3.7)

Finally, we define the N-valued càdlàg random process Q = (Q(t))t∈R by

Q(t) =
∑
n∈Z

1{An≤t<Dn} . (3.8)

Lemma 3.1. We have N+(Q) = A and N−(Q) = D . Furthermore, D−Q(0) ≤ 0 <

D−Q(0)+1.

Proof. Recall that Q(0) =∑
n∈Z 1{An≤0<Dn} and that A0 ≤ 0 < A1. Hence, Q(0) = |k|,

where k = sup{n ∈ Z− : Dn ≤ 0}. The result follows.

We now interpret the variables defined above in two different contexts: those of a queueing
model and a storage model.

3.1. The single-server queue

A bi-infinite string of customers is served at a queueing facility with a single server. Each
customer is characterized by an instant of arrival in the queue and a service demand. Customers
are served upon arrival in the queue and in their order of arrival. Since there is a single server, a
customer may have to wait in a buffer before the beginning of its service. In Kendall’s classical
nomenclature, our model is a ·/ · /1/∞/FIFO queue.

The customers are numbered, using integers, according to their order of arrival in the queue
(customer 1 being the first to arrive strictly after instant 0). Let An be the instant of arrival of
customer n and sn its service time. Then the variables defined in (3.1), (3.3), (3.5), and (3.8)
have the following interpretations:

• Dn is the instant of departure of customer n from the queue, after completion of its
service;

• wn is the waiting time of customer n in the buffer between its arrival and the beginning
of its service;
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Figure 1: The dual variables (sn)n and (rn)n.

• Q(t) is the number of customers in the queue at instant t (either in the buffer or in service)
and Q = (Q(t))t is called the queue length process;

• rn is the time spent by customer n at the very back of the queue.

The variables (rn)n are less often considered in queueing theory than the others, although
they have been; see [27]. They should be viewed as being dual to the services (sn)n, as illustrated
in Figure 1. In the upper part of the figure, we have represented the workload process (W(t))t ,
where W(t) is the waiting time of a virtual customer arriving at instant t . The dual of the
workload process, (W̄ (t))t , is shown in the lower part. (See (4.1), below, for the formal
definition of (W(t))t .)

3.2. The storage model

Some product P is supplied, sold, and stocked in a store in the following way. Events occur
at integer-valued epochs, called slots. At each slot, an amount of P is supplied and an amount of
P is demanded by potential buyers. The rule is to meet all the demand, if possible. The demand
of a given slot that is not met is lost. The supply of a given slot that is not sold is not lost but is
stocked for future use.

Let sn be the amount of P supplied at slot n+ 1, and let an be the amount of P asked for at
the same slot. The variables in (3.5) and (3.3) can be interpreted in this context:

• wn is the level of the stock at the end of slot n and evolves according to (3.6);

• rn is the demand met at slot n + 1 (see (3.7)), that is, the amount of P departing at
slot n+ 1.

The variables (Dn)n and the process Q do not have natural interpretations in this model.
The evolution of the store is summarized in Figure 2. Our indexing notation (e.g. the use

of sn, an, and rn at time slot n+ 1) may seem unusual. This system was chosen for clarity of
notation in Section 5.

It is important to remark that, while the equations describing the single-server queue and the
storage model are exactly the same, the same variables do not all make sense in each model.
The important variables are the ones corresponding to the departures from the system. The
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Time slot n Time slot 1n+

sn anrn−1
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sn−1 an−1 rn
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Figure 2: The storage model.

departures are coded in the variables (Dn)n for the single-server queue and in the variables
(rn)n for the storage model. On the other hand, the interpretations of the variables (rn)n in
the single-server queue or the variables (Dn)n in the storage model are not so immediate. To
summarize, the output variables (Dn)n and (rn)n are equally relevant, but in different modelling
contexts.

Observe that it would be possible to describe the above storage model in ‘queueing’ term-
inology (as a queue with slotted time, batch arrivals (sn)n, and batch services (an)n); this is
the description used in [4], for instance. We have deliberately avoided it to clearly separate the
models of Sections 3.1 and 3.2 and therefore minimize the possibility of confusion.

4. Equilibrium behaviour around Burke’s output theorem

We now consider the exponential or geometric version of our model in equilibrium. We
prove a Burke-type result: (D, r)

d= (A, s). The relevant result for the sequence of departures
in one of the two models will then follow by suppressing one of the two variables. In the
exponential case, our proof uses the queue length process Q, following [30]. Our method of
proof in the geometric case is original and based on the zigzag process, a symmetrized version
of the workload process. A discussion of the literature and of the advances made here is carried
out in Section 4.3.

4.1. Output theorem in the exponential case

Let A be a homogeneous Poisson process of intensity λ ∈ R
∗+. We set A = (An)n∈Z with

A0 < 0 < A1. Recall that an = An+1 − An. Then (an)n≥1 is a sequence of independent,
identically distributed (i.i.d.) RVs with an exponential distribution of parameter λ. Let s =
(sn)n∈Z be a sequence of i.i.d. random variables, independent of A, with an exponential
distribution of parameter µ. We assume that λ < µ. Consider the marked point process
(A, s) as being the input of the model of Section 3. The sequence (wn)n is a random walk
valued in R+ with a barrier at 0. Under the stability condition λ < µ, this random walk has a
negative drift, implying that the random variables Dn defined in (3.1) are almost surely finite.

We now present our first theorem. Figure 2 provides a visual illustration of the result. The
principle of the proof is the same as those of Theorems 3 and 4 of [30]. However, the adaptation
is not completely immediate. Some care is necessary in dealing with the indices, to make sure
that the variable rn is the mark of the point Dn.

