WEIERSTRASS ELLIPTIC DIFFERENCE EQUATIONS

Renfrey B. Potts

The Weierstrass elliptic function satisfies a nonlinear first order and a nonlinear second order differential equation. It is shown that these differential equations can be discretized in such a way that the solutions of the resulting difference equations exactly coincide with the corresponding values of the elliptic function.

1. Introduction.

In a sequence of recent papers [2]-[5], it has been shown that, in choosing a difference equation (ΔE) approximation to a differential equation ($D E$) , theoretical advantage can be obtained by exploiting a wider range of approximations than is customary.

For the simple linear second order $D E$
$w^{\prime \prime}(z)+w(z)=0$
it was shown [3] that it is 'best' to use the expression

$$
\begin{equation*}
w^{\prime \prime}(z) \approx\left(w_{n+1}-2 w_{n}+w_{n-1}\right) /\left[4 \sin ^{2}(h / 2)\right] \tag{1.2}
\end{equation*}
$$

rather than the usual

$$
\begin{equation*}
w^{\prime \prime}(z) \approx\left(w_{n+1}-2 w_{n}+w_{n-1}\right) / h^{2} \tag{1.3}
\end{equation*}
$$

Received 19 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 $\$ \mathrm{~A} 2.00+0.00$.
for the approximation to the derivative.
For the nonlinear Verhulst $D E$

$$
\begin{equation*}
w^{\prime}(z)=w(z)-w(z)^{2} \tag{1.4}
\end{equation*}
$$

the approximation

$$
\begin{equation*}
w^{\prime}(z) \approx\left(w_{n+1}-w_{n}\right) /\left(e^{h}-1\right) \tag{1.5}
\end{equation*}
$$

is the best to use [4], and with $w(z)^{2}$ replaced by $w_{n} w_{n+1}$.
For the nonlinear Duffing equation [2],

$$
\begin{equation*}
w^{\prime \prime}(z)+a w(z)+b w(z)^{3}=0, \tag{1.6}
\end{equation*}
$$

the cubic term $w(z)^{3}$ is best replaced by $\frac{1}{2} b w_{n}^{2}\left(w_{n+1}+w_{n-1}\right)$.
It is the purpose of the present paper to extend this approach to the important $D E^{\prime}$ s satisfied by the Weierstrass elliptic function $P(z) \quad[1]$, namely the first order nonlinear $D E$ of the second degree

$$
\begin{equation*}
p^{\prime}(z)^{2}=4 p(z)^{3}-g_{2} p(z)-g_{3} \tag{1.7}
\end{equation*}
$$

and the consequent second order nonlinear $D E$ of the first degree

$$
\begin{equation*}
p^{\prime \prime}(z)=6 p(z)^{2}-\frac{1}{2} g_{2} \tag{1.8}
\end{equation*}
$$

The function $p(z)$ is an even function of $z, p(z)-z^{-2}$ is analytic at $z=0$ and equal to 0 at $z=0$, and the constants g_{2} and g_{3} are the so-called invariants.

Sinple ΔE approximations to (1.7) and (1.8) are

$$
\begin{equation*}
\left(p_{n+1}-p_{n}\right)^{2} / h^{2}=4 p_{n}^{3}-g_{2} p_{n}-g_{3} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{n+1}-2 p_{n}+p_{n-1}\right) / h^{2}=6 p_{n}^{2}-\frac{1}{2} g_{2} \tag{1.10}
\end{equation*}
$$

which are correct to $O(h)$. It will be shown that modifications of these can be made so that they are the 'best' $\Delta E^{\prime} \mathrm{s}$ possible in the sense that their solutions coincide exactly with the values of $p(z)$. More precisely, for the points

$$
\begin{equation*}
z=a+n h \tag{1.11}
\end{equation*}
$$

where a is an initial value and h a constant stepsize (not necessarily 'small'), then the solution p_{n} of the ΔE 's will have the property that

$$
\begin{equation*}
p_{n}=p(a+n h) . \tag{1.12}
\end{equation*}
$$

2. First Order Difference Equation.

The best ΔE approximation to the first order $D E$ (1.7) is obtained by using the addition formula for $p(z)$ to derive a difference equation for p_{n} as defined by (1.12).

