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CRITICAL BRANCHING AS A PURE DEATH PROCESS COMING DOWN
FROM INFINITY
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Abstract

We consider the critical Galton–Watson process with overlapping generations stem-
ming from a single founder. Assuming that both the variance of the offspring number
and the average generation length are finite, we establish the convergence of the finite-
dimensional distributions, conditioned on non-extinction at a remote time of observation.
The limiting process is identified as a pure death process coming down from infinity.
This result brings a new perspective on Vatutin’s dichotomy, claiming that in the criti-
cal regime of age-dependent reproduction, an extant population either contains a large
number of short-living individuals or consists of few long-living individuals.
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1. Introduction

Consider a self-replicating system evolving in the discrete-time setting according to the
following rules:

Rule 1: The system is founded by a single individual, the founder, born at time 0.

Rule 2: The founder dies at a random age L and gives a random number N of births at random
ages τj satisfying 1 ≤ τ1 ≤ . . . ≤ τN ≤ L.

Rule 3: Each new individual lives independently from others according to the same life law
as the founder.

An individual that was born at time t1 and dies at time t2 is considered to be alive during the
time interval [t1, t2 − 1]. Letting Z(t) stand for the number of individuals alive at time t, we
study the random dynamics of the sequence

Z(0) = 1, Z(1), Z(2), . . . ,

which is a natural extension of the well-known Galton–Watson process, or GW process for
short; see [13]. The process Z(·) is the discrete-time version of what is usually called the
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Crump–Mode–Jagers process or the general branching process; see [5]. To emphasise the
discrete-time setting, we call it a GW process with overlapping generations, or GWO process
for short.

Put b := 1
2 var(N). This paper deals with the GWO processes satisfying

E(N) = 1, 0 < b < ∞. (1)

The condition E(N) = 1 says that the reproduction regime is critical, implying E(Z(t)) ≡ 1 and
making extinction inevitable, provided b > 0. According to [1, Chapter I.9], given (1), the
survival probability

Q(t) := P(Z(t) > 0)

of a GW process satisfies the asymptotic formula tQ(t) → b−1 as t → ∞ (this was first proven
in [6] under a third moment assumption). A direct extension of this classical result for the
GWO processes,

tQ(ta) → b−1, t → ∞, a := E(τ1 + . . . + τN),

was obtained in [3, 4] under the conditions (1), a < ∞,

t2P(L > t) → 0, t → ∞, (2)

plus an additional condition. (Notice that by our definition, a ≥ 1, and a = 1 if and only if
L ≡ 1, that is, when the GWO process in question is a GW process.) Treating a as the mean
generation length (see [5, 8]), we may conclude that the asymptotic behaviour of the critical
GWO process with short-living individuals (see the condition (2)) is similar to that of the
critical GW process, provided time is counted generation-wise.

New asymptotic patterns for the critical GWO processes are found under the assumption

t2P(L > t) → d, 0 ≤ d < ∞, t → ∞, (3)

which, compared to (2), allows the existence of long-living individuals given d > 0. The con-
dition (3) was first introduced in the pioneering paper [12] dealing with the Bellman–Harris
processes. In the current discrete-time setting, the Bellman–Harris process is a GWO pro-
cess subject to two restrictions: (a) P(τ1 = . . . = τN = L) = 1, so that all births occur at the
moment of an individual’s death, and (b) the random variables L and N are independent. For
the Bellman–Harris process, the conditions (1) and (3) imply a = E(L), a < ∞, and according
to [12, Theorem 3], we get

tQ(t) → h, t → ∞, h := a + √
a2 + 4bd

2b
. (4)

As was shown in [11, Corollary B] (see also [7, Lemma 3.2] for an adaptation to the discrete-
time setting), the relation (4) holds even for the GWO processes satisfying the conditions (1),
(3), and a < ∞.

The main result of this paper, Theorem 1 of Section 2, considers a critical GWO process
under the above-mentioned set of assumptions (1), (3), a < ∞, and establishes the convergence
of the finite-dimensional distributions conditioned on survival at a remote time of observation.
A remarkable feature of this result is that its limit process is fully described by a single parame-
ter c := 4bda−2, regardless of complicated mutual dependencies between the random variables
τj, N, L.
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Critical branching as a pure death process 609

Our proof of Theorem 1, requiring an intricate asymptotic analysis of multi-dimensional
probability generating functions, is split into two sections for the sake of readability. Section 3
presents a new proof of (4) inspired by the proof of [12]. The crucial aspect of this approach,
compared to the proof of [7, Lemma 3.2], is that certain essential steps do not rely on the
monotonicity of the function Q(t). In Section 4, the technique of Section 3 is further developed
to finish the proof of Theorem 1.

We conclude this section by mentioning the illuminating family of GWO processes called
the Sevastyanov processes [9]. The Sevastyanov process is a generalised version of the
Bellman–Harris process, with possibly dependent L and N. In the critical case, the mean
generation length of the Sevastyanov process, a = E(LN), can be represented as

a = cov(L, N) + E(L).

Thus, if L and N are positively correlated, the average generation length a exceeds the average
life length E(L).

Turning to a specific example of the Sevastyanov process, take

P(L = t) = p1t−3(ln ln t)−1, P(N = 0|L = t) = 1 − p2, P(N = nt|L = t) = p2, t ≥ 2,

where nt := 	t(ln t)−1
 and (p1, p2) are such that

∞∑
t=2

P(L = t) = p1

∞∑
t=2

t−3(ln ln t)−1 = 1, E(N) = p1p2

∞∑
t=2

ntt
−3(ln ln t)−1 = 1.

In this case, for some positive constant c1,

E
(
N2)= p1p2

∞∑
t=1

n2
t t−3(ln ln t)−1 < c1

∫ ∞

2

d(ln t)

(ln t)2 ln ln t
< ∞,

implying that the condition (1) is satisfied. Clearly, the condition (3) holds with d = 0. At the
same time,

a = E(NL) = p1p2

∞∑
t=1

ntt
−2(ln ln t)−1 > c2

∫ ∞

2

d(ln t)

(ln t)(ln ln t)
= ∞,

where c2 is a positive constant. This example demonstrates that for the GWO process, unlike
for the Bellman–Harris process, the conditions (1) and (3) do not automatically imply the
condition a < ∞.

