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It is demonstrated that finite-pressure, approximately quasi-axisymmetric stellarator
equilibria can be directly constructed (without numerical optimization) via perturbations
of given axisymmetric equilibria. The size of such perturbations is measured in two
ways, via the fractional external rotation and, alternatively, via the relative magnetic field
strength, i.e. the average size of the perturbed magnetic field, divided by the unperturbed
field strength. It is found that significant fractional external rotational transform can
be generated by quasi-axisymmetric perturbations, with a similar value of the relative
field strength, despite the fact that the former scales more weakly with the perturbation
size. High mode number perturbations are identified as a candidate for generating such
transform with local current distributions. Implications for the development of a general
non-perturbative solver for optimal stellarator equilibria are discussed.
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1. Introduction

Quasi-symmetry is a property of magnetic fields that ensures the confinement of
collisionless particle orbits. Axisymmetric magnetic equilibria possess this property in
a trivial sense, whereas the related class of stellarators, called quasi-axisymmetric (QAS),
satisfies the symmetry in a way that is hidden to the naked eye (Nührenberg et al.
1994).

The close relationship between axisymmetry and QAS suggests that the second class
may be continuously connected to the first, and in particular that QAS stellarators
may be obtained by deformation of axisymmetric equilibria (Boozer 2008). It has
also been suggested that modifying tokamak equilibria by non-axisymmetric shaping
might help overcome the stability issues that plague them, and a previous study,
using conventional numerical optimization, has demonstrated that suitable QAS may
indeed be found as deformed tokamak equilibria (Ku & Boozer 2009). The idea of
passively stabilizing a tokamak by non-axisymmetric perturbations is also supported by
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a number of experimental results, when the perturbation generates a sufficient ‘external’
boost in rotational transform (W VIIA Team 1980; Pandya et al. 2015). Solving the
magnetohydrodynamic (MHD) equilibrium problem for optimal stellarator equilibria,
without the use of numerical optimization algorithms (i.e. ‘direct construction’ of optimal
solutions), is potentially beneficial due to the speedup offered (Landreman, Sengupta &
Plunk 2019). So far, the only ways to do this have involved approximations to the problem
such as a small distance from the magnetic axis (Garren & Boozer 1991a,b; Landreman
& Sengupta 2018; Landreman et al. 2019; Plunk, Landreman & Helander 2019), or a
small deviation from axisymmetry (Plunk & Helander 2018). However, solving these
approximate problems can also lead to fundamental insights into the properties of the
solutions, and the size of the solution space.

There are possible practical advantages of directly constructing QAS stellarator
equilibria via the perturbation of axisymmetric equilibria, as compared to conventional
optimization. For instance, the general perturbation can be constructed as a sum of
independent QAS modes with different toroidal mode numbers. After pre-computation
of these modes, the corresponding space of QAS equilibria can be easily scanned, without
further computational cost, whereas each step of a conventional optimizer involves solving
the equilibrium problem anew. Also, there is no fundamental constraint on axisymmetric
equilibrium measures, such as the aspect ratio, so these may be set arbitrarily to explore
new areas of stellarator design space, which may have been inaccessible with conventional
optimization.

In a previous paper (Plunk & Helander 2018), it was proved that nearly axisymmetric
magnetic fields can be constructed to satisfy the condition of quasi-axisymmetry on a
single magnetic surface. These solutions, however, apply only to vacuum conditions,
where the plasma itself does not contribute significantly to the magnetic field. The
present work considers the more general case of finite-pressure equilibria. Formidable
challenges are present in this general problem, starting with an increased complexity
arising from the nonlinear coupling of multiple fields. The presence of singularities in
the force balance equation makes the general problem of obtaining equilibria ill posed,
even without the requirement of satisfying a special symmetry. As we will show, the issue
of force balance singularities may be overcome, at least at first order in the expansion,
by suitable choice of the zeroth-order rotational transform profile. The complexity of the
system, however, makes it more difficult to establish the existence of solutions by the
same methods employed by Plunk & Helander (2018). We therefore turn to devising a
method to numerically solve the system. This, as we find, gives evidence that the same
problem as solved in the vacuum limit by Plunk & Helander (2018), namely the problem
of finding a perturbation of specified toroidal mode number N that satisfies the condition
of QAS on a single magnetic surface, is indeed well posed, at least in some practical
sense.

The contents of the paper are as follows. In § 2 the basic equations and notation
are established, and the ‘inverse’ MHD equilibrium problem formulation is described.
In § 3, the expansion about axisymmetry is performed, and the equations are given
to find perturbations satisfying QAS on a specified magnetic surface. The issue of
force balance singularities is discussed, and a strategy to overcome them is described.
In § 4, a numerical method is described to solve the first-order system, and a set
of solutions are given, based on a zeroth-order ITER-like equilibrium. The VMEC
(Hirshman & Whitson 1983) and BOOZ_XFORM (Sanchez et al. 2000) codes are used to
demonstrate that the solutions can satisfy the appropriate level of QAS as predicted by the
theory.
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Perturbing an axisymmetric magnetic equilibrium 3

2. Preliminaries

The MHD equilibrium equations are

∇ × B = μ0 j, (2.1)

∇ · B = 0. (2.2)

j × B = ∇ψ dp
dψ
. (2.3)

We assume topologically toroidal magnetic surfaces, here labelled by the flux function ψ .
To solve these equations, we use a similar approach as previous works Garren & Boozer
(1991a,b); Hegna (2000); Boozer (2002); Weitzner (2014). Boozer angles are denoted θ
and ϕ. The contravariant form of B is written

Bcon = ∇ψ × ∇θ − ι(ψ)∇ψ × ∇ϕ, (2.4)

where ι is the rotational transform, and 2πψ is the toroidal flux. This form of B satisfies
zero divergence, assuming a flux-surface geometry. The covariant form is written

Bcov = G(ψ)∇ϕ + I(ψ)∇θ + K(ψ, θ, ϕ)∇ψ. (2.5)

This form is a consequence of j · ∇ψ = 0 (2.3), and Ampere’s law (2.1); see e.g. Helander
(2014).