Theorem 4.1. In the exponential case, the marked point process (D, r) has the same law as
the marked point process (A, s).

Proof. Knowing Q, one can recover the input of the model: (An, sn)n = ϕ(Q). We are
going to prove that

ϕ ◦R(Q) = (−D−n+Q(0)+1, r−n+Q(0)+1)n = R(D, r).
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Let Tn be the operator mapping a point process to its nth point, with the convention that
T0(·) ≤ 0 < T1(·). For instance, An = Tn(A) = Tn ◦ N+(Q). Taking into account the shift
in the indices and using Lemma 3.1, we find that Tn(D) = Tn ◦N−(Q) = Dn−Q(0). We thus
have

sn = Dn −max(An, Dn−1)

= Tn+Q(0) ◦N−(Q)−max(Tn ◦N+(Q), Tn+Q(0)−1 ◦N−(Q)).

Now define an operator Sn such that sn = Sn(Q), and let us apply the operators Tn ◦ N+
and Sn to the reversed process R(Q). We first have

Tn ◦N+ ◦R(Q) = −D−n−Q(0)+1

and, furthermore, Tn+R(Q)(0)−1 ◦N− ◦R(Q) = −A−n−Q(0)+2. Thus,

Sn ◦R(Q) = −A−n−Q(0)+1 −max(−D−n−Q(0)+1,−A−n−Q(0)+2)

= −A−n+Q(0)+1 +min(D−n+Q(0)+1, A−n+Q(0)+2)

= r−n+Q(0)+1.

Hence, we find that ϕ ◦R(Q) = R(D, r).
The process Q is a stationary birth-and-death process, and hence reversible: R(Q)

d= Q.
This implies that (A, s) = ϕ(Q)

d= ϕ ◦R(Q) = R(D, r). Therefore, R(D, r) is a homo-
geneous Poisson process marked with an i.i.d. sequence of RVs. This means that R(D, r)

d=
(D, r), which concludes the proof.

Corollary 4.1. In the queueing model, the departure process D is a Poisson process of
intensity λ. In the storage model, the sequence (rn)n of the amounts of product P departing at
successive slots is a sequence of i.i.d. exponential RVs of parameter µ.

4.2. Output theorem in the geometric case

Let A be a Bernoulli point process of parameter p ∈ (0, 1); that is, all the points are integer
valued, there is a point at a given integer with probability p, and the occurrences of points
at different integers are independent. As before, set A = (An)n with A0 ≤ 0 < A1 and
an = An+1 − An. Then the sequence (an)n≥1 is a sequence of i.i.d. geometric RVs with
parameter p (meaning that, for all k ∈ N

∗, P{a1 = k} = (1−p)k−1p). Let (sn)n be a sequence
of i.i.d. geometric RVs, independent of A, with parameter q ∈ (0, 1). We assume that p < q

(the stability condition). Let the marked point process (A, s) be the input of the model of
Section 3. As in Section 4.1, the model is stable and the output (D, r) is a marked point
process. We prove a Burke-type theorem using an original approach based on a symmetrization
of the workload process.

Define the (random) càdlàg maps fn, gn : �× R→ R by

fn(t) =

⎧⎪⎨⎪⎩
0 if t < An,

Dn − t if An ≤ t ≤ Dn,

0 if t > Dn,

gn(t) =

⎧⎪⎨⎪⎩
0 if t < An,

t − An if An ≤ t ≤ Dn,

0 if t > Dn.

Set
W(t) =

∨
n∈Z

fn(t), W̄ (t) =
∨
n∈Z

gn(t). (4.1)
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Figure 3: The workload process, W(t), the dual workload process, W̄ (t), and the zigzag process, Z(t).

Since Dn = An+wn+ sn, the workload just before the arrival of the nth customer is given by
W(A−n ) = wn. For the queueing model, W(t) is the total amount of service remaining to be
done by the server at instant t , and W = (W(t))t is called the workload process. The process
W̄ = (W̄ (t))t is the dual of the process W ; see Figure 1 or Figure 3 for an illustration.

Looking at W and W̄ together is a way to symmetrize the workload process. Consider the
ordered pair of processes X = (W, W̄ ), and define

R(X) = (R(W̄ ), R(W))

(observe that the first element of the pair is now R(W̄ ), as opposed to W for the pair X).
Obviously, if we know X then we can recover the input of the model: (A, s) = �(X). It is
also clear (see Figure 1 or Figure 3) that R(D, r) = � ◦R(X).

The following result is the crux of the argument in proving a Burke-type theorem.

Lemma 4.1. The ordered pair of the workload process and its dual is reversible, that is,
(W, W̄ )

d= (R(W̄ ), R(W)).

Proof. Clearly, W and W̄ are (time-)stationary and ergodic processes. An idle period is
a maximal nonempty time interval during which W(t) = 0 (or, equivalently, W̄ (t) = 0).
The busy periods are the time intervals between the idle periods. Hence, the time domain, R,
is partitioned into an alternating sequence of busy and idle periods.

Let (in)n∈Z and (bn)n∈Z respectively be the lengths of the successive idle periods and busy
periods. Clearly, the sequences (in)n and (bn)n are independent and i.i.d. Moreover, it follows
from the memoryless property of the geometric distribution that in is geometrically distributed
with parameter p. Therefore, to prove the reversibility of (W, W̄ ), it is enough to prove the
reversibility within a single busy period.

To do so, it is easiest to introduce an auxiliary process. Consider a busy period that is assumed
to consist, for simplicity, of the k customers numbered from 1 to k. For n ∈ {1, . . . , k}, let

Cn = Bn + sn, Bn+1 = Cn + an.