2. The main result

Theorem 1. For a GWO process satisfying (1), (3) and a < ∞, there holds a weak convergence
of the finite-dimensional distributions

(Z(ty), 0 < y < ∞|Z(t) > 0)
fdd−→ (η(y), 0 < y < ∞), t → ∞.

The limiting process is a continuous-time pure death process (η(y), 0 ≤ y < ∞), whose
evolution law is determined by a single compound parameter c = 4bda−2, as specified next.
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610 S. SAGITOV

The finite-dimensional distributions of the limiting process η(·) are given below in terms of

the k-dimensional probability generating functions E
(

zη(y1)
1 · · · zη(yk)

k

)
, k ≥ 1, assuming

0 = y0 < y1 < . . . < yj < 1 ≤ yj+1 < . . . < yk < yk+1 = ∞,

0 ≤ j ≤ k, 0 ≤ z1, . . . , zk < 1. (5)

Here the index j highlights the pivotal value 1 corresponding to the time of observation t of the
underlying GWO process.

As will be shown in Section 4.2, if j = 0, then

E
(

zη(y1)
1 · · · zη(yk)

k

)
= 1 − 1 +

√
1 +∑k

i=1 z1 · · · zi−1(1 − zi)�i(
1 + √

1 + c
)
y1

, �i := c(y1/yi)
2,

and if j ≥ 1,

E
(

zη(y1)
1 · · · zη(yk)

k

)

=
√

1 +∑j
i=1 z1 · · · zi−1(1 − zi)�i + cz1 · · · zjy2

1 −
√

1 +∑k
i=1 z1 · · · zi−1(1 − zi)�i(

1 + √
1 + c

)
y1

.

In particular, for k = 1, we have

E
(
zη(y))=

√
1 + c(1 − z) + czy2 − √

1 + c(1 − z)(
1 + √

1 + c
)
y

, 0 < y < 1,

E
(
zη(y))= 1 − 1 + √

1 + c(1 − z)(
1 + √

1 + c
)
y

, y ≥ 1.

It follows that P(η(y) ≥ 0) = 1 for y > 0, and moreover, putting here first z = 1 and then z = 0
yields

P(η(y) < ∞) =
√

1 + cy2 − 1(
1 + √

1 + c
)
y

· 1{0<y<1} +
(

1 − 2(
1 + √

1 + c
)
y

)
· 1{y≥1},

P(η(y) = 0) = y − 1

y
· 1{y≥1},

implying that P(η(y) = ∞) > 0 for all y > 0. In fact, letting y → 0, we may set
P(η(0) = ∞) = 1.

To demonstrate that the process η(·) is indeed a pure death process, consider the function

E
(

zη(y1)−η(y2)
1 · · · zη(yk−1)−η(yk)

k−1 zη(yk)
k

)
determined by

E
(

zη(y1)−η(y2)
1 · · · zη(yk−1)−η(yk)

k−1 zη(yk)
k

)
= E

(
zη(y1)

1 (z2/z1)η(y2) · · · (zk/zk−1)η(yk)
)

.
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This function is given by two expressions:(
1 + √

1 + c
)
y1 − 1 −

√
1 +∑k

i=1(1 − zi)γi(
1 + √

1 + c
)
y1

, for j = 0,

√
1 +∑j−1

i=1 (1 − zi)γi + (1 − zj)�j + czjy2
1 −

√
1 +∑k

i=1(1 − zi)γi(
1 + √

1 + c
)
y1

, for j ≥ 1,

where γi := �i − �i+1 and �k+1 = 0. Setting k = 2, z1 = z, and z2 = 1, we deduce that the
function

E
(
zη(y1)−η(y2); η(y1) < ∞)

, 0 < y1 < y2, 0 ≤ z ≤ 1, (6)

is given by one of the following three expressions, depending on whether j = 2, j = 1,
or j = 0:√

1 + cy2
1 + c(1 − z)

(
1 − (y1/y2)2

)−
√

1 + c(1 − z)
(
1 − (y1/y2)2

)
(
1 + √

1 + c
)
y1

, y2 < 1,

√
1 + cy2

1 + c(1 − z)
(
1 − y2

1

)−
√

1 + c(1 − z)
(
1 − (y1/y2)2

)
(
1 + √

1 + c
)
y1

, y1 < 1 ≤ y2,

1 −
1 +

√
1 + c(1 − z)

(
1 − (y1/y2)2

)
(
1 + √

1 + c
)
y1

, 1 ≤ y1.

Since the generating function (6) is finite at z = 0, we conclude that

P(η(y1) < η(y2); η(y1) < ∞) = 0, 0 < y1 < y2.

This implies
P(η(y2) ≤ η(y1)) = 1, 0 < y1 < y2,

meaning that unless the process η(·) is sitting at the infinity state, it evolves by negative integer-
valued jumps until it gets absorbed at zero.

Consider now the conditional probability generating function

E
(
zη(y1)−η(y2)|η(y1) < ∞)

, 0 < y1 < y2, 0 ≤ z ≤ 1. (7)

In accordance with the three expressions given above for (6), the generating function (7) is
specified by the following three expressions:√

1 + cy2
1 + c(1 − z)

(
1 − (y1/y2)2

)−
√

1 + c(1 − z)
(
1 − (y1/y2)2

)
√

1 + cy2
1 − 1

, y2 < 1,

√
1 + cy2

1 + c(1 − z)
(
1 − y2

1

)−
√

1 + c(1 − z)
(
1 − (y1/y2)2

)
√

1 + cy2
1 − 1

, y1 < 1 ≤ y2,

1 −
√

1 + c(1 − z)
(
1 − (y1/y2)2

)− 1(
1 + √

1 + c
)
y1 − 2

, 1 ≤ y1.
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In particular, setting z = 0 here, we obtain

P(η(y1) − η(y2) = 0|η(y1) < ∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1+c
(

1+y2
1−(y1/y2)2

)
−
√

1+c
(

1−(y1/y2)2
)

√
1+cy2

1−1
for 0 < y1 < y2 < 1,

√
1+c−

√
1+c
(

1−(y1/y2)2
)

√
1+cy2

1−1
for 0 < y1 < 1 ≤ y2,

1 −
√

1+c
(

1−(y1/y2)2
)
−1(

1+√
1+c
)

y1−2
for 1 ≤ y1 < y2.