If
(2.1)

$$
p(h)=k
$$

then the addition formula [1] for $p(z)$ can be written

$$
\begin{equation*}
p_{n+1}=\frac{1}{4}\left[\frac{p^{\prime}(z)-p^{\prime}(h)}{p_{n}-k}\right]^{2}-p_{n}-k \tag{2,2}
\end{equation*}
$$

Solving for $p^{\prime}(z)$, namely

$$
\begin{equation*}
p^{\prime}(z)=p^{\prime}(h) \pm 2\left(p_{n}-k\right)\left(p_{n+1}+p_{n}+k\right)^{\frac{1}{2}} \tag{2.3}
\end{equation*}
$$

and squaring gives

$$
(2.4) \quad-4\left(p_{n}-k\right) p_{n+1}+4 k p_{n}+8 k^{2}-g_{2}= \pm 4 p^{\prime}(h)\left(p_{n+1}+p_{n}+k\right)^{\frac{3}{2}}
$$

where use has been made of (1.7). Squaring and using (1.7) again yields the required best first order nonlinear ΔE of the second degree

$$
\begin{gather*}
\left(p_{n}-k\right)^{2}\left(p_{n+1}\right)^{2}-\left[4 k p_{n} \frac{1}{2}\left(k+p_{n}\right)-g_{2} \frac{1}{2}\left(k+p_{n}\right)-g_{3}\right] p_{n+1} \\
+\left[\left(k p_{n}+\frac{1}{4} g_{2}\right)^{2}+g_{3}\left(k+p_{n}\right)\right]=0 \tag{2.5}
\end{gather*}
$$

To recognize this ΔE as an approximation for small h to the $D E$ requires rearranging (2.5) to the form

$$
\begin{align*}
\left(p_{n+1}-p_{n}\right)^{2} k & =4 p_{n} p_{n+1} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{2} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{3} \\
& -k^{-1}\left[\left(p_{n} p_{n+1}+\frac{1}{4} g_{2}\right)^{2}+g_{3}\left(p_{n}+p_{n+1}\right)\right] \tag{2.6}
\end{align*}
$$

which is just (2.5) with k and p_{n+1} interchanged. For small h,

$$
\begin{equation*}
k=p(h)=h^{-2}+O\left(h^{2}\right) \tag{2.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(p_{n+1}-p_{n}\right) k^{\frac{3}{2}}=p^{\prime}(z)+O(h) \tag{2.8}
\end{equation*}
$$

and to $O(h),(2.6)$ becomes

$$
p^{\prime}(z)^{2}=4 p(z)^{3}-g_{2} p(z)-g_{3}
$$

as required.
It is interesting to note that in the difference approximation to the first derivative, the denominator used is not h but $[p(h)]^{-1 / 2}$ which is $O(h)$. The replacements

$$
\begin{gather*}
p(z)^{3} \rightarrow p_{n} p_{n+1} \frac{1}{2}\left(p_{n}+p_{n+1}\right) \tag{2.9}\\
p(z) \rightarrow \frac{1}{2}\left(p_{n}+p_{n+1}\right) \tag{2.10}
\end{gather*}
$$

are not unexpected, being similar to the results previously obtained with the Duffing equation [2].

While (2.6) is valid for any h, the simpler result

$$
\begin{equation*}
\left(p_{n+1}-p_{n}\right)^{2} / h^{2}=4 p_{n} p_{n+1} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{2} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{3} \tag{2.11}
\end{equation*}
$$

is an approximation to $O\left(h^{2}\right)$ to the $D E$ (1.7), while

$$
\left(p_{n+1}-p_{n}\right)^{2} / h^{2}=4 p_{n} p_{n+1} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{2} \frac{1}{2}\left(p_{n}+p_{n+1}\right)-g_{3}
$$

$$
\begin{equation*}
-h^{2}\left[\left(p_{n} p_{n+1}+\frac{1}{4} g_{2}\right)^{2}+g_{3}\left(p_{n}+p_{n+1}\right)\right] \tag{2.12}
\end{equation*}
$$

is an approximation to $O\left(h^{4}\right)$.

3. Second Order Difference Equation.

The best ΔE approximation to the second order $D E$ (1.8) can be derived by differencing (2.6), in which, for convenience, n is replaced by $n-1$. From the simple identities

$$
\begin{equation*}
\Delta\left(p_{n}-p_{n-1}\right)^{2}=\left(p_{n+1}-p_{n-1}\right)\left(p_{n+1}-2 p_{n}+p_{n-1}\right) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left[p_{n-1} p_{n}\left(p_{n-1}+p_{n}\right)\right]=\left(p_{n+1}-p_{n-1}\right) p_{n}\left(p_{n+1}+p_{n}+p_{n-1}\right) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left(p_{n-1}+p_{n}\right)=p_{n+1}-p_{n-1} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left(p_{n-1} p_{n}+\frac{1}{4} g_{2}\right)^{2}=\left(p_{n+1}-p_{n-1}\right)\left[p_{n}^{2}\left(p_{n+1}+p_{n-1}\right)+\frac{1}{2} g_{2} p_{n}\right] \tag{3.4}
\end{equation*}
$$

follows the required best second order ΔE :

$$
\begin{align*}
\left(p_{n+1}-2 p_{n}\right. & \left.+p_{n-1}\right) k=2 p_{n}\left(p_{n+1}+p_{n}+p_{n-1}\right)-\frac{1}{2} g_{2} \\
& -k^{-1}\left[p_{n}^{2}\left(p_{n+1}+p_{n-1}\right)+\frac{1}{2} g_{2} p_{n}+g_{3}\right] \tag{3.5}
\end{align*}
$$