The basic strategy to find an equilibrium is to assert Bcon = Bcov together with force
balance (2.3), relying on the fact that these forms of the magnetic field incorporate
equations (2.1) and (2.2) as well as the assumption of topologically toroidal magnetic
surfaces. Either the magnetic coordinates ψ, θ and ϕ can be considered as the unknown
functions of spatial coordinates (‘direct formulation’), or the coordinate mapping
x(ψ, θ, ϕ) can be considered as an unknown function of the magnetic coordinates (‘inverse
formulation’). Both formulations are used here.

It is convenient at zeroth order to solve the Grad–Shafranov equation (e.g. using the
direct formulation). This means that we are able to specify the axisymmetric shape of
the outer magnetic surface. We will also specify the current and pressure profiles at this
stage, and consider them as fixed for the remainder of the calculation. We will use the
indirect formulation for the problem at next order, i.e. the problem of QAS-preserving
perturbations, as it casts the problem as a fixed boundary problem with QAS as the
boundary condition.

2.1. Problem formulation
With the inverse formulation, the independent variables of the problem are the magnetic
coordinates, and QAS is expressed as a simple constraint, ∂B/∂ϕ = 0. Instead of using
magnetic flux as a coordinate, we will use a coordinate system based on a dimensionless
radial coordinate ρ = √

ψ/ψb, where ψb denotes the value of ψ on the boundary surface.
Note that most physical quantities are not analytic in ψ at the magnetic axis (ψ = 0), but
can be expanded in ρ (Garren & Boozer 1991a). This idea is motivated by considering ρ
and θ as polar coordinates and then assuming that a Taylor expansion can be made in the
pseudo-Cartesian coordinates x̄ = ρ cos(θ) and ȳ = ρ sin(θ).

With the inverse formulation, the unknown of the theory is the coordinate mapping
x(ρ, θ, ϕ), and the equilibrium equations are written in terms of various derivatives
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∂x/∂ρ, and so forth. These equations can be translated into equations involving the metrics
via the usual identities (reviewed in appendix A). Then equation Bcon = Bcov becomes

ρ

(
∂x
∂ϕ

+ ι
∂x
∂θ

)
= Ḡ

∂x
∂ρ

× ∂x
∂θ

+ Ī
∂x
∂ϕ

× ∂x
∂ρ

+ K̄
∂x
∂θ

× ∂x
∂ϕ
. (2.6)

Force balance can be expressed as a scalar equation, since it only has a component in the
∇ρ direction. We use j = μ−1

0 ∇ × Bcov and take the scaler product of (2.3) with ∇θ × ∇ϕ
(

dḠ
dρ

− ∂K̄
∂ϕ

)
+ ι

(
dĪ
dρ

− ∂K̄
∂θ

)
+ μ0J̄

dp̄
dρ

= 0. (2.7)

We introduce the following normalized quantities: Ḡ = G/(2ψb), Ī = I/(2ψb), K̄ = ρK
and p̄ = p/(2ψb)

2. Note that we define J̄ = J/ρ in the limiting sense so that, although J =
(∇ρ · ∇θ × ∇ϕ)−1 tends to zero with ρ, J̄ does not. Finally, we will need the following
expression for the regularized Jacobian:

J̄ =

∣∣∣∣ ∂x
∂ϕ

+ ι
∂x
∂θ

∣∣∣∣
2

Ḡ + ι Ī
. (2.8)

Defining also B̄ = B/(2ψb) we have the useful relation J̄ = (Ḡ + ι Ī)/B̄2 ((B 1)) so that
QAS can be expressed most conveniently here as

∂ J̄
∂ϕ

= 0. (2.9)

In the present work, we look for solutions that satisfy this condition on a single magnetic
surface; we will not consider here the question of whether this condition might, under
special circumstances, be satisfied globally, i.e. uniformly in ρ.

3. The expansion about axisymmetry

We write the coordinate mapping x(ρ, θ, ϕ) as a series expansion in the small
parameter ε,

x = x0 + εx1 + ε2x2 + · · · , (3.1)

where x0 corresponds to the zeroth-order axisymmetric equilibrium. We will consider the
pressure p̄ and currents Ḡ and Ī as fixed to their zeroth-order values (there is no loss
of generality as any higher-order variation in these functions can be absorbed into the
zeroth-order forms). This confines our attention to axisymmetry breaking perturbations.
We will, however, allow the deformation to modify ι and K̄.

K̄(ρ, ϕ, θ) = K̄0 + εK̄1 + εK̄2 + · · · , (3.2)

ι = ι0 + ε ι1 + ε2 ι2 + · · · . (3.3)

For a nearly axisymmetric equilibrium, it is sensible to take the components of (3.11)
along the cylindrical unit vectors R̂, φ̂, ẑ (such that R̂ × φ̂ = ẑ).
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3.1. Order ε0

The zeroth-order coordinate mapping is (see also appendix D)

x0 = R̂R0(ρ, θ)+ ẑZ0(ρ, θ), (3.4)

where the cylindrical unit vectors are functions of the geometric toroidal coordinate,
related to the boozer angle by ϕ = φ + ν, and are expanded as

φ = ϕ − ν0 − ν1 − · · · , (3.5)

so that φ0 = ϕ − ν0 and φ1 = −ν1, etc., and, for simplicity, the unit vectors will be defined
according to the zeroth-order expression of the geometric toroidal angle,