Notice that given 0 < y1 ≤ 1,

P(η(y1) − η(y2) = 0|η(y1) < ∞) → 0, y2 → ∞,

which is expected because of η(y1) ≥ η(1) ≥ 1 and η(y2) → 0 as y2 → ∞.
The random times

T = sup{u : η(u) = ∞}, T0 = inf{u : η(u) = 0}
are major characteristics of a trajectory of the limit pure death process. Since

P(T ≤ y) = E
(
zη(y))∣∣∣

z=1
, P(T0 ≤ y) = E

(
zη(y))∣∣∣

z=0
,

in accordance with the above-mentioned formulas for E
(
zη(y)

)
, we get the following marginal

distributions:

P(T ≤ y) =
√

1 + cy2 − 1(
1 + √

1 + c
)
y

· 1{0≤y<1} +
(

1 − 2(
1 + √

1 + c
)
y

)
· 1{y≥1},

P(T0 ≤ y) = y − 1

y
· 1{y≥1}.

The distribution of T0 is free from the parameter c and has the Pareto probability density
function

f0(y) = y−21{y>1}.

In the special case (2), that is, when (3) holds with d = 0, we have c = 0 and P(T = T0) = 1. If
d > 0, then T ≤ T0, and the distribution of T has the following probability density function:

f (y) =

⎧⎪⎨
⎪⎩

1(
1+√

1+c
)

y2

(
1 − 1√

1+cy2

)
for 0 ≤ y < 1,

2(
1+√

1+c
)

y2
for y ≥ 1,

which has a positive jump at y = 1 of size f (1) − f (1 − ) = (1 + c)−1/2; see Figure 1. Observe
that f (1−)

f (1) → 1
2 as c → ∞.

Intuitively, the limiting pure death process counts the long-living individuals in the GWO
process, that is, those individuals whose life length is of order t. These long-living individuals
may have descendants, however none of them would live long enough to be detected by the
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Critical branching as a pure death process 613

FIGURE 1. The dashed line is the probability density function of T; the solid line is the probability density
function of T0. The left panel illustrates the case c = 5, and the right panel illustrates the case c = 15.

finite-dimensional distributions at the relevant time scale, see Lemma 2 below. Theorem 1
suggests a new perspective on Vatutin’s dichotomy (see [12]), claiming that the long-term
survival of a critical age-dependent branching process is due to either a large number of short-
living individuals or a small number of long-living individuals. In terms of the random times
T ≤ T0, Vatutin’s dichotomy discriminates between two possibilities: if T > 1, then η(1) = ∞,
meaning that the GWO process has survived thanks to a large number of individuals, while if
T ≤ 1 < T0, then 1 ≤ η(1) < ∞, meaning that the GWO process has survived thanks to a small
number of individuals.

3. Proof that tQ(t) → h

This section deals with the survival probability of the critical GWO process

Q(t) = 1 − P(t), P(t) := P(Z(t) = 0).

By its definition, the GWO process can be represented as the sum

Z(t) = 1{L>t} +
∑N

j=1
Zj
(
t − τj

)
, t = 0, 1, . . . , (8)

involving N independent daughter processes Zj(·) generated by the founder individual at the
birth times τj, j = 1, . . . , N (here it is assumed that Zj(t) = 0 for all negative t). The branching
property (8) implies the relation

1{Z(t)=0} = 1{L≤t}
∏N

j=1
1{

Zj(t−τj)=0
},

which says that the GWO process goes extinct by the time t if, on one hand, the founder is
dead at time t and, on the other hand, all daughter processes are extinct by the time t. After
taking expectations of both sides, we can write

P(t) = E

(∏N

j=1
P
(
t − τj

)
; L ≤ t

)
. (9)

As shown next, this nonlinear equation for P(·) implies the asymptotic formula (4) under the
conditions (1), (3), and a < ∞.
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614 S. SAGITOV

3.1. Outline of the proof of (4)

We start by stating four lemmas and two propositions. Let

�(z) := E
(
(1 − z)N − 1 + Nz

)
, (10)

W(t) := (
1 − ht−1)N + Nht−1 −

∑N

j=1
Q
(
t − τj

)−
∏N

j=1
P
(
t − τj

)
, (11)

D(u, t) := E
(

1 −
∏N

j=1
P
(
t − τj

)
; u < L ≤ t

)
+ E

((
1 − ht−1)N − 1 + Nht−1; L > u

)
, (12)

Eu(X) := E(X; L ≤ u), (13)

where 0 ≤ z ≤ 1, u > 0, t ≥ h, and X is an arbitrary random variable.

Lemma 1. Given (10), (11), (12), and (13), assume that 0 < u ≤ t and t ≥ h. Then

�
(
ht−1)= P(L > t) + Eu

(∑N

j=1
Q
(
t − τj

) )− Q(t) + Eu(W(t)) + D(u, t).

Lemma 2. If (1) and (3) hold, then E(N; L > ty) = o
(
t−1
)

as t → ∞ for any fixed y > 0.

Lemma 3. If (1), (3), and a < ∞ hold, then for any fixed 0 < y < 1,

Ety

(∑N

j=1

(
1

t − τj
− 1

t

))
∼ at−2, t → ∞.

Lemma 4. Let k ≥ 1. If 0 ≤ fj, gj ≤ 1 for j = 1, . . . , k, then

∏k

j=1

(
1 − gj

)−
∏k

j=1

(
1 − fj

)=
∑k

j=1
(fj − gj)rj,

where 0 ≤ rj ≤ 1 and

1 − rj =
∑j−1

i=1
gi +

∑k

i=j+1
fi − Rj,

for some Rj ≥ 0. If moreover fj ≤ q and gj ≤ q for some q > 0, then

1 − rj ≤ (k − 1)q, Rj ≤ kq, Rj ≤ k2q2.

Proposition 1. If (1), (3), and a < ∞ hold, then lim supt→∞ tQ(t) < ∞.

Proposition 2. If (1), (3), and a < ∞ hold, then lim inft→∞ tQ(t) > 0.