This defines (Bn)n and (Cn)n up to a translation. Define

Z(B1) = 0, Z(t) =
{

Z(Bn)+ (t − Bn) for t ∈ [Bn, Cn),

[Z(Cn)− (t − Cn)]+ for t ∈ [Cn, Bn+1).
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On an interval of type [Bn, Cn) we have dZ/dt = 1, and on an interval of type [Cn, Bn+1) we
have dZ/dt = (−1) 1{Z>0}.

Now, in a busy period, the process Z is in one-to-one correspondence with (W, W̄ ), and
the time-reversed process R(Z) is in one-to-one correspondence with (R(W̄ ), R(W)). This is
illustrated in Figure 3, where we display a trajectory of (W, W̄ ) and the corresponding trajectory
of Z. The process Z is obtained by gluing together the slices of W̄ and W alternately. Hence,
proving the reversibility of (W, W̄ ) in a busy period is equivalent to proving the reversibility
of Z. We call Z the zigzag process. This process was considered (with a different motivation)
in [12] and, in particular, was there proved to be reversible (although not Markovian). We
recall the argument for completeness. Identify Z with the finite sequence of the lengths of its
intervals of increase and decrease. Let (l1, . . . , l2k) ∈ (N∗)2k , with

∑
i l2i =∑

i l2i+1 = L, be
a possible value for Z. (The total length of the periods of increase has to be equal to the total
length of the periods of decrease.) Recall that the variables (sn)n and (an)n are geometrically
distributed with respective parameters q and p. We find that

P{Z = (l1, . . . , l2k)} = (1− p)l1−1p(1− q)l2−1q · · · (1− p)l2k−1−1p(1− q)l2k−1

= (1− p)L−kpk(1− q)L−kqk−1.

Hence, given L and k, all the different possible trajectories for Z are equally probable. This
implies that the same is true for the time-reversed process R(Z), which completes the proof.

We are now ready to prove the following result.

Theorem 4.2. In the geometric case, the marked point process (D, r) has the same law as the
marked point process (A, s).

Proof. The proof is similar to that of Theorem 4.1, with (W, W̄ ) now playing the role of Q.
Recall that (A, s) = �(W, W̄) and R(D, r) = � ◦ R(W, W̄ ). According to Lemma 4.1,
we have

(A, s) = �(W, W̄)
d= � ◦R(W, W̄ ) = R(D, r).

We conclude that (D, r)
d= R(A, s)

d= (A, s), where the final equivalence comes from the
fact that (A, s) is a Bernoulli process with i.i.d. marks and hence is reversible.

4.3. Comments on the different proofs of Burke’s theorem

Reflecting on the above, there are three different ways to prove Burke’s theorem, be it in
the exponential or geometric case. The first way is by using analytic methods, the second is by
using the reversibility of the queue length process Q, and the third is by using the reversibility
of the zigzag process Z.

Burke’s original proof is for the exponential model and uses analytic methods [7]. For the
geometric model, an analytic proof was given by Bedekar and Azizog̃lu [4]. For the exponential
model, the idea of using the reversibility of Q to obtain the result is due to Reich [30]. This proof,
which has become a cornerstone of queueing theory, has been extended to various contexts and
has given birth to the concept of product-form networks [5], [15]. Reich’s proof does not
translate directly to the geometric model. Of course, (Q(n))n∈Z is a reversible birth-and-death
Markov chain. However, a difficulty arises: it is not possible to reconstruct A and s from Q.
Indeed, on the event {Q(n−1) = Q(n) > 0}, two cases may occur: there is either no departure
and no arrival at instant n, or one departure and one arrival. It is not possible to distinguish
between them knowing only Q. One feasible solution is to add an auxiliary sequence that
contains the information lacking, but the details become quite intricate. This programme has
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been carried out in [14] (see also [18, Theorem 4.1]) for a variant, the geometric model with
unused services. The above idea of using the zigzag process to prove Burke’s theorem is
original. Observe that the zigzag process is also clearly reversible in the exponential model.
Hence, the proof used for Theorem 4.2 could also be used to prove Theorem 4.1.

In the original references [7], [30] and in all the classical textbooks presenting the result
[5], [15], [31], the statement proved is A

d= D (‘Poisson input, Poisson output’). In [4],
or [14] for the variant with unused services, the result proved is s

d= r . The complete version,
(A, s)

d=(D, r), first appeared in [25, Theorem 3] for the exponential model with unused
services. This was extended to the geometric model with unused services in [18]. Brownian
analogues were proved in [13] and [24].

4.4. Noncolliding random walks

Following the lines of thought in [25], [18], and [12], it is possible to use Theorems 4.1
and 4.2 to obtain representation results for noncolliding random walks. We start by stating a
preliminary lemma.

Lemma 4.2. The Lindley equation (3.6) admits a backward analogue:

wn = (wn+1 + rn − dn−1)
+. (4.2)

Proof. Recall (3.7): rn = sn + wn − wn+1. Using (3.4), we obtain

dn = an + sn+1 − rn = an − wn + wn+1 − sn + sn+1. (4.3)

Therefore,

wn+1 + rn − dn−1 = wn+1 + sn + wn − wn+1 − an−1 − wn + wn−1 − sn + sn−1

= wn−1 + sn−1 − an−1.

By taking the maximum with 0 on both sides of the equality and using (3.6), we obtain

(wn+1 + rn − dn−1)
+ = wn.

Proposition 4.1. Let the sequences of RVs (an)n∈N∗ and (sn)n∈N∗ be as in Section 4.1 or 4.2.
The conditional law of (

∑n
i=1 ai,

∑n
i=1 si), given that {∑k

i=1 ai ≥ ∑k+1
i=1 si for all k ≥ 0}

occurs, is the same as the unconditional law of

(
max

1≤j≤n

[ j∑
i=1

ai +
n+1∑

i=j+1

si

]
, min

1≤j≤n

[ j∑
i=2

si +
n∑

i=j+1

ai

])
.