R̂ = R̂(φ0) = R̂(ϕ − ν0), (3.6)

φ̂ = φ̂(φ0) = φ̂(ϕ − ν0). (3.7)

With these definitions, derivatives of the zeroth-order coordinate mapping are evaluated
as

∂x0

∂ρ
= R̂

∂R0

∂ρ
+ ẑ

∂Z0

∂ρ
− φ̂R0

∂ν0

∂ρ
, (3.8)

∂x0

∂θ
= R̂

∂R0

∂θ
+ ẑ

∂Z0

∂θ
− φ̂R0

∂ν0

∂θ
, (3.9)

∂x0

∂ϕ
= φ̂R0. (3.10)

The zeroth-order MHD constraint is

ρ

(
∂x0

∂ϕ
+ ι0

∂x0

∂θ

)
= Ḡ

∂x0

∂ρ
× ∂x0

∂θ
+ Ī

∂x0

∂ϕ
× ∂x0

∂ρ
+ K̄0

∂x0

∂θ
× ∂x0

∂ϕ
, (3.11)

where (3.8)–(3.10) can be substituted and the equation projected along the unit vectors
R̂, φ̂ and ẑ to obtain three coupled equations. Note that we avoid explicitly writing the
lengthy equations that result, and will do likewise with others that follow, especially when
they do not give any useful insight. Force balance is

dḠ
dρ

+ ι0

(
dĪ
dρ

− ∂K̄0

∂θ

)
+ μ0J̄0

dp̄
dρ

= 0. (3.12)

3.1.1. Inverting the Grad–Shafranov solution
It is convenient to use Grad–Shafranov (GS) theory to obtain the zeroth-order

equilibrium. This approach gives control of the axisymmetric plasma shape, and also
benefits from the existing understanding of the equation and its numerical solution.
A solution of the GS equation is the poloidal flux function Ψ (R, z) is obtained from
a given pressure function p, and the poloidal flux function G. From these quantities,
the corresponding profiles I and ι0, the current potential K0 and coordinate mapping
components R0,Z0 and ν0 can be calculated. To perform the coordinate inversion,
derivatives of the GS solution are computed, so a high degree of accuracy is needed.
A method is described in appendix D.
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3.2. Order ε1

As in Plunk & Helander (2018), we do not modify the toroidal angle beyond zeroth order in
the expansion (ν1 = 0, etc., in (3.5)), but instead consider the corrections to the coordinate
mapping to have a component in the φ̂ direction, i.e.

x1 = R̂R1(θ, ψ, ϕ)+ ẑZ1(θ, ψ, ϕ)+ φ̂Φ1(θ, ψ, ϕ), (3.13)

from which it follows that

∂x1

∂ρ
= R̂

(
∂R1

∂ρ
+Φ1

∂ν0

∂ρ

)
+ ẑ

∂Z1

∂ρ
+ φ̂

(
∂Φ1

∂ρ
− R1

∂ν0

∂ρ

)
(3.14)

∂x1

∂θ
= R̂

(
∂R1

∂θ
+Φ1

∂ν0

∂θ

)
+ ẑ

∂Z1

∂θ
+ φ̂

(
∂Φ1

∂θ
− R1

∂ν0

∂θ

)
(3.15)

∂x1

∂ϕ
= R̂

(
∂R1

∂ϕ
−Φ1

)
+ ẑ

∂Z1

∂ϕ
+ φ̂

(
R1 + ∂Φ1

∂ϕ

)
. (3.16)

As ϕ is an ignorable coordinate in the properly formulated first-order equilibrium
equations, we will assume

R1 = R̂1(θ, ψ) exp(iNϕ)+ c.c., (3.17)

Z1 = Ẑ1(θ, ψ) exp(iNϕ)+ c.c., (3.18)

Φ1 = Φ̂1(θ, ψ) exp(iNϕ)+ c.c., (3.19)

K̄1 = ˆ̄K1(θ, ψ) exp(iNϕ)+ c.c., (3.20)

with N �= 0 an integer. The deformation is thus non-axisymmetric, and the axisymmetric
(ϕ-averaged) part of the local MHD constraint (C 4) is ι1(Ḡg(0)22 − Īg(0)23 ) = 0, from which
we conclude that

ι1 = 0. (3.21)

The first-order MHD constraint is then

ρ

(
∂x1

∂ϕ
+ ι0

∂x1

∂θ

)
= Ḡ

(
∂x0

∂ρ
× ∂x1

∂θ
+ ∂x1

∂ρ
× ∂x0

∂θ

)
+ Ī

(
∂x0

∂ϕ
× ∂x1

∂ρ
+ ∂x1

∂ϕ
× ∂x0

∂ρ

)

+ K̄0

(
∂x0

∂θ
× ∂x1

∂ϕ
+ ∂x1

∂θ
× ∂x0

∂ϕ

)
+ K̄1

∂x0

∂θ
× ∂x0

∂ϕ
. (3.22)

What is needed is the exp(iNϕ) component of this equation, obtained by substituting
equations (3.17)–(3.20) into x1, (3.13), and its derivatives, (3.14)–(3.16). The further
substitution of zeroth-order expressions, (3.8)–(3.10), and projection along the cylindrical
unit vectors, then yield a set of three equations for the unknowns R̂1, Ẑ1, Φ̂1,

ˆ̄K1 in terms
of the known zeroth-order solutions R0,Z0, ν0 and K̄0. The system is completed with the
force balance equation,

− iN ˆ̄K1 − ι0
∂ ˆ̄K1

∂θ
+ ˆ̄J1μ0

dp̄
dρ

= 0. (3.23)
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Perturbing an axisymmetric magnetic equilibrium 7