According to these two propositions, there exists a triplet of positive numbers (q1, q2, t0)
such that

q1 ≤ tQ(t) ≤ q2, t ≥ t0, 0 < q1 < h < q2 < ∞. (14)

The claim tQ(t) → h is derived using (14) by accurately removing asymptotically negligible
terms from the relation for Q(·) stated in Lemma 1, after setting u = ty with a fixed 0 < y < 1,
and then choosing a sufficiently small y. In particular, as an intermediate step, we will show
that

Q(t) = Ety

(∑N

j=1
Q
(
t − τj

) )+ Ety(W(t)) − aht−2 + o
(
t−2), t → ∞. (15)
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Then, restating our goal as φ(t) → 0 in terms of the function φ(t), defined by

Q(t) = h + φ(t)

t
, t ≥ 1, (16)

we rewrite (15) as

h + φ(t)

t
= Ety

(∑N

j=1

h + φ
(
t − τj

)
t − τj

)
+ Ety(W(t)) − aht−2 + o

(
t−2), t → ∞. (17)

It turns out that the three terms involving h, outside W(t), effectively cancel each other,
yielding

φ(t)

t
= Ety

(∑N

j=1

φ
(
t − τj

)
t − τj

+ W(t)

)
+ o

(
t−2), t → ∞. (18)

Treating W(t) in terms of Lemma 4 yields

φ(t) = Ety

(∑N

j=1
φ
(
t − τj

)
rj(t)

t

t − τj

)
+ o

(
t−1), (19)

where rj(t) is a counterpart of rj in Lemma 4. To derive from here the desired convergence
φ(t) → 0, we will adapt a clever trick from Chapter 9.1 of [10], which was further developed
in [12] for the Bellman–Harris process, with possibly infinite var(N). Define a non-negative
function m(t) by

m(t) := |φ(t)| ln t, t ≥ 2. (20)

Multiplying (19) by ln t and using the triangle inequality, we obtain

m(t) ≤ Ety

(∑N

j=1
m
(
t − τj

)
rj(t)

t ln t(
t − τj

)
ln
(
t − τj

)
)

+ v(t), (21)

where v(t) ≥ 0 and v(t) = o(t−1 ln t) as t → ∞. It will be shown that this leads to m(t) = o(ln t),
thereby concluding the proof of (4).

3.2. Proof of lemmas and propositions

Proof of Lemma 1. For 0 < u ≤ t, the relations (9) and (13) give

P(t) = Eu

(∏N

j=1
P
(
t − τj

) )+ E

(∏N

j=1
P
(
t − τj

)
; u < L ≤ t

)
. (22)

On the other hand, for t ≥ h,

�
(
ht−1) (10)= Eu

((
1 − ht−1)N − 1 + Nht−1

)
+ E

((
1 − ht−1)N − 1 + Nht−1; L > u

)
.

Adding the latter relation to

1 = P(L ≤ u) + P(L > t) + P(u < L ≤ t)
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and subtracting (22) from the sum, we get

�
(
ht−1)+ Q(t) = Eu

((
1 − ht−1)N + Nht−1 −

∏N

j=1
P
(
t − τj

) )+ P(L > t) + D(u, t),

with D(u, t) defined by (12). After a rearrangement, we obtain the statement of the
lemma. �

Proof of Lemma 2. For any fixed ε > 0,

E(N; L > t) = E(N; N ≤ tε, L > t) + E
(
N; 1 < N(tε)−1, L > t

)
≤ tεP(L > t) + (tε)−1E

(
N2; L > t

)
.

Thus, by (1) and (3),

lim sup
t→∞

(tE(N; L > t)) ≤ dε,

and the assertion follows as ε → 0. �

Proof of Lemma 3. For t = 1, 2, . . . and y > 0, put

Bt(y) := t2 Ety

(∑N

j=1

(
1

t − τj
− 1

t

))
− a.

For any 0 < u < ty, using

a = Eu(τ1 + . . . + τN) + Au, Au := E(τ1 + . . . + τN ; L > u),

we get

Bt(y) = Eu

(∑N

j=1

t

t − τj
τj

)
+ E

(∑N

j=1

t

t − τj
τj ; u < L ≤ ty

)
− Eu(τ1 + . . . + τN) − Au

= E

(∑N

j=1

τj

1 − τj/t
; u < L ≤ ty

)
+ Eu

(∑N

j=1

τ 2
j

t − τj

)
− Au.

For the first term on the right-hand side, we have τj ≤ L ≤ ty, so that

E

(∑N

j=1

τj

1 − τj/t
; u < L ≤ ty

)
≤ (1 − y)−1Au.

For the second term, τj ≤ L ≤ u and therefore

Eu

(∑N

j=1

τ 2
j

t − τj

)
≤ u2

t − u
Eu(N) ≤ u2

t − u
.

This yields

−Au ≤ Bt(y) ≤ (1 − y)−1Au + u2

t − u
, 0 < u < ty < t,
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implying
−Au ≤ lim inf

t→∞ Bt(y) ≤ lim sup
t→∞

Bt(y) ≤ (1 − y)−1Au.

Since Au → 0 as u → ∞, we conclude that Bt(y) → 0 as t → ∞. �

Proof of Lemma 4. Let

rj := (
1 − g1

)
. . .

(
1 − gj−1

) (
1 − fj+1

)
. . .

(
1 − fk

)
, 1 ≤ j ≤ k.

Then 0 ≤ rj ≤ 1, and the first stated equality is obtained by telescopic summation of

(
1 − g1

)∏k

j=2

(
1 − fj

)−
∏k

j=1

(
1 − fj

)= (f1 − g1)r1,(
1 − g1

)(
1 − g2

)∏k

j=3

(
1 − fj

)− (
1 − g1

)∏k

j=2

(
1 − fj

)= (f2 − g2)r2, . . . ,∏k

j=1

(
1 − gj

)−
∏k−1

j=1

(
1 − gj

)(
1 − fk

)= (fk − gk)rk.

The second stated equality is obtained with

Rj :=
k∑

i=j+1

fi
(
1 − (

1 − fj+1
)
. . .

(
1 − fi−1

))

+
j−1∑
i=1

gi
(
1 − (

1 − g1
)
. . . (1 − gi−1)

(
1 − fj+1

)
. . .

