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WEIERSTRASS ELLIPTIC DIFFERENCE EQUATIONS

RENFREY B. POTTS

The Weierstrass elliptic function satisfies a nonlinear first

order and a nonlinear second order differential equation. It

is shown that these differential equations can be discretized

in such a way that the solutions of the resulting difference

equations exactly coincide with the corresponding values of

the elliptic function.

1. Introduction.

In a sequence of recent papers C2]-[5], it has been shown that, in

choosing a difference equation (kE) approximation to a differential

equation (DE) , theoretical advantage can be obtained by exploiting a

wider range of approximations than is customary.

For the simple linear second order DE

(1.1) w"(z) + w(z) = 0

i t was shown [3] that i t is 'best' to use the expression

(1.2) w"(z) ~ (w ^ - 2w + w J/I4sin2(h/2)1
n+1 n n-1

rather than the usual

(1.3) w"(z) ~ 2
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for the approximation to the derivative.

For the nonlinear Verhulst DE

(1.4) w'(z) = w(z) - w(z)

the approximation

(1.5) w'(z) Z k

2
is the best to use [4], and with w(z) replaced by W W _ .

For the nonlinear Duffing equation [2 ],

(1.6) w"(z) + aw(z) + bw(z) = 0 3

3 2
the cubic term w(z) is best replaced by %2>U (w - + w -).

It is the purpose of the present paper to extend this approach to

the important DE's satisfied by the Weierstrass elliptic function

P(z) [?] , namely the first order nonlinear DE of the second degree

(1.7) p'(z)2 = 4p(z)S - g2p(z) - g3

and the consequent second order nonlinear DE of the first degree

(1.8) P"(z) = ep(z)2 -\g2-

-2
The function p(z) is an even function of z, p(z) - z is analytic at

z = 0 and equal to 0 at z = 0 , and the constants g0 and g are

u O

the so-called invariants.

Sinple hE approximations to (1.7) and (1.8) are

( 1 - 9 ) (Pn+l ~ Pn)2/h2 = 4Pn

and

which are correct to 0(h). It will be shown that modifications of these

can be made so that they are the 'best' AE's possible in the sense that

their solutions coincide exactly with the values of p (z) . More precisely,

for the points

(1.11) 3 = a+ nh

where a is an initial value and h a constant stepsize (not necessarily

'small'), then the solution p of the AS's will have the property that
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(1.12) p = p(a + nh).

2. First Order Difference Equation.

The best kE approximation to the first order DE (1.7) is

obtained by using the addition formula for p(z) to derive a difference

equation for p as defined by (1.12).

If

(2.1) p(h) = k

then the addition formula [/] for p(z) can be written

(2.2) P = i [ p i
^n+1 4 p - k

Solving for P'(z) , namely

(2.3) p'(z) = p'(h) ± 2(pn- k)

and squaring gives

(2.4) -4(pn - k)pn+1 + 4kpn + 8k2 - g2 = ±4p'(h)(pn+1 +pn+ k ) h

where use has been made of (1.7). Squaring and using (1.7) again yields

the required best first order nonlinear hE of the second degree

(2.5) + Ukpn+\ g2)
2 + gs(k+pnn = 0 .

To recognize this bE as an approximation for small h to the DE (1.1)

requires rearranging (2.5) to the form

( 2 - 6 ) " k

which i s ju s t (2.5) with k and p - interchanged.

For small h ,

(2.7) k = p(h) = h~2 + 0(h2)

so that

(2.8) (pn+1 - pn)k
h =p'(z) + 0(h)
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and to 0(h) , (2.6) becomes

2 3
p' (z) = 4p(z) - g2p(z) - g3

as required.

It is interesting to note that in the difference approximation to

—1/2
the first derivative, the denominator used is not h but Lp(h)l

which is 0(h) . The replacements

(2-9) P(s)3 + W

(2.10) p(z)

are not unexpected, being similar to the results previously obtained with

the Duffing equation [2].

While (2.6) is valid for any h , the simpler result

(2.11) <Pn+1-p//h
2 = 4VnPn+1 j(Pn + Pn+1)-92 hn+

2
is an approximation to 0(h ) to the DE (1.7), while

4
is an approximation to 0(h ).

3. Second Order Difference Equation.

The best AS approximation to the second order DE (1.8) can be

derived by differencing (2.6), in which, for convenience, n is replaced

by n - 1. From the simple identities

(3.1) /

(3.2)

(3-3)

(3'4)
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follows the required best second order AS1:

(3-5) -k'^Pn

For small h , this is seen to be an approximation to the DE (1.8)

since (2.7) gives

(3.6) (pn+J - 2pn + Vn_2) k= p"(z) + 0(h)

and

(3.7) 2pn(pn+1+pn+pn_1) = 6p'(z)2 + 0(h) .

While (3.5) i s valid for any h , the simpler AS1

(3.8) r p n + J - 2 p n + P n _ 2 ; A 2 = *>„&„+!+?„+?„_!> -J92

p
is an approximation to 0(h ) to the DE (1.8), while

o j

( 3-9 ) -h*{**n

is an approximation to 0(h ) .

4. Numerical Results.

Although the main purpose of this paper is not the numerical

analysis of nonlinear DE's it is interesting to illustrate the above

theory with some numerical results.

The example taken is the second order DE (1.8) and its

approximating AE's (1.10), (3.8), (3.9) which can be written respectively

as

n+1
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With chosen values of

g2 = 8.124218, g? = 4.443052, h = 0.05

and exact values for p(0.50) and p(0.55) , the results after 4 and 9

iterations of the AS's gave the following:

z exact (4.1) (4.2) (4.3)

0.50 '4.1124

0.55 3.4449

0.75 2.0684 2.051 2.074 2.0684

1.00 1.6451 1.566 1.671 1.6451

The AE" s prove to be a simple and convenient method for generating values

of p(z) .
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