The exp(iNϕ) component of the first-order Jacobian, ˆ̄J1, is obtained from (2.8) by
substituting equations (3.9) and (3.10) and (3.15) and (3.16), into the following expression:

J̄1 = 2

(
∂x0

∂ϕ
+ ι0

∂x0

∂θ

)
·
(
∂x1

∂ϕ
+ ι0

∂x1

∂θ

)
Ḡ + ι0Ī

. (3.24)

We note that QAS implies that ˆ̄J1 = 0, so force balance on any QAS surface reduces to
iN ˆ̄K1 + ι0∂

ˆ̄K1/∂θ = 0, which, assuming irrational ι0, implies

ˆ̄K1 = 0. (3.25)

On magnetic surfaces where QAS is not satisfied, the possibility of resonances in (3.23)
must be considered. It is easy to see that the equation can be uniquely solved for ˆ̄K1,
periodic in θ , if ι0 is not equal to a rational number. Actually, some rational numbers
are resonant, and some are not, in particular there are resonances at any magnetic surface
where ι0 satisfies

ι0 = N
m
, (3.26)

for arbitrary integer m. One strategy to avoid resonances is to constrain ι0 to lie between
two neighbouring singular values. In that case, force balance can be considered ‘soluble’
throughout the plasma volume. Note that, assuming ι0 ∼ 1, such ‘safe’ ranges become
increasingly narrow at large N, although resonances may be considered ‘high order’ in
this limit, and therefore less likely to pollute the solution.

Note that (3.25) demonstrates that force balance is non-resonant on a QAS magnetic
surface. Actually, this reflects a general non-perturbative property, which follows directly
from exact force balance and the relationship between B and J̄ ((2.7) and (B 1)), namely
that quasi-symmetry drastically simplifies the source term in force balance (Fourier series
of J̄ in θ and ϕ has only terms of a single helicity), so that an MHD equilibrium that
is quasi-symmetric globally (on all magnetic surfaces) should be free from non-trivial
resonances; see also Burby, Kallinikos & MacKay (2019) and Rodríguez, Helander &
Bhattacharjee (2020).

To summarize, at first order the equations to be solved are the three components
of (3.22), coupled with force balance, (3.23), for the four unknown functions
R̂1(ρ, θ), Ẑ1(ρ, θ), Φ̂1(ρ, θ),

ˆ̄K1(ρ, θ). The domain is the unit disk, ρ ∈ [0, 1] and the
boundary condition is QAS, which translates to ˆ̄K(ρ, θ)|ρ=1 = 0. No rotational transform
is obtained at this order, but the first-order solution does generally induce transform at
O(ε2), i.e. enters the computation of ι2.

3.3. Order ε2

Proceeding to the next order, the equations are quite similar to before, but now include
terms that are quadratic in first-order quantities. The second-order coordinate mapping is

x2 = R̂R2(θ, ψ, ϕ)+ ẑZ2(θ, ψ, ϕ)+ φ̂Φ2(θ, ψ, ϕ), (3.27)
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8 G. G. Plunk

and its derivatives are

∂x2

∂ρ
= R̂

(
∂R2

∂ρ
+Φ2

∂ν0

∂ρ

)
+ ẑ

∂Z2

∂ρ
+ φ̂

(
∂Φ2

∂ρ
− R2

∂ν0

∂ρ

)
(3.28)

∂x2

∂θ
= R̂

(
∂R2

∂θ
+Φ2

∂ν0

∂θ

)
+ ẑ

∂Z2

∂θ
+ φ̂

(
∂Φ2

∂θ
− R2

∂ν0

∂θ

)
(3.29)

∂x2

∂ϕ
= R̂

(
∂R2

∂ϕ
−Φ2

)
+ ẑ

∂Z2

∂ϕ
+ φ̂

(
R2 + ∂Φ2

∂ϕ

)
. (3.30)

The appearance of the nonlinear terms occurs (in the MHD constraint and force balance
equation) at toroidal mode numbers ±2N, and also in the axisymmetric component, which
now must be solved to obtain ι2. We note that the appearance of toroidal mode numbers
±2N at second order implies a denser set of possible force balance resonances at higher
orders in the expansion, i.e. ι0 = 2N/m, which may justify further restriction on the
chosen profile for ι0. Even if the problem will only be solved at first order, higher-order
resonances may occur in the exact force balance equation that must be satisfied by the full
equilibrium.

In the vacuum case (Plunk & Helander 2018), ι2 was obtained as a solubility constraint
of the axisymmetric component (ϕ-average) of the local MHD constraint, (C 4). This
result does not appear to generalize in a simple way, implying that the full system (MHD
constraint plus force balance) must be solved to obtain ι2.

4. Numerical solution

The task now is to solve the system composed of (3.22) and (3.23) for the unknowns
R̂1, Ẑ1, Φ̂1,

ˆ̄K1, subject to QAS ( ˆ̄K = 0) on a specified magnetic surface, typically the
outermost magnetic surface (ρ = 1). Note that this boundary surface need not necessarily
be taken to be located at the plasma edge. It has been suggested (Henneberg et al. 2019)
that it may be optimal to satisfy QAS at some intermediate magnetic surface, which can
be implemented here by redefinition of the coordinate ρ, or simply choosing a boundary
ρ < 1. Henceforth, we assume ρ = 1 for simplicity.

The ‘pseudo-Cartesian’ coordinates x̄ = ρ cos(θ) and ȳ = ρ sin(θ) are used for
numerical purposes, instead of the polar coordinates ρ and θ . These have the advantage
that they do not possess the singularity of the polar coordinates (ρ, θ ) as ρ → 0, and
they do not require periodicity to be enforced in θ , or any analyticity at ρ = 0. The
only advantage found in using ρ-θ coordinates is to explicitly observe the development
of non-analyticity in the solutions on resonant surfaces (satisfying ι0 = N/m).