(
1 − fk

))
,

by performing telescopic summation of

1 − (
1 − fj+1

)= fj+1,(
1 − fj+1

)− (
1 − fj+1

)
(1 − fj+2) = fj+2

(
1 − fj+1

)
, . . . ,∏k−1

i=j+1
(1 − fi) −

∏k

i=j+1
(1 − fi) = fk

∏k−1

i=j+1
(1 − fi) ,∏k

i=j+1
(1 − fi) − (1 − g1)

∏k

i=j+1
(1 − fi) = g1

∏k

i=j+1
(1 − fi) , . . . ,∏j−2

i=1
(1 − gi)

∏k

i=j+1
(1 − fi) −

∏j−1

i=1
(1 − gi)

∏k

i=j+1
(1 − fi) = gj−1

∏j−2

i=1
(1 − gi)

∏k

i=j+1
(1 − fi) .

By the above definition of Rj, we have Rj ≥ 0. Furthermore, given fj ≤ q and gj ≤ q, we get

Rj ≤
∑j−1

i=1
gi +

∑k

i=j+1
fi ≤ (k − 1)q.

It remains to observe that

1 − rj ≤ 1 − (1 − q)k−1 ≤ (k − 1)q,

and from the definition of Rj,

Rj ≤ q
∑k−j−1

i=1
(1 − (1 − q)i) + q

∑j−1

i=1

(
1 − (1 − q)k−j+i−1)≤ q2

∑k−2

i=1
i ≤ k2q2.

�
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Proof of Proposition 1. By the definition of �(·), we have

�(Q(t)) + P(t) = Eu
(
P(t)N)+ P(L > u) − E

(
1 − P(t)N ; L > u

)
,

for any 0 < u < t. This and (22) yield

�(Q(t)) = Eu

(
P(t)N −

∏N

j=1
P
(
t − τj

) )+ P(L > u)

− E
(
1 − P(t)N ; L > u

)− E

(∏N

j=1
P
(
t − τj

)
; u < L ≤ t

)
. (23)

We therefore obtain the upper bound

�(Q(t)) ≤ Eu

(
P(t)N −

∏N

j=1
P
(
t − τj

) )+ P(L > u),

which together with Lemma 4 and the monotonicity of Q(·) implies

�(Q(t)) ≤ Eu

(∑N

j=1
(Q
(
t − τj

)− Q(t))

)
+ P(L > u). (24)

Borrowing an idea from [11], suppose to the contrary that

tn := min{t:tQ(t) ≥ n}
is finite for any natural n. It follows that

Q(tn) ≥ n

tn
, Q(tn − u) <

n

tn − u
, 1 ≤ u ≤ tn − 1.

Putting t = tn into (24) and using the monotonicity of �(·), we find

�
(
nt−1

n

)≤ �(Q(tn)) ≤ Eu

(∑N

j=1

(
n

tn − τj
− n

tn

))
+ P(L > u).

Setting u = tn/2 here and applying Lemma 3 together with (3), we arrive at the relation

�
(
nt−1

n

)= O
(
nt−2

n

)
, n → ∞.

Observe that under the condition (1), the L’Hospital rule gives

�(z) ∼ bz2, z → 0. (25)

The resulting contradiction, n2t−2
n = O

(
nt−2

n

)
as n → ∞, finishes the proof of the

proposition. �

Proof of Proposition 2. The relation (23) implies

�(Q(t)) ≥ Eu

(
P(t)N −

∏N

j=1
P
(
t − τj

) )− E
(
1 − P(t)N ; L > u

)
.

By Lemma 4,

P(t)N −
∏N

j=1
P
(
t − τj

)=
N∑

j=1

(
Q
(
t − τj

)− Q(t)
)
r∗

j (t),
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where 0 ≤ r∗
j (t) ≤ 1 is a counterpart of the term rj in Lemma 4. By the monotonicity of P(·),

we have, again referring to Lemma 4,

1 − r∗
j (t) ≤ (N − 1)Q(t − L).

Thus, for 0 < y < 1,

�(Q(t)) ≥ Ety

(
N∑

j=1

(Q
(
t − τj

)− Q(t))r∗
j (t)

)
− E

(
1 − P(t)N ; L > ty

)
. (26)

The assertion lim inft→∞ tQ(t) > 0 is proven by contradiction. Assume that
lim inft→∞ tQ(t) = 0, so that

tn := min
{
t:tQ(t) ≤ n−1}

is finite for any natural n. Plugging t = tn into (26) and using

Q(tn) ≤ 1

ntn
, Q(tn − u) − Q(tn) ≥ 1

n(tn − u)
− 1

ntn
, 1 ≤ u ≤ tn − 1,

we get

�
( 1

ntn

)
≥ n−1Etny

(∑N

j=1

(
1

tn − τj
− 1

tn

)
r∗

j (tn)

)
− 1

ntn
E(N; L > tny).

Given L ≤ ty, we have

1 − r∗
j (t) ≤ NQ(t(1 − y)) ≤ N

q2

t(1 − y)
,

where the second inequality is based on the already proven part of (14). Therefore,

Etny

(∑N

j=1

(
1

tn − τj
− 1

tn

)(
1 − r∗

j (tn)
))≤ q2y

t2n(1 − y)2
E
(
N2),

and we derive

nt2n�
( 1

ntn

)
≥ t2nEtny

(∑N

j=1

(
1

tn − τj
− 1

tn

))
− E

(
N2
)
q2y

(1 − y)2
− tnE(N; L > tny).

Sending n → ∞ and applying (25), Lemma 2, and Lemma 3, we arrive at the inequality

0 ≥ a − yq2E
(
N2)(1 − y)−2, 0 < y < 1,

which is false for sufficiently small y. �

3.3. Proof of (18) and (19)

Fix an arbitrary 0 < y < 1. Lemma 1 with u = ty gives

�
(
ht−1)= P(L > t) + Ety

(∑N

j=1
Q
(
t − τj

) )− Q(t) + Ety(W(t)) + D(ty, t). (27)
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Let us show that

D(ty, t) = o
(
t−2), t → ∞. (28)

Using Lemma 2 and (14), we find that for an arbitrarily small ε > 0,

E
(

1 −
∏N

j=1
P
(
t − τj

)
; ty < L ≤ t(1 − ε)

)
= o

(
t−2), t → ∞.