Proof. Denote by vn = wn + sn = wn+1 + rn the sojourn time of customer n in the queue.
By developing (4.2), we obtain

vn = wn+1 + rn = sup
k≥n

[ k∑
i=n

ri −
k−1∑
i=n

di

]
. (4.4)
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By summing the equalities (4.3), on the event {v1 = 0} we obtain
n∑

i=1

di =
n∑

i=1

ai + wn+1 + sn+1

=
n∑

i=1

ai + max
1≤j≤n

[ n+1∑
i=j+1

si −
n∑

i=j+1

ai

]

= max
1≤j≤n

[ j∑
i=1

ai +
n+1∑

i=j+1

si

]
,

and, by summing (3.7), on the event {v1 = 0} we obtain
n∑

i=1

ri =
n∑

i=2

si − wn+1

=
n∑

i=2

si − max
1≤j≤n

[ n∑
i=j+1

si −
n∑

i=j+1

ai

]

= min
1≤j≤n

[ j∑
i=2

si +
n∑

i=j+1

ai

]
.

To summarize, we have

n∑
i=1

di = max
1≤j≤n

[ j∑
i=1

ai +
n+1∑

i=j+1

si

]
,

n∑
i=1

ri = min
1≤j≤n

[ j∑
i=2

si +
n∑

i=j+1

ai

]
. (4.5)

By applying Theorem 4.1 or 4.2, we find that the distribution of (
∑n

i=1 ai,
∑n

i=1 si), given
that {∑k

i=1 ai ≥∑k+1
i=1 si for all k ≥ 0} occurs, is the same as the law of (

∑n
i=1 di,

∑n
i=1 ri),

given that {∑k
i=1 di ≥∑k+1

i=1 ri for all k ≥ 0} occurs. By (4.4), the event{ k∑
i=1

di ≥
k+1∑
i=1

ri for all k ≥ 0

}
is equal to {v1 = 0}. Using (4.5), we see that the distribution of (

∑n
i=1 di,

∑n
i=1 ri), given that

{v1= 0} occurs, is the same as the law of(
max

1≤j≤n

[ j∑
i=1

ai +
n+1∑

i=j+1

si

]
, min

1≤j≤n

[ j∑
i=2

si +
n∑

i=j+1

ai

])
,

given that {v1 = 0} occurs. This last conditional law is the same as the unconditional law of(
max

1≤j≤n

[ j∑
i=1

ai +
n+1∑

i=j+1

si

]
, min

1≤j≤n

[ j∑
i=2

si +
n∑

i=j+1

ai

])
.

Indeed, the variables (ai)i≥1 and (si)i≥2 are independent of the event {v1 = 0}.
By combining these arguments, we obtain the desired result.

It is possible to extend Proposition 4.1 to the limiting case E[a1] = E[s1], and also to higher
dimensions, by adapting the methods of [25], [18], and [12] to the present setting.
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Table 1: Input variables for two queues/stores in tandem.

Customer/Time slot Queue 2/(Virtual) Store 1 (Virtual) Queue 1/Store 2

1 u(1, 2) = s1 u(1, 1) = a0
2 u(2, 2) = s2 u(2, 1) = a1
...

...
...

n u(n, 2) = sn u(n, 1) = an−1

5. Transient behaviour and the RSK representation

In Sections 5.1 and 5.3, below, the model described and the results obtained are of a purely
combinatorial nature. In particular, the results are true pathwise, without any probabilistic
assumption. In Section 5.4, these results are then applied to geometric queues or stores: here
the pathwise arguments are coupled with probabilistic ones.

5.1. The saturated tandem

Here we consider another aspect of the dynamics of queues and stores, namely the transient
evolution for the model when initially empty. More precisely, we consider the model of Section 3
under the assumption that w0 = A0 = s0 = 0 (which implies that D0 = r0 = 0) and focus on
the customers, or time slots, from number 1 onwards.

It is convenient to describe such a model from a different perspective. We first do so for the
queue. View the arrivals as being the departures from a virtual queue having at instant 0 an
infinite number of customers (labelled in N

∗) in its buffer. The service time of customer n in
the virtual queue is an−1. We describe this as a saturated tandem of two queues. Now consider
the store. View the supplies as being the departures from a virtual store having an infinite stock
at the end of time slot 0. In the virtual store, the request (or departure) at time slot n is sn.
This is a saturated tandem of two stores.

We now want to fit these two descriptions together. Denote the virtual queue/store as
queue/store 1 and the other one as queue/store 2. For convenience, set u(n, 1) = an−1 and
u(n, 2) = sn for all n ≥ 1. The saturated tandem is completely specified by the family
(u(n, i), n ∈ N

∗, i = 1, 2) of input variables. These variables are the services or requests
when the model is seen as a tandem of queues or, respectively, stores. Table 1 gives the input
variables in the saturated tandems of two queues/stores.

A couple of observations are in order. Observe that u(n, i) is the service of customer n in
queue i and the request at time slot n at store 3 − i. In other words, the elements (queues
or stores) associated with a given sequence (u(·, i), i = 1, 2) are crossed in reverse order in
the queueing/storage tandem. This is illustrated in Figure 4 (set K = 2). Observe also that
there is a shift in the time slots for the storage model: the departure from store 1 at time slot n

is the supply of store 2 at time slot n + 1 (contrast this with the situation for the queues).
This is consistent with a model in which we view a time slot as being decomposable into three
consecutive stages: first the supply arrives, then the request is made, and finally the departure
occurs (see Figure 2).