The finite element method is used, reformulating the problem as an equivalent ‘least
squares’ problem. The least squares finite element method offers better convergence
and stability properties for systems of first-order partial differential equations (Jiang
1998). To show how the problem is reformulated, we introduce the vector field u(x̄, ȳ) =
[ ˆ̄K1, R̂1, Ẑ1, Φ̂1]T, together with the inner product

〈v|u〉 =
∫

dx̄ dȳv∗ · u, (4.1)

where v∗ denotes the complex conjugate of v, and the integral is performed over the
computational domain, the unit disk Ω . The original first-order system of equations (i.e.
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Perturbing an axisymmetric magnetic equilibrium 9

FIGURE 1. ITER-like equilibria with constant rotational transform profiles. The pressure profile
(a) is plotted versus normalized poloidal flux sp = Ψ/|Ψaxis| where Ψaxis is the value on axis, and
Ψ is taken to be zero at the outermost surface. Note that the mesh on the magnetic surface is made
of lines of constant geometric angle φ and constant Boozer angle θ ; the end cap shows lines of
constant θ and Ψ . (a) Pressure profile and (b) outer magnetic surface shape.

the R̂, φ̂ and ẑ components of (3.22), coupled with (3.23)) can be written as Lu = 0, where

[Lu]i = aijuj + αijk∂juk, (4.2)

where uj denotes the jth component of u, ∂1 and ∂2 denote ∂/∂ x̄ and ∂/∂ ȳ, respectively,
and the tensors aij and αijk encode the coefficients of the system of equations. The adjoint
of L is denoted as L†, and is given by

[L†u]i = a∗
jiuj − ∂j(α

∗
kjiuk). (4.3)

With these definitions, our problem is transformed into solving the following eigenvalue
problem

L†Lu = λu, (4.4)

subject to the QAS boundary condition u1 = 0 on the boundary ∂Ω , for solutions with
eigenvalue λ→ 0. This system is generated by computer algebra, and not explicitly written
down, due to its complexity.

4.1. Examples
To demonstrate that the above numerical method works, in practice, and give a flavour
of possible solutions, we consider perturbations of model tokamak equilibria, based on
ITER. The ITER-like equilibria have their outer surface shape defined by the Solev’ev
equilibrium given in Pataki et al. (2013), but scaled up so that the magnetic axis has a
radial position of 6.68 m and a total toroidal flux over 2π of 15.7 Weber. The model
pressure profiles that are linear in the poloidal flux function Ψ , as shown in figure 1, and
three different constant rotational transform profiles are considered, ι0 = 0.202, 0.47 and
0.98. These values are chosen to avoid resonances for N = 2, 4 and 8; see § 3.2.

To independently evaluate the first-order QAS numerical solutions, the outer surface
shape can be generated and provided to the VMEC code (Hirshman & Whitson 1983) as
input for a fully nonlinear calculation, as was done in Plunk & Helander (2018), and the
result then passed to the BOOZ_XFORM code (Sanchez et al. 2000) to check the level of
QAS as predicted by the theory. To produce the surface shape, the perturbation amplitude
is controlled via the arbitrary small parameter ε in x ≈ x0 + εx1. Three such surfaces are
shown in figure 2.
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FIGURE 2. Outer magnetic surface shapes for ITER-like QAS equilibria with near-unity
rotational transform, ι0 = 0.98. Two viewing angles are shown, from the top and from the side,
with the side view showing half a toroidal turn; a sample of field line segments is plotted in
red. The mesh on the magnetic surface correspond to lines of constant Boozer angle, θ and ϕ.
(a) N = 2, (b) N = 4 and (c) N = 8.

FIGURE 3. Example of perturbed tokamak equilibrium (N = 2) with ITER-like shaping.
Unperturbed rotational transform is ι0 = 0.202 at all radial locations. (a) theoretical scaling
of ε2 is well satisfied for QAS error, defined in (4.5). (b) outer surface shape visualized for case
of strongest shaping (largest perturbation), with 1 toroidal field period plotted, and a sample of
field line segments.

The solutions are valid to first order in the expansion, and it can therefore be expected
that the error in QAS should scale as ε2, the confirmation of which is shown for one case
in figure 3, where the error is measured as follows:

Q =

(∑
m,n�=0

|B̂mn|2
)1/2

(∑
m,n

|B̂mn|2
)1/2 , (4.5)
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FIGURE 4. As the perturbation amplitude ε is increased, the magnetic surfaces ‘reconnect’,
invalidating the solution. Here is an example, with ι0 = 0.98 and N = 4, showing a single field
period. For comparison, the corresponding case in table 1, and plotted in figure 2(b) corresponds
to ε = 0.75. (a) ε = 0.5, (b) ε = 1.8 and (c) ε = 2.5.

where B̂mn is the Fourier coefficient of |B| calculated in Boozer angles by the
BOOZ_XFORM. It should be noted that not all of the cases reported here match so
closely with the theoretical scaling. Some have only a limited range at larger values of
ε where the quadratic scaling is observed, and exhibit a weaker ε1 scaling for smaller
values of ε, associated with non-QAS perturbations. Although it is expected, for instance,
that numerical error in the first-order solution can introduce ε1 scaling which must
dominate at sufficiently small ε, it does not appear that the linear scaling observed here
is related to numerical error in the three codes being used, of the type introduced by
finite resolution. It is therefore suspected that a more fundamental issue is at fault, for
instance (i) the presence of force balance singularities in the fully nonlinear calculation
performed by VMEC (which are formally absent from our first-order calculation of x1),
or (ii) the possibility that the problem we are solving (QAS on a single surface of
non-axisymmetric perturbations) is sometimes (or always) not well posed; this issue will
be investigated in future work. Nevertheless, the low observed QAS error in the solutions
obtained so far indicate that the numerical method developed here should be practically
useful.