On the other hand,

E
(

1 −
∏N

j=1
P
(
t − τj

)
; t(1 − ε) < L ≤ t

)
≤ P(t(1 − ε) < L ≤ t),

so that in view of (3),

E
(

1 −
∏N

j=1
P
(
t − τj

)
; ty < L ≤ t

)
= o

(
t−2), t → ∞.

This, (12), and Lemma 2 imply (28).
Observe that

bh2 = ah + d. (29)

Combining (27), (28), and

P(L > t) − �
(
ht−1) (3)(25)= dt−2 − bh2t−2 + o

(
t−2) (29)= −aht−2 + o

(
t−2), t → ∞,

we derive (15), which in turn gives (17). The latter implies (18) since by Lemmas 2 and 4,

Ety

(∑N

j=1

h

t − τj

)
− h

t
= Ety

(∑N

j=1

(
h

t − τj
− h

t

))
− ht−1E(N; L > ty) = aht−2 + o

(
t−2).

Turning to the proof of (19), observe that the random variable

W(t) = (
1 − ht−1)N −

∏N

j=1

(
1 − h + φ

(
t − τj

)
t − τj

)
+
∑N

j=1

(
h

t
− h + φ

(
t − τj

)
t − τj

)

can be represented in terms of Lemma 4 as

W(t) =
∏N

j=1
(1 − fj(t)) −

∏N

j=1
(1 − gj(t)) +

∑N

j=1
(fj(t) − gj(t))

=
∑N

j=1
(1 − rj(t))(fj(t) − gj(t)),

by assigning

fj(t) := ht−1, gj(t) := h + φ
(
t − τj

)
t − τj

. (30)

Here 0 ≤ rj(t) ≤ 1, and for sufficiently large t,

1 − rj(t)
(14)≤ Nq2t−1. (31)
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After plugging into (18) the expression

W(t) =
∑N

j=1

(
h

t
− h

t − τj

)
(1 − rj(t)) −

∑N

j=1

φ
(
t − τj

)
t − τj

(1 − rj(t)),

we get

φ(t)

t
= Ety

(∑N

j=1

φ
(
t − τj

)
t − τj

rj(t)

)
+ Ety

(∑N

j=1

(
h

t − τj
− h

t

)
(1 − rj(t))

)
+ o

(
t−2), t → ∞.

The latter expectation is non-negative, and for an arbitrary ε > 0, it has the following upper
bound:

Ety

(∑N

j=1

(
h

t − τj
− h

t

)
(1 − rj(t))

)
(31)≤ q2εEty

(∑N

j=1

(
h

t − τj
− h

t

))
+ q2h

(1 − y)t2
E
(
N2; N > tε

)
.

Thus, in view of Lemma 3,

φ(t)

t
= Ety

(∑N

j=1

φ
(
t − τj

)
t − τj

rj(t)

)
+ o

(
t−2), t → ∞.

Multiplying this relation by t, we arrive at (19).

3.4. Proof of φ(t) → 0

Recall (20). If the non-decreasing function

M(t) := max
1≤j≤t

m(j)

is bounded from above, then φ(t) = O
( 1

ln t

)
, proving that φ(t) → 0 as t → ∞. If M(t) → ∞

as t → ∞, then there is an integer-valued sequence 0 < t1 < t2 < . . . , such that the sequence
Mn := M(tn) is strictly increasing and converges to infinity. In this case,

m(t) ≤ Mn−1 < Mn, 1 ≤ t < tn, m(tn) = Mn, n ≥ 1. (32)

Since |φ(t)| ≤ Mn
ln tn

for tn ≤ t < tn+1, to finish the proof of φ(t) → 0, it remains to verify that

Mn = o(ln tn), n → ∞. (33)

Fix an arbitrary y ∈ (0, 1). Putting t = tn in (21) and using (32), we find

Mn ≤ MnEtny

(∑N

j=1
rj(tn)

tn ln tn(
tn − τj

)
ln
(
tn − τj

)
)

+ (
t−1
n ln tn

)
on.

Here and elsewhere, on stands for a non-negative sequence such that on → 0 as n → ∞. In
different formulas, the sign on represents different such sequences. Since

0 ≤ t ln t

(t − u) ln (t − u)
− 1 ≤ u(1 + ln t)

(t − u) ln (t − u)
, 0 ≤ u < t − 1,

and rj(tn) ∈ [0, 1], it follows that

Mn − MnEtny

(∑N

j=1
rj(tn)

)
≤ MnEtny

(∑N

j=1

τj(1 + ln tn)

tn(1 − y) ln (tn(1 − y))

)
+ (

t−1
n ln tn

)
on.
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Recalling that a = E(
∑N

j=1 τj), observe that

Etny

(∑N

j=1

τj(1 + ln tn)

tn(1 − y) ln (tn(1 − y))

)
≤ a(1 + ln tn)

tn(1 − y) ln (tn(1 − y))
= (

a(1 − y)−1 + on
)
t−1
n .

Combining the last two relations, we conclude

MnEtny

(∑N

j=1
(1 − rj(tn))

)
≤ a(1 − y)−1t−1

n Mn + t−1
n (Mn + ln tn)on. (34)

Now it is time to unpack the term rj(t). By Lemma 4 with (30),

1 − rj(t) =
j−1∑
i=1

h + φ(t − τi)

t − τi
+ (N − j)

h

t
− Rj(t),

where, provided τj ≤ ty,

0 ≤ Rj(t) ≤ Nq2t−1(1 − y)−1, Rj(t) ≤ N2q2
2t−2(1 − y)−2, t > t∗,

for a sufficiently large t∗. This allows us to rewrite (34) in the form

MnEtny

(∑N

j=1

( j−1∑
i=1

h + φ(tn − τi)

tn − τi
+ (N − j)

h

tn

))

≤ MnEtny

(∑N

j=1
Rj(tn)

)
+ a(1 − y)−1t−1

n Mn + t−1
n (Mn + ln tn)on.

To estimate the last expectation, observe that if τj ≤ ty, then for any ε > 0,

Rj(t) ≤ Nq2t−1(1 − y)−11{N>tε} + N2q2
2t−2(1 − y)−21{N≤tε}, t > t∗,

implying that for sufficiently large n,

Etny

(∑N

j=1
Rj(tn)

)
≤ q2t−1

n (1 − y)−1E
(
N2; N > tnε

)+ q2
2εt−1

n (1 − y)−2E
(
N2),

so that

MnEtny

(∑N

j=1

(∑j−1

i=1

h + φ(tn − τi)

tn − τi
+ (N − j)

h

tn

))
≤ a(1 − y)−1t−1

n Mn + t−1
n (Mn + ln tn)on.