The above setting is naturally extended to define the saturated tandem of K queues/stores.
Such a model is entirely defined by a family of N-valued variables

(u(i, j), i ∈ N
∗, j ∈ {1, . . . , K}).
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Queue 1 Queue 2 Queue K

Store 1Store 1K −Store K

u( ,1)· u( ,2)· u K( , )·

Figure 4: Queues and stores are gone through in opposite orders.

(In Section 3, the variables were valued in N
∗. This restriction is not necessary here.) For the

queueing model,

(i) at instant 0, queue 1 has an infinite number of customers (labelled in N
∗) in its buffer,

and the other queues are empty;

(ii) u(i, j) is the service of customer i at queue j ; and

(iii) the instant of departure of customer n from queue i is the instant of arrival of customer n

in queue i + 1.

For the storage model,

(i) at the end of time slot 0, store 1 has an infinite stock and the other stores have zero stock;

(ii) u(i, K + 1− j) is the request at time slot i at store j ; and

(iii) the departure at time slot n from store i is the supply at time slot n+ 1 at store i + 1.

The models are depicted in Figure 4.

5.2. The interacting particle representation

It is helpful to describe the above tandem models as interacting particle models (see, for
instance, [19]). Commonly, interacting particle systems are defined as continuous-time Markov
processes. In contrast, the description below is pathwise and the time is discrete.

Classically, the tandem queues may be viewed as the following zero-range process. The set
of sites is {1, . . . , K} and a site is occupied by a number of particles in N ∪ {∞}. At each site,
the first particle (if any) has a clock whose value is decremented by 1 at each time slot. When
it reaches 0, the particle jumps to the site on its right. The left-most site has an infinite number
of particles. This is illustrated in Figure 5. The variables (u(i, j))i correspond to the initial
values of the clocks of the successive first particles at site j .

We now describe the tandem stores as an original zero-range process: the bus stop model.
At the beginning of each time slot, a bus arrives at each site. The size of the bus varies from
site to site and from time slot to time slot. During each time slot, the particles take places in
the bus until it is full and are transported to the next site on the left. The right-most site has
an infinite number of particles. This mechanism is illustrated in Figure 6. Here the variables
(u(i, j))i correspond to the successive bus sizes at site j .

Alternatively, the two models above can be viewed as exclusion processes. The set of sites
is embedded in N and each site now contains either 0 or 1 particle. The tandem queues are
associated with the classical totally asymmetric exclusion process. For the tandem stores, the
exclusion process is as follows. Particles take jumps of integer length to the right but are
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constrained not to pass over other particles. In one time step, particles jump in order from left
to right. This model is similar, but not identical, to the exclusion processes considered in [28]
and [33].

The mapping between the zero-range process and the exclusion process, both for queues
and stores, is illustrated in Figure 7.

(3) (1) (4) (1) (2)

(2) (0) (3) (0) (1)

(2) (3) (5) (1)

Instant T

Instant ( 1)T + −

Instant 1T +

Figure 5: The zero-range process for tandem queues. The clock reading of the first particle at each site
is shown in parentheses.

Instant T+

Instant T++

Instant 1T +

Figure 6: The zero-range process for tandem stores. The boxes represent the buses.

Queues Stores

Figure 7: Exclusion processes for queues and stores. The black and white circles represent occupied and
empty sites, respectively.

https://doi.org/10.1239/jap/1134587823 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587823


Queues, stores, and tableaux 1159

1 1 2 3

2 2

3 4

4

Figure 8: A Ferrers diagram (left) and a semistandard Young tableau (right) of shape (4, 2, 2, 1) 
 9.

5.3. The Robinson–Schensted–Knuth representation

A partition of n ∈ N
∗ is a sequence of integers λ = (λ1, . . . , λk) such that λ1 ≥ · · · ≥ λk ≥ 0

and λ1 + · · · + λk = n, denoted by λ 
 n. By convention, we identify partitions having the
same nonzero components. The (Ferrers) diagram of (λ1, . . . , λk) 
 n is a collection of n

boxes arranged in left-justified rows, the ith row (counting from the top) consisting of λi boxes.
A (semistandard Young) tableau on the alphabet {1, . . . , �} is a diagram in which each box is
filled in by a label from {1, . . . , �} in such a way that the entries are weakly increasing from
left to right along the rows and strictly increasing down the columns. The shape of a diagram
or tableau is the underlying partition. A standard tableau of size n is a tableau of shape λ 
 n

whose entries are from {1, . . . , n} and are distinct. In Figure 8 we display a diagram on the left
and a tableau of the same shape on the right.

The Robinson–Schensted–Knuth row-insertion algorithm (RSK algorithm) takes a tableau T

and an i ∈ N
∗ and constructs a new tableau denoted by T ← i. The tableau T ← i has one

more box than T and is constructed as follows. If i is at least as large as the labels of the first
(upper) row of T , a box labelled i is added to the end of the first row of T and the procedure
halts. Otherwise, the left-most entry in the first row that is strictly larger than i is found, the
corresponding box is relabelled by i, and the same procedure is recursively applied to the second
row and to the ‘bumped’ label. By convention, an empty row has label 0. With this convention,
the above procedure halts.

Consider a word v = v1 · · · vn over the alphabet {1, . . . , k}. The tableau associated with v

is by definition

P = (· · · ((T0 ← v1)← v2) · · · ← vn),

where T0 is the empty tableau. Observe that P has at most k nonempty rows. Classically, the
length of the first (and longest) row of P is equal to the longest weakly increasing subsequence
in v.