One issue encountered with using the inverse representation of a magnetic equilibrium
is that the coordinate mapping is not generally invertible for the magnetic coordinates.
Invertibility breaks down when distinct points in the magnetic coordinate space, say
(ρ1, θ1, ϕ1) and (ρ2, θ2, ϕ2), yield the same point in physical space, e.g. x(ρ1, θ1, ϕ1) =
x(ρ2, θ2, ϕ2). The QAS solutions here, being based on known axisymmetric equilibria,
will not suffer from this problem if the perturbation amplitude is chosen to be sufficiently
small. However, the problem can be reliably encountered at large values of ε, as
demonstrated in figure 4. What is remarkable about this phenomenon, which is associated
with the perturbation overwhelming the zeroth-order mapping, is that the theoretical QAS
scaling tends to hold even as the singular point is approached, as demonstrated by figure 3.
Therefore, the VMEC solutions shown here are generally chosen to correspond to a value
of ε close to the singular point, but not so large as to create sharp features in the outer
magnetic surface that require more than 10 − 20 Fourier harmonics to properly resolve in
VMEC.

Using the procedure described above, the QAS solutions, although formally only
perturbative, can yield strongly shaped plasma equilibria with reasonable level of QAS,
and finite ‘external’ rotational transform, as measured by the difference between the total
rotational transform and that of the original axisymmetric equilibrium. This is shown by
table 1, where a total of nine cases are described, corresponding to three toroidal mode
numbers applied to the equilibria of three different values of constant rotational transform.
Each row of the table corresponds to a single value of ε (although a sequence of values was
generally calculated to investigate scaling). The fraction of external rotational transform
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ι 0 N f ext
ι E Q E10/E15 Q10/Q15 Loc

0.202 2 0.21 0.37 0.043 0.26/0.31 0.021/0.031 8.7 × 10−2

0.202 4 0.34 0.30 0.025 0.16/0.20 0.0074/0.011 4.7 × 10−3

0.202 8 0.16 0.32 0.038 0.25/0.31 0.024/0.036 3.4 × 10−4

0.43 2 0.29 0.31 0.0087 0.19/0.23 0.0030/0.0045 1.1 × 10−1

0.43 4 0.21 0.17 0.0029 0.12/0.14 0.0014/0.0021 1.3 × 10−3

0.43 8 0.13 0.14 0.0034 0.12/0.15 0.0026/0.0039 2.7 × 10−4

0.98 2 0.039 0.20 0.019 0.32/0.39 0.050/0.074 2.5 × 10−1

0.98 4 0.088 0.16 0.0047 0.17/0.21 0.0052/0.0079 4.2 × 10−2

0.98 8 0.078 0.11 0.0046 0.13/0.15 0.0059/0.0088 3.7 × 10−3

TABLE 1. Summary of results for ITER-like QAS equilibria.

generated by the perturbation is given in the third column

f ext
ι = ι − ι0

ι

∣∣∣∣
ρ=1

. (4.6)

Next is the root-mean-squared value of the modulus of the perturbed magnetic field,
divided by zeroth-order field strength, with the average performed over θ and ϕ, denoted E

E =
〈 |δB|
|B0|

〉
rms

=

⎛
⎜⎜⎜⎝ ε2

4π2

∫
dϕ dθ

∣∣∣∣∂x1

∂ϕ
+ ι0

∂x1

∂θ

∣∣∣∣
2

∣∣∣∣∂x0

∂ϕ
+ ι0

∂x0

∂θ

∣∣∣∣
2

⎞
⎟⎟⎟⎠

1/2

, (4.7)

where we note that the above expression assumes the first-order Jacobian to be zero (QAS).
This measure gives some sense of how strong the perturbation is, and may be used to
estimate the size of external current distributions needed to achieve the total field. The
next column provides the QAS error, Q, defined in (4.5). The chosen values of ε are
arbitrary, so it is useful to calculate normalized values to compare the various solutions.
For that reason we give inferred values of the magnetic perturbation measures E10 and E15,
that would be obtained for external rotational transforms of 10 % and 15 %, respectively.
Analogous quantities for QAS error are denoted Q10 and Q15. These are calculated for each
case by using the fact that δ ι − ι0 scales theoretically as ε2 (confirmed for all cases), as
does Q, whereas E scales as ε1. We stress that these values, being obtained from first-order
solutions, and not benefitting from any further optimization, should only be taken as an
indicator of what can be achieved by perturbing an axisymmetric equilibrium. However,
what seems clear is that, despite the fact that the perturbation of the field E scales as ε1

whereas the external transform scales as ε2, significant values of the latter can still be
achieved at modest values of the former, as for instance shown by the ι0 = 0.43,N = 4
case where the root-mean-square field strength fraction is not much larger that the external
rotational transform fraction.

An interesting qualitative feature of the QAS perturbations is the tendency to ‘localize’
to the inboard side (e.g. at lower values of the radial coordinate R), in the sense that the
amplitude of the perturbed magnetic field is larger there than on the outboard. This is
quantified in the final column of the table 1, labelled ‘Loc’, where we calculate the ratio of
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the root-mean-squared value of the perturbed magnetic field δB on the outboard (defined
such that θ = 0) to inboard (θ = π), where the average is done only over the toroidal angle
ϕ. This feature is more pronounced at larger N and lower aspect ratio, as was also observed
for the vacuum case (see the appendix of Plunk & Helander 2018; the explanation here may
be similar). We note that the high-N perturbations also only weakly penetrate radially into
the plasma, as the rotational transform ι can be observed to fall rapidly, from the edge, to
the unperturbed value ι0.