Since ∑N

j=1

∑j−1

i=1

(
h

tn − τi
− h

tn

)
≥ 0,

we obtain

MnEtny

(∑N

j=1

( j−1∑
i=1

φ(tn − τi)

tn − τi
+ (N − 1)

h

tn

))

≤ a(1 − y)−1t−1
n Mn + t−1

n (Mn + ln tn)on.
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By (16) and (14), we have φ(t) ≥ q1 − h for t ≥ t0. Thus, for τj ≤ L ≤ tny and sufficiently
large n,

φ(tn − τi)

tn − τi
≥ q1 − h

tn(1 − y)
.

This gives

∑N

j=1

( j−1∑
i=1

φ(tn − τi)

tn − τi
+ (N − 1)

h

tn

)
≥
(

h + q1 − h

2(1 − y)

)
t−1
n N(N − 1),

which, after multiplying by tnMn and taking expectations, yields(
h + q1 − h

2(1 − y)

)
MnEtny(N(N − 1)) ≤ a(1 − y)−1Mn + (Mn + ln tn)on.

Finally, since
Etny(N(N − 1)) → 2b, n → ∞,

we derive that for any 0 < ε < y < 1, there is a finite nε such that for all n > nε ,

Mn
(
2bh(1 − y) + bq1 − bh − a − ε

)≤ ε ln tn.

By (29), we have bh ≥ a, and therefore

2bh(1 − y) + bq1 − bh − a − ε ≥ bq1 − 2bhy − y.

Thus, choosing y = y0 such that bq1 − 2bhy0 − y0 = bq1
2 , we see that

lim sup
n→∞

Mn

ln tn
≤ 2ε

bq1
,

which implies (33) as ε → 0, concluding the proof of φ(t) → 0.

4. Proof of Theorem 1

We will use the following notational conventions for the k-dimensional probability generat-
ing function

E
(

zZ(t1)
1 · · · zZ(tk)

k

)
=

∞∑
i1=0

. . .

∞∑
ik=0

P(Z(t1) = i1, . . . , Z(tk) = ik)zi1
1 · · · zik

k ,

with 0 < t1 ≤ . . . ≤ tk and z1, . . . , zk ∈ [0, 1]. We define

Pk
(
t̄, z̄
)

:= Pk(t1, . . . , tn; z1, . . . , zk) := E
(

zZ(t1)
1 · · · zZ(tk)

k

)
and write, for t ≥ 0,

Pk
(
t + t̄, z̄

)
:= Pk(t + t1, . . . , t + tk; z1, . . . , zk).

Moreover, for 0 < y1 < . . . < yk, we write

Pk(tȳ, z̄) := Pk(ty1, . . . , tyk; z1, . . . , zk),
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and assuming 0 < y1 < . . . < yk < 1,

P∗
k

(
t, ȳ, z̄

)
:= E

(
zZ(ty1)

1 · · · zZ(tyk)
k ; Z(t) = 0

)
= Pk+1(ty1, . . . , tyk, t; z1, . . . , zk, 0).

These conventions will be similarly applied to the functions

Qk
(
t̄, z̄
)

:= 1 − Pk
(
t̄, z̄
)
, Q∗

k

(
t, ȳ, z̄

)
:= 1 − P∗

k

(
t, ȳ, z̄

)
. (35)

Our special interest is in the function

Qk(t) := Qk
(
t + t̄, z̄

)
, 0 = t1 < . . . < tk, z1, . . . , zk ∈ [0, 1), (36)

to be viewed as a counterpart of the function Q(t) treated by Theorem 2. Recalling the
compound parameters

h = a + √
a2 + 4bd

2b

and c = 4bda−2, put

hk := h
1 + √

1 + cgk

1 + √
1 + c

, gk := gk(ȳ, z̄) :=
k∑

i=1

z1 · · · zi−1(1 − zi)y
−2
i . (37)

The key step of the proof of Theorem 1 is to show that for any given 1 = y1 < y2 < . . . < yk,

tQk(t) → hk, ti := t(yi − 1), i = 1, . . . , k, t → ∞. (38)

This is done following the steps of our proof of tQ(t) → h given in Section 3.
Unlike Q(t), the function Qk(t) is not monotone over t. However, monotonicity of Q(t) was

used in the proof of Theorem 2 only for the proof of (14). The corresponding statement

0 < q1 ≤ tQk(t) ≤ q2 < ∞, t ≥ t0,

follows from the bounds (1 − z1)Q(t) ≤ Qk(t) ≤ Q(t), which hold by the monotonicity of the
underlying generating functions over z1, . . . , zn. Indeed,

Qk(t) ≤ Qk(t, t + t2, . . . , t + tk; 0, . . . , 0) = Q(t),

and on the other hand,

Qk(t) = Qk(t, t + t2, . . . , t + tk; z1, . . . , zk) = E
(

1 − zZ(t)
1 zZ(t+t2)

2 · · · zZ(t+tk)
k

)
≥ E

(
1 − zZ(t)

1

)
,

where
E
(

1 − zZ(t)
1

)
≥ E

(
1 − zZ(t)

1 ; Z(t) ≥ 1
)

≥ (1 − z1)Q(t).

4.1. Proof of tQk(t) → hk

The branching property (8) of the GWO process gives

k∏
i=1

zZ(ti)
i =

k∏
i=1

z
1{L>ti}
i

∏N

j=1
z

Zj(ti−τj)
i .
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Given 0 < t1 < . . . < tk < tk+1 = ∞, we use

k∏
i=1

z
1{L>ti}
i = 1{L≤t1} +

k∑
i=1

z1 · · · zi1{ti<L≤ti+1}

to deduce the following counterpart of (9):

Pk
(
t̄, z̄
)= Et1

(
N∏

j=1

Pk(t̄ − τj, z̄)

)
+

k∑
i=1

z1 · · · ziE

(
N∏

j=1

Pk(t̄ − τj, z̄); ti < L ≤ ti+1

)
.