Remark 5.1. While building the tableau P , it is possible to build another tableau of the same
shape in which the entries, labelled from 1 to |v|, record the order in which the boxes are
added. This recording tableau is a standard tableau of size |v|. By doing this, one defines a
bijection between words of {1, . . . , k}n and ordered pairs of tableaux of the same shape, the
first being semistandard over the alphabet {1, . . . , k} and the second being standard and of
size n. This bijection is often referred to as the Robinson–Schensted–Knuth correspondence.
Here, we do not need this result and we do not consider the recording tableau.

Consider a family

U = (u(i, j), (i, j) ∈ {1, . . . , N} × {1, . . . , K})
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of variables valued in N. (Here we do not make any assumption on the variables, which may
or may not be random.) We associate with U the word w(U) over the alphabet {1, . . . , K},
defined by

w(U) = w1 · · ·wN with wi = 1 · · · 1︸ ︷︷ ︸
u(i,1)

2 · · · 2︸ ︷︷ ︸
u(i,2)

· · ·K · · ·K︸ ︷︷ ︸
u(i,K)

. (5.1)

Set

M = |w(U)| =
N∑

i=1

K∑
j=1

u(i, j).

For i = 1, . . . , K , define

xi(n) = |{j ≤ n : w(U)j = i}| for all n ≤ M.

Given two maps x, y : {1, . . . , N} → N, define the maps x�y, x � y : {1, . . . , N} → N as
follows: for all n ≤ N ,

x�y(n) = max
0≤m≤n

[x(m)+ y(n)− y(m)],
x �y(n) = min

0≤m≤n
[x(m)+ y(n)− y(m)].

Denote by P(U) the tableau obtained from w(U) by applying the RSK algorithm and let
(λ1, . . . , λK) be its shape. Then

λ1 = x1�x2� · · ·�xK(M), λK = xK � · · ·�x2 �x1(M), (5.2)

where the (nonassociative) operations ‘�’ and ‘�’ are performed from left to right. The
expression for λ1 follows from the fact that λ1 is the longest weakly increasing subsequence in
w(U). The expression for λK is proved in [22, Theorem 3.1]. In fact, the result of [22] is more
general: there exists a min–max-type operator 	K such that (λ1, . . . , λK) = 	K(x1, . . . , xK).

A lattice path is a sequence π = ((i1, j1), . . . , (il, jl)) with (ik, jk) ∈ Z
2. The steps of π

are the differences
(ik+1 − ik, jk+1 − jk), k = 1, . . . , l − 1.

Let � be the set of lattice paths from (1, 1) to (N, K) with steps of the type (1, 0) or (0, 1).
All the paths in � have the same number of nodes, N +K − 1. Let �̃ be the set of lattice paths
from one of the points in

{(1+ i, K − i), i = 0, . . . , K − 1}
to one of the points in

{(N − j, 1+ j), j = 0, . . . , N − 1}
with steps of the type (1 + i,−i), i ≥ 0. Observe that all the paths in �̃ also have the same
number of nodes, (N − K + 1)+. In particular, �̃ is empty when N < K . An example of a
path from each of the two sets is provided in Figure 9.

When interpreting the following result, recall that queues and stores are arranged in op-
posite orders in the tandems (see Figure 4). It is also fruitful to compare the statements of
Proposition 4.1 and Theorem 5.1 for K = 2.
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(1, )K ( , )N  K

(1, 1) ( , 1)N

Figure 9: A path from � (solid line) and a path from �̃ (dashed line).

Theorem 5.1. Consider a saturated tandem of K queues/stores with variables u(i, j), i ∈ N
∗,

j ∈ {1, . . . , K}, as defined in Section 5.1. Fix an N ∈ N
∗. Let D be the instant of departure of

customer N from queue K and let R be the cumulative departures from store K over the time
slots 1 to N . Set

U = (u(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ K)

and define w(U) as in (5.1). Let (λ1, . . . , λK) be the shape of the tableau associated with
w(U). Then

λ1 = max
π∈�

[ ∑
(i,j)∈π

u(i, j)

]
= D, (5.3)

λK = min
π∈�̃

[ ∑
(i,j)∈π

u(i, j)

]
= R. (5.4)

Before proving Theorem 5.1, we state and prove a preliminary result.

Lemma 5.1. We have

xK � · · ·�x2 �x1(M) = min
π∈�̃

[ ∑
(i,j)∈π

u(i, j)

]
.

Proof. By definition,

xK � · · ·�x1(M)

= min
1≤mK<···<m1=M

[xK(mK)+ xK−1(mK−1)− xK−1(mK)+ · · · + x1(m1)− x1(m2)].

Let (m∗K, . . . , m∗2) be a sequence of integers realizing the minimum in the above equation.
Consider the set of integers

I =
{ k∑

i=1

|wi | +
K−1∑
j=1

u(k + 1, j), k ∈ {0, . . . , K − 1}
}
.
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w(U) : | 111222 · · · · · ·
wiK︷ ︸︸ ︷

| 111122 · · · · · · (K − 1)(K − 1)(K − 1)KKK · · ·K| 111 · · · · · ·KKK|
↑ ↑
nK m∗K

Figure 10: Illustration of the proof of Lemma 5.1.

Without loss of generality, we may assume that m∗K ∈ I . Indeed, assume that m∗K 
∈ I and let
nK be the smallest integer such that nK ∈ I with nK > m∗K . (See Figure 10.) Then we clearly
have xK(nK) = xK(m∗K) and

xK � · · ·�x1(M)− xK(nK)

≤ min
nK<mK−1<···<m2

[xK−1(mK−1)− xK−1(nK)+ · · · + x1(M)− x1(m2)]
≤ min

m∗K<mK−1<···<m2

[xK−1(mK−1)− xK−1(m
∗
K)+ · · · + x1(M)− x1(m2)]

= xK � · · ·�x1(M)− xK(m∗K).