5. Conclusion

This work gives the first set of results showing the direct construction of QAS
perturbations of non-trivial axisymmetric plasma equilibria. It has been demonstrated that,
despite the perturbative nature of the calculation, relatively strongly shaped stellarator
equilibria may be obtained with significant external rotational transform (10 %–15 %), at a
similar level of average perturbed magnetic field. This finding agrees with a previous study
(Ku & Boozer 2009) using conventional numerical optimization. However, the method
of the present work allows for a more extensive exploration of the design space, as the
general QAS perturbation corresponds to a sum of modes with suitably non-resonant
toroidal mode numbers. This potentially opens new avenues for exploring the concept
of a stellarator–tokamak hybrid device.

One interesting initial finding is that relatively high-N perturbations (here as high as
N = 8) seem to efficiently produce a finite external rotational transform (e.g. 10 %), while
diminishing strongly in amplitude both radially and poloidally, and showing very good
satisfaction of QAS, much less than 1 % error. Such perturbations might be generated
by a more ‘modest’ distribution of coils localized to the inboard side of the plasma.
Additionally, with the perturbation localized to the high-field side of the device, it should
only significantly affect the radial drift of barely trapped particles, rendering the overall
neoclassical transport especially small.

One benefit of perturbative studies like the present is the ability to characterize the
size of the solution space of optimal stellarators. Similar to what was found by Plunk
& Helander (2018), we conclude that the freedom in QAS designs comes from (i) the
zeroth-order equilibrium, which is in this case includes plasma profiles in addition to
the two-dimensional shaping (e.g. triangularity, elongation, aspect ratio, etc.), and (ii) the
solution space of the QAS perturbation. For the latter, there are also some differences: first,
it appears that, for fixed toroidal mode number N, the solution is unique, whereas Plunk
& Helander (2018) found that solutions came in pairs – the latter situation may stem from
the symmetry of the ι0 = 0 scenario; we note that this limit cannot be approached within
the current framework, as the resonant values of ι become dense near ι = 0. Second, the
choice of toroidal mode number N is constrained, at least formally, by the profile ι0(ρ),
in the sense that resonances (ι0 = N/m) must be avoided to guarantee smooth solutions
at first order, with further resonances might be considered at higher order. Therefore, the
realizable solution space for QAS perturbations of a given axisymmetric equilibrium may
be limited to a small number of toroidal mode numbers. Such a small space might be
rapidly explored to identify QAS equilibria that satisfy additional requirements.

The success demonstrated here in directly constructing QAS solutions with an inverse
method, using Boozer coordinates, gives some hope that the fully nonlinear problem may
be formulated and solved in a similar fashion, i.e. with a code similar to VMEC that would
obtain quasi-symmetric stellarator equilibria directly, and without approximations. To
accomplish this, it is necessary to identify the appropriate amount of boundary information
to yield a well-posed problem; the findings of this paper should provide a useful guide in
this endeavour.
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Appendix A. Magnetic geometry

From the coordinates (ρ, θ, ϕ) we define local basis vectors (∇ρ,∇θ,∇ϕ) and (e1 =
∂x/∂ρ, e2 = ∂x/∂θ, e3 = ∂x/∂ϕ). The metric components are defined in the usual way

gij ≡ ei · ej, (A 1)

and the Jacobian for these coordinates is

J = 1
∇ρ · (∇θ × ∇ϕ) = e1 · (e2 × e3). (A 2)

Additionally, assigning (u1, u2, u3) = (ρ, θ, ϕ), we see that ei · ∇uj = δij, and the
following identities are easily verified

e1 = J(∇u2 × ∇u3), e2 = J(∇u3 × ∇u1), e3 = J(∇u1 × ∇u2), (A 3)

∇u1 = e2 × e3

J
, ∇u2 = e3 × e1

J
, ∇u3 = e1 × e2

J
. (A 4)

Appendix B. Useful forms of J and B

Taking B2 = Bcov · Bcon gives

J̄B̄2 = Ḡ + ι Ī, (B 1)

where we recall the definition B̄ = B/(2ψb). Taking B2 = Bcon · Bcon gives

J̄2B̄2 = |e3 + ιe2|2 = g33 + 2 ιg23 + ι2g22. (B 2)

Using (B 1) and (B 2) we can express the magnetic field strength ‘locally’ (in terms of
only surface metrics)

(Ḡ + ι Ī)2

B̄2
= g33 + 2 ιg23 + ι2g22. (B 3)

Using (B 1) and (B 2) we can also express the Jacobian locally

J̄(Ḡ + ι Ī) = g33 + 2 ιg23 + ι2g22. (B 4)
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Appendix C. The MHD constraint

One can write the constraint equation (3.11), in different ways. Taking the e1, e2, and e3
components of this equation gives

g13 + ιg12 = K̄J̄, (C 1)

g23 + ιg22 = ĪJ̄, (C 2)

g33 + ιg23 = ḠJ̄. (C 3)

Note that (C 2) and (C 3) only involve surface metrics, and may be combined,
eliminating the Jacobian, to obtain the local MHD constraint

Ī(g33 + ιg23) = Ḡ(g23 + ιg22). (C 4)

Combining the ei components we can derive three metric constraints not explicitly
involving the Jacobian J, the one above and the following two

Ī(g13 + ιg12) = K̄(g23 + ιg22), (C 5)

K̄(g33 + ιg23) = Ḡ(g13 + ιg12). (C 6)

Note that this system is incomplete for a vacuum field because then K = 0 and I = 0
and (C 5) provides no information. It can then be completed by including (C 3).

