A counter-example to a conjecture by Deakin

Leif Arkeryd

Michael A.B. Deakin (Bull. Austral. Math. Soc. 17 (1977), 161-175) states (on p. 173) a conjecture, which, if true, would lead to simpler proofs of a number of known theorems. This conjecture is, however, shown to be false by means of a counterexample.

Given a finitely determined real-valued $C^{\infty}\left(R^{n}\right)$-germ f and germs $g_{i}(x)=O\left(|x|^{2}\right), i=1, \ldots, n$, the conjecture ([1], p. 173) asserts the existence of a diffeomorphism germ

$$
\varphi=x+o\left(|x|^{2}\right)
$$

such that

$$
f+\sum_{1}^{n} g_{j} D_{j} f=f \circ \varphi .
$$

But such a diffeomorphism does not exist in general as shown by

$$
f=x^{2} y+y^{5}, g_{1}=y^{2}, g_{2}=0
$$

Namely, the germ f is 5-determined ([2], p. 292). Let φ be given by

$$
\varphi(x, y)=(x, y)+\left(p_{1}+z_{1}, z_{2}\right)
$$

with $z_{1}=O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right), z_{2}=O\left(x^{2}+y^{2}\right)$, and p_{1} homogeneous of degree two. Then modulo terms of degree greater than 5 , Received 30 March 1978.

$$
\begin{aligned}
x^{2} y+y^{5}+y^{2} \cdot 2 x y-\left(x+p_{1}+z_{1}\right)^{2}\left(y+z_{2}\right) & -\left(y+z_{2}\right)^{5} \\
& =\left(2 x y^{3}-2 x y p_{1}-x^{2} z_{2}\right)-\left(p_{1}^{2} y+2 x p_{1} z_{2}+2 x y z_{1}\right) .
\end{aligned}
$$

By the conjecture this is identically zero for some $p_{1}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2} ;$ and so the term $2 x y^{3}$ implies that

$$
p_{1}=y^{2}+a x^{2}+b x y
$$

the fifth order term becoming

$$
-y^{5}+x \cdot p_{2}
$$

for some homogeneous polynomial p_{2}. Here $-y^{5}$ cannot be cancelled for any p_{1}, z_{1}, z_{2}.

References

[1] Michael A.B. Deakin, "New proofs of some theorems on infinitely differentiable functions", BuZZ. Austral. Math. Soc. 17 (1977), 161-175.
[2] Christopher Zeeman, "The classification of elementary catastrophes of codimension ≤ 5 ", (notes written and revised by David Trotman), Structural stability, the theory of catastrophes, and applications in the sciences, 263-327 (Proc. Conf. Battelle Seattle Research Center 1975; Lecture Notes in Mathematics, 525. Springer-Verlag, Berlin, Heidelberg, New York, 1976).

Matematiska institutionen, Göteborgs Universitet,
Göteborg,
Sweden.