Thus, we can assume that m∗K ∈ I . Let iK be such that

m∗K =
iK−1∑
i=1

|wi | +
K−1∑
j=1

u(iK, j).

Then xK(m∗K) =∑iK−1
j=1 u(j, K) and, by the same type of argument, we can assume that

m∗K−1 ∈
{ k∑

i=1

|wi | +
K−2∑
j=1

u(k + 1, j), k ∈ {iK, . . . , K − 1}
}
,

without loss of generality.
Since m∗K ∈ I , we have xK(m∗K) = ∑iK

j=1 u(K, j) for some iK . Then, again by the same
type of argument, we can assume that

m∗K−1 ∈
{ k∑

i=1

|wi | +
K−2∑
j=1

u(k, j), k ∈ {iK + 1, . . . , K − 1}
}
,

without loss of generality. This implies that

xK−1(mK−1)− xK−1(mK) =
iK−1−1∑
j=iK+1

u(K − 1, j) for some iK−1.

By repeating the argument, we obtain the desired result.

Proof of Theorem 5.1. The result for λ1 is essentially due to Schensted. The left-hand
equality in (5.3) follows from (5.2) and the right-hand equality appears, for instance, in [21],
[37], and [11]. The left-hand equality in (5.4) follows from Lemma 5.1, whence

λK = xK � · · ·�x2 �x1(M) = min
π∈�̃

[ ∑
(i,j)∈π

u(i, j)

]
.

https://doi.org/10.1239/jap/1134587823 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587823


Queues, stores, and tableaux 1163

It remains to prove the right-hand equality in (5.4). Let us denote by r(i − 1, j) the amount
departing at time slot i from store j and by w(i, j) the quantity remaining at the end of time
slot i in store j . According to (3.7), we have

r(n, k) = r(n− 1, k − 1)+ w(n, k)− w(n+ 1, k). (5.5)

By applying (3.6) to our tandem model, we obtain

w(n+ 1, k) = [w(n, k)+ r(n− 1, k − 1)− u(n, K + 1− k)]+

= max
1≤m≤n

[n−1∑
i=m

r(i, k − 1)−
n∑

i=m+1

u(i, K + 1− k)

]
.

Using (5.5), for n ≥ K we have

r(n, K) = r(n− 1, K − 1)+ w(n, K)− w(n+ 1, K)

= r(n− 2, K − 2)+ w(n− 1, K − 1)− w(n, K − 1)+ w(n, K)− w(n+ 1, K)

= r(n−K + 1, 1)+
K−2∑
i=0

[w(n− i, K − i)− w(n− i + 1, K − i)]

= u(n−K + 1, K)+
K−1∑
i=0

[w(n− i, K − i)− w(n− i + 1, K − i)].

Hence,

R =
N∑

n=1

r(n, K) =
N∑

n=K

r(n, K)

=
N∑

n=K

u(n−K + 1, K)+
N∑

n=K

K−1∑
i=0

[w(n− i, K − i)− w(n− i + 1, K − i)]

=
N−K+1∑

n=1

u(n, K)+
K−1∑
i=0

N∑
n=K

[w(n− i, K − i)− w(n− i + 1, K − i)]

=
N−K+1∑

n=1

u(n, K)+
K−1∑
i=0

[w(K − i, K − i)− w(N − i + 1, K − i)].

Now recall that w(k, k) = 0 for all k ≥ 1. This gives

R =
N−K+1∑

n=1

u(n, K)+
K∑

i=1

w(i, i)−
K∑

i=1

w(N −K + i + 1, i)

=
N−K+1∑

n=1

u(n, K)−
K∑

i=1

w(N −K + i + 1, i). (5.6)
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Moreover, if we let A = w(N + 1, K)+ w(N, K − 1), we have

A = max
1≤i1≤N

[N−1∑
n=i1

r(n, K − 1)−
N∑

n=i1+1

u(n, 1)

]
+ w(N, K − 1)

= max
1≤i1≤N

[N−1∑
n=i1

[r(n− 1, K − 2)+ w(n, K − 1)− w(n+ 1, K − 1)] −
N∑

n=i1+1

u(n, 1)

]
+ w(N, K − 1)

= max
1≤i1≤N

[ N−2∑
n=i1−1

r(n, K − 2)+ w(i1, K − 1)− w(N, K − 1)−
N∑

n=i1+1

u(n, 1)

]
+ w(N, K − 1)

= max
1≤i1≤N

[ N−2∑
n=i1−1

r(n, K − 2)+ w(i1, K − 1)−
N∑

n=i1+1

u(n, 1)

]

= max
1≤i1≤N

[ N−2∑
n=i1−1

r(n, K − 2)+ max
1≤i2≤i1−1

[i1−2∑
n=i2

r(n, K − 2)−
i1−1∑

n=i2+1

u(n, 2)

]

−
N∑

n=i1+1

u(n, 1)

]

= max
1≤i2<i1≤N

[N−2∑
n=i2

r(n, K − 2)−
i1−1∑

n=i2+1

u(n, 2)−
N∑

n=i1+1

u(n, 1)

]
.

Applying this repeatedly yields

K∑
i=1

w(N −K + i + 1, i)

= max
1≤iK−1<···<i1≤N

[N−K+1∑
n=iK−1

u(n, K)−
iK−2−1∑

n=iK−1+1

u(n, K − 1)+ · · · +
N∑

n=i1+1

u(n, 1)

]
.