Appendix D. Zeroth-order axisymmetric equilibrium by direct formulation

Here we consider magnetic coordinates ψ, θ, ϕ as functions of cylindrical coordinates
R,Z and φ. The condition of axisymmetry can be stated as the condition that the
R̂(φ), φ̂(φ) and ẑ components of B are independent of φ. This implies that the magnetic
surfaces must be themselves axisymmetric, so φ̂ · ∇ψ = 0, i.e. ∂φψ = 0. Then from
∂φ(φ̂ · Bcov) = 0 we obtain

G
∂2ϕ

∂φ2
+ I

∂2θ

∂φ2
= 0. (D 1)

Integrating, using ϕ = φ + ν, and periodicity in φ we obtain

G
∂ν

∂φ
+ I

∂θ

∂φ
= 0. (D 2)

Now, taking the ∂φ(R̂ · Bcon) = 0, we likewise obtain

∂θ

∂φ
− ι

∂ν

∂φ
= 0. (D 3)

Equations (D 2) and (D 3) are linearly independent (i.e. G + ιI �= 0 by (B 1)), so we have

∂θ

∂φ
= ∂ν

∂φ
= 0. (D 4)

For obtaining the Grad–Shafranov equation, it is convenient to use a mixed form of B,
using the toroidal part of the covariant field and the non-toroidal part of the contravariant
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field

Bmix = G∇φ + ∇φ × ∇Ψ, (D 5)

whereΨ (ψ) is the poloidal magnetic flux, and dΨ/dψ = ι. Using this form, force balance
and Ampere’s law imply μ0∇Ψ dp/dΨ = (∇ × Bmix)× Bmix, which immediately yields
the Grad–Shafranov equation,

μ0
dp
dΨ

= − 1
R2

[
G

dG
dΨ

+ Δ∗Ψ
]

(D 6)

where

Δ∗Ψ = R
∂

∂R

(
1
R
∂Ψ

∂R

)
+ ∂2Ψ

∂Z2
. (D 7)

Although this is a complete specification of the axisymmetric field, we require the full
set of coordinates to solve the perturbative problem, so we must develop the more general
representations, i.e. Bcov and Bcon. The functions θ(R,Z) and ν(R,Z) (and I and ι as
functions of Ψ ) can be obtained from additional equations derived from components of
the MHD constraint, Bcon = Bcov

G(ψ)∇ϕ + I(ψ)∇θ + K(ψ, θ, ϕ)∇ψ = ∇ψ × ∇θ − ι∇ψ × ∇ϕ. (D 8)

The φ̂ component gives
ιG
R

= {θ − ιν, Ψ } , (D 9)

where {A,B} = ∂RA∂ZB − ∂RB∂ZA, and the R̂ and Ẑ components can be combined to
eliminate K, yielding

1
R

|∇Ψ |2 = {Iθ + Gν, Ψ } . (D 10)

Then ψ can be obtained from
dψ
dΨ

= 1
ι
. (D 11)

Finally, K can be obtained from the ∇ψ component of (D 8) (i.e. the condition that Bcov
has no component pointing out of the magnetic surface),

K(R,Z) = 1
|∇ψ |2 (G∇ψ · ∇ν + I∇ψ · ∇θ). (D 12)

D.1. Solving equations (D 9) and (D 10)
Now we would like to solve these equations for the unknowns ν and θ and K. The Boozer
angle θ can be expressed as

θ = ϑ + λ(R,Z), (D 13)

in terms of the geometric poloidal angle ϑ , defined in terms of the quadrant-specific arctan
function as ϑ = arctan(R − Ra, z − za), with Ra and za the coordinates of the magnetic
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axis. Defining the potentials P = Gν + Iλ and A = λ− ιν, we can obtain from (D 9) the
equation

∂A
∂ϑ

= −1 + ιG
RJ (ϑ), (D 14)

∂P
∂ϑ

= −I + |∇Ψ |2
RJ (ϑ), (D 15)

where J (ϑ) = −φ̂ · (∇ϑ × ∇Ψ ) = {ϑ,Ψ }. Note that, formally, we are changing
coordinates to ϑ and Ψ . The functions ι and I may be found as solubility constraints
of these two equations

ι = 2π

(∫ 2π

0
dϑ

G
RJ (ϑ)

)−1

, (D 16)

I = 1
2π

∫ 2π

0
dϑ

|∇Ψ |2
RJ (ϑ), (D 17)

and the solutions for A and P given as

A =
∫ ϑ

0
dϑ ′

(
ιG

RJ (ϑ ′)
− 1

)
, (D 18)

P =
∫ ϑ

0
dϑ ′

( |∇Ψ |2
RJ (ϑ ′)

− I
)
, (D 19)

where note that R and |∇Ψ |2 are also evaluated at ϑ ′, and the choice P = A = 0 at ϑ = 0
has been made. From these solutions, the desired potentials λ and ν may be obtained as

λ = ιP + GA
ιI + G

, (D 20)

ν = P − IA
ιI + G

, (D 21)

where we again note that ιI + G �= 0 by (B 1). Finally, to obtain ι, I and G as functions of
ρ, we solve (D 11), and the functions R(ρ, θ) and z(ρ, θ), are obtained by inverting θ(R, z)
and Ψ (R, z).

Restoring subscripts and normalizations, we are thus furnished with the functions
R0(ρ, θ), z0(ρ, θ), ν0(ρ, θ), K̄0(ρ, θ), ι0(ρ), Ī(ρ) and Ḡ(ρ) to substitute into the
expressions provided in § 3.1, and proceed to the calculations, at next order, in § 3.2.
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