For small h, this is seen to be an approximation to the $D E$ (1.8) since (2.7) gives

$$
\begin{equation*}
\left(p_{n+1}-2 p_{n}+p_{n-1}\right) k=p^{\prime \prime}(z)+O(h) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
2 p_{n}\left(p_{n+1}+p_{n}+p_{n-1}\right)=6 p^{\prime}(z)^{2}+O(h) \tag{3.7}
\end{equation*}
$$

While (3.5) is valid for any h, the simpler ΔE

$$
\begin{equation*}
\left(p_{n+1}-2 p_{n}+p_{n-1}\right) / h^{2}=2 p_{n}\left(p_{n+1}+p_{n}+p_{n-1}\right)-\frac{1}{2} g_{2} \tag{3.8}
\end{equation*}
$$

is an approximation to $O\left(h^{2}\right)$ to the $D E$ (1.8), while

$$
\begin{align*}
\left(p_{n+1}-2 p_{n}+p_{n-1}\right) / h^{2}= & 2 p_{n}\left(p_{n+1}+p_{n}+p_{n-1}\right)-\frac{1}{2} g_{2} \\
& -h^{2}\left[p_{n}^{2}\left(p_{n+1}+p_{n-1}\right)+\frac{1}{2} g_{2} p_{n}+g_{3}\right] \tag{3.9}
\end{align*}
$$

is an approximation to $O\left(h^{4}\right)$.

4. Numerical Results.

Although the main purpose of this paper is not the numerical analysis of nonlinear $D E$'s it is interesting to illustrate the above theory with some numerical results.

The example taken is the second order $D E$ (1.8) and its approximating $\Delta E ' s(1.10),(3.8),(3.9)$ which can be written respectively as

$$
\begin{gather*}
p_{n+1}=2 p_{n}-p_{n-1}+h^{2}\left(6 p_{n}^{2}-\frac{1}{2} g_{2}\right) \tag{4.1}\\
p_{n+1}=\left[2 p_{n}-p_{n-1}+h^{2}\left(2 p_{n}^{2}+2 p_{n} p_{n-1}-\frac{1}{2} g_{2}\right)\right] /\left(1-2 h^{2} p_{n}\right) \\
p_{n+1}=\left[2 p_{n}-p_{n-1}+h^{2}\left(2 p_{n}^{2}+2 p_{n} p_{n-1}-\frac{1}{2} g_{2}\right)\right. \\
\left.-h^{4}\left(p_{n}^{2} p_{n-1}+\frac{1}{2} g_{2} p_{n}+g_{3}\right)\right] /\left(1-h^{2} p_{n}\right)^{2} \tag{4.3}
\end{gather*}
$$

With chosen values of

$$
g_{2}=8.124218, g_{3}=4.443052, h=0.05
$$

and exact values for $p(0.50)$ and $p(0.55)$, the results after 4 and 9 iterations of the ΔE 's gave the following:

z	exact	(4.1)	(4.2)	(4.3)
0.50	4.1124			
0.55	3.4449			
0.75	2.0684	2.051	2.074	2.0684
1.00	1.6451	1.566	1.671	1.6451

The ΔE 's prove to be a simple and convenient method for generating values of $p(z)$.

References

[1] A. Abramowitz and I. A. Stegun, (eds.), Hondbook of mathematical functions, U.S. National Bureau of Standards, Washington D.C. (1964).
[2] R. B. Potts, "Best difference equation approximation to Duffing's equation", J. Austral. Math. Soc. Ser. B 23 (1982), 349-356.
[3] R. B. Potts, "Differential and difference equations", Am. Math. Mon. 89 (1982), 402-407.
[4] R. B. Potts, "Nonlinear difference equation",Nonlinear Anal. 6 (1982), 659-665.
[5] R. B. Potts, "Van der Pol difference equation", Nonlinear Anal. 7 (1983), 801-812.

Applied Mathematics Department
The University of Adelaide
South Australia.