(5.7)

By combining (5.6) and (5.7), we obtain

R = min
1≤iK−1<···<i1≤N

[iK−1−1∑
n=1

u(n, K)+
iK−2−1∑

n=iK−1+1

u(n, K − 1)+ · · · +
N∑

n=i1+1

u(n, 1)

]

= min
π∈�̃

[ ∑
(i,j)∈π

u(i, j)

]
.

Let us comment on Theorem 5.1. First, it is interesting to observe that the six quantities
appearing in (5.3) and (5.4) all come from the same model. Now consider (5.3) and (5.4)
separately. The first is classical and has led to several interesting developments for queues in
series. A by-product of the newly proved identity (5.4) is therefore that it paves the way to
obtaining analogous results for stores in tandem. We set out this programme in more detail in
the next section.
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5.4. Stochastic models, interchangeability, and hydrodynamic limits

If T is a tableau over the alphabet {1, . . . , k}, we write xT = ∏k
i=1 x

αi

i , where αi is the
number of occurrences of the label i in the tableau. The Schur function sλ associated with the
partition λ = (λ1, . . . , λk) is defined by

sλ(x1, . . . , xk) =
∑

{T : sh(T )=λ}
xT ,

where sh(T ) is the shape of the tableau T . We refer the reader to the books [32] and [34] for
more about Schur functions and their connection to the RSK algorithm.

Suppose that the random variables U = (u(i, j), (i, j) ∈ {1, . . . , N} × {1, . . . , K})
are independent, that u(i, j) is geometrically distributed with parameter qj , and that
q = (q1, . . . , qK) ∈ (0, 1)K is fixed. Then the law of the random partition λ = (λ1, . . . , λK)

associated with w(U) is given by (see [23])

P{λ = l} = a(q)Nsl(q)sl(1, . . . , 1), l ∈ PK,

where PK is the set of integer partitions with at most K nonzero parts, a(q) =∏K
j=1(1− qj ),

and sl is the Schur function associated with the integer partition l. In particular, the law of λ is
symmetric in the parameters q1, . . . , qK .

This extends to the level of processes: if we write λ = λ(N) to emphasize its dependence on
N , it is easy to check (see [23]) that the random sequence λ(N) is a Markov chain in PK with
transition probabilities given by

P{λ(N+1) = l | λ(N) = m} = a(q)
sl(q)

sm(q)

for all m and l such that l1 ≥ m1 ≥ l2 ≥ m2 ≥ · · · . In particular, we can see that the law of
the sequence λ(N) is symmetric in the parameters q1, . . . , qK .

These remarks give the laws of the departure processes of both of the stochastic tandem
queueing and storage models described above. Consider a saturated tandem of K queues/stores
as defined in Section 5.1. Assume that the random variables u(i, j), i ∈ N

∗, j ∈ {1, . . . , K},
are all independent and that the u(i, j) are geometrically distributed with parameter qj ∈ (0, 1).
Let D(N) be the instant of departure of customer N from queue K and let R(N) be the cumulative
number of departures from store K over the time slots 1 to N . By Theorem 5.1, D(N) and R(N)

are respectively the lengths of the longest and shortest rows, λ
(N)
1 and λ

(N)
K , of the random

tableau obtained by the RSK algorithm.

5.4.1. Interchangeability. A result of Weber [38] (also see [1]) states that a series of ·/M/1
queues arranged in tandem are interchangeable, i.e. the output process has the same distribution
under any reordering of the queues. This is exactly the fact that the law of D is symmetric
in the parameters and can now be seen as a direct consequence of the symmetry of the
Schur functions. We can extend this result as follows.

Theorem 5.2. The law of (D(N), R(N))N is unchanged if the parameters of the geometric laws
are modified from (q1, . . . , qK) to (qσ(1), . . . , qσ(K)), for any permutation σ of {1, . . . , K}.

In particular, stores arranged in tandem are interchangeable.
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5.4.2. Hydrodynamic limits. Proving shape theorems (also known as hydrodynamic limits) and
fluctuation results is an important issue in interacting particle systems; see, for instance, [16].
The law of D(N) is well known and the connection with the RSK algorithm has been exploited
before to obtain detailed asymptotic and fluctuation results for the corresponding interacting
particle system. The tandem storage (and bus stop) model, however, has not been discussed in
the literature. A by-product of our analysis is that this model is amenable to some very precise
analysis and development.

Indeed, consider Theorem 5.2 and the important special case of when the parameters are
equal, with qj = q, say. Then the random variables D and R are jointly distributed in the same
way as the largest and smallest ‘eigenvalues’ of the Meixner ensemble (or, in the exponential
case, of the Laguerre ensemble). For example, if the u(i, j) are exponentially distributed with
parameter 1, then the cumulative number of departures, R(N), over the time slots 1 to N in the
corresponding tandem of K stores is distributed in the same way as the smallest eigenvalue of
the K×K random matrix AA∗, where A is a K×N matrix with i.i.d. standard normal complex
entries. This distribution is known; see, for instance, [29]. When N = K , it is exponential
with mean K . This can be used as a starting point for the analysis of the fluctuations and
hydrodynamic limit corresponding to the bus stop model of Section 5.2, a programme which
is beyond the scope of this paper.

5.4.3. Fixed point results. Finally, we remark that the identity

min
π∈�̃

[ ∑
(i,j)∈π

u(i, j)

]
= R

can also be used as a cornerstone for proving fixed point and related weak convergence results
for tandem stores. In the context of tandem queues, these questions have been pursued for some
time, and the identity

max
π∈�

[ ∑
(i,j)∈π

u(i, j)

]
= D

was a key ingredient in solving them [8], [2], [20], [26].
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