This implies

Pk
(
t̄, z̄
) = Et1

(
N∏

j=1

Pk(t̄ − τj, z̄)

)
+

k∑
i=1

z1 · · · ziP(ti < L ≤ ti+1)

−
k∑

i=1

z1 · · · ziE

(
1 −

N∏
j=1

Pk(t̄ − τj, z̄); ti < L ≤ ti+1

)
. (39)

Using this relation we establish the following counterpart of Lemma 1.

Lemma 5. Consider the function (36) and put Pk(t) := 1 − Qk(t) = Pk
(
t + t̄, z̄

)
. For 0 < u < t,

the relation

�
(
hkt−1)= P(L > t) −

k∑
i=1

z1 · · · ziP
(
t + ti < L ≤ t + ti+1

)

+ Eu

(∑N

j=1
Qk
(
t − τj

) )− Qk(t) + Eu(Wk(t)) + Dk(u, t) (40)

holds with tk+1 = ∞,

Wk(t) := (
1 − hkt−1)N + Nhkt−1 −

∑N

j=1
Qk
(
t − τj

)−
∏N

j=1
Pk
(
t − τj

)
, (41)

and

Dk(u, t) := E
(

1 −
∏N

j=1
Pk
(
t − τj

)
; u < L ≤ t

)
+ E

((
1 − hkt−1)N − 1 + Nhkt−1; L > u

)

+
k∑

i=1

z1 · · · ziE

(
1 −

N∏
j=1

Pk
(
t − τj

)
; t + ti < L ≤ t + ti+1

)
. (42)

Proof. According to (39),

Pk(t) = Eu

(
N∏

j=1

Pk
(
t − τj

) )+ E

(∏N

j=1
Pk
(
t − τj

)
; u < L ≤ t

)

+
k∑

i=1

z1 · · · ziP
(
t + ti < L ≤ t + ti+1

)

−
k∑

i=1

z1 · · · ziE

(
1 −

N∏
j=1

Pk
(
t − τj

)
; t + ti < L ≤ t + ti+1

)
.
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By the definition of �(·),
�
(
hkt−1)+ 1 = Eu

((
1 − hkt−1)N + Nhkt−1

)
+ P(L > t)

+ E
((

1 − hkt−1)N − 1 + Nhkt−1; L > u
)

+ P(u < L ≤ t),

and after subtracting the two last equations, we get

�
(
hkt−1)+ Qk(t) = Eu

((
1 − hkt−1)N + Nhkt−1 −

∏N

j=1
Pk
(
t − τj

) )+ P(L > t)

−
k∑

i=1

z1 · · · ziP(t + ti < L ≤ t + ti+1) + Dk(u, t),

with Dk(u, t) satisfying (42). After a rearrangement, the relation (40) follows together
with (41). �

With Lemma 5 in hand, the convergence (38) is proven by applying almost exactly the same
argument as used in the proof of tQ(t) → h. An important new feature emerges because of the
additional term in the asymptotic relation defining the limit hk. Let 1 = y1 < y2 < . . . < yk <

yk+1 = ∞. Since

∑k

i=1
z1 · · · ziP

(
tyi < L ≤ tyi+1

)∼ dt−2
k∑

i=1

z1 · · · zi

(
y−2

i − y−2
i+1

)
,

we see that

P(L > t) −
∑k

i=1
z1 · · · ziP

(
tyi < L ≤ tyi+1

)∼ dgkt−2,

where gk is defined by (37). Assuming 0 ≤ z1, . . . , zk < 1, we ensure that gk > 0, and as a
result, we arrive at a counterpart of the quadratic equation (29),

bh2
k = ahk + dgk,

which gives

hk = a +√
a2 + 4bdgk

2b
= h

1 + √
1 + cgk

1 + √
1 + c

,

justifying our definition (37). We conclude that for k ≥ 1,

Qk(tȳ, z̄)

Q(t)
→

1 +
√

1 + c
∑k

i=1 z1 · · · zi−1(1 − zi)y
−2
i

1 + √
1 + c

,

1 = y1 < . . . < yk, 0 ≤ z1, . . . , zk < 1. (43)

4.2. Conditioned generating functions

To finish the proof of Theorem 1, consider the generating functions conditioned on the
survival of the GWO process. Given (5) with j ≥ 1, we have

Q(t)E
(

zZ(ty1)
1 · · · zZ(tyk)

k |Z(t) > 0
)

= E(zZ(ty1)
1 · · · zZ(tyk)

k ; Z(t) > 0)

= Pk(tȳ, z̄) − E
(

zZ(ty1)
1 · · · zZ(tyk)

k ; Z(t) = 0
)

(35)= Q∗
j

(
t, ȳ, z̄

)− Qk(tȳ, z̄),
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and therefore,

E
(

zZ(ty1)
1 · · · zZ(tyk)

k |Z(t) > 0
)

= Q∗
j

(
t, ȳ, z̄

)
Q(t)

− Qk(tȳ, z̄)

Q(t)
.

Similarly, if (5) holds with j = 0, then

E
(

zZ(ty1)
1 · · · zZ(tyk)

k |Z(t) > 0
)

= 1 − Qk(tȳ, z̄)

Q(t)
.

Letting t′ = ty1, we get

Qk(tȳ, z̄)

Q(t)
= Qk(t′, t′y2/y1, . . . , t′yk/y1)

Q(t′)
Q(ty1)

Q(t)
,

and applying the relation (43), we have

Qk(tȳ, z̄)

Q(t)
→ 1 +

√
1 +∑k

i=1 z1 · · · zi−1(1 − zi)�i(
1 + √

1 + c
)
y1

,

where �i = c(y1/yi)2. On the other hand, since

Q∗
j

(
t, ȳ, z̄

)= Qj+1(ty1, . . . , tyj, t; z1, . . . , zj, 0), j ≥ 1,

we also get

Q∗
j

(
t, ȳ, z̄

)
Q(t)

→ 1 +
√

1 +∑j
i=1 z1 · · · zi−1(1 − zi)�i + cz1 · · · zjy2

1(
1 + √

1 + c
)
y1

.

We conclude that as stated in Section 2,

E
(

zZ(ty1)
1 · · · zZ(tyk)

k |Z(t) > 0
)

→ E
(

zη(y1)
1 · · · zη(yk)

k

)
.
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