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On the Nonsquare Constants
of Orlicz Spaces with Orlicz Norm

Yaqiang Yan

Abstract. Let lΦ and LΦ(Ω) be the Orlicz sequence space and function space generated by N-function

Φ(u) with Orlicz norm. We give equivalent expressions for the nonsquare constants C J(lΦ), C J

(

LΦ(Ω)
)

in sense of James and CS(lΦ), CS

(

LΦ(Ω)
)

in sense of Schäffer. We are devoted to get practical compu-

tational formulas giving estimates of these constants and to obtain their exact value in a class of spaces

lΦ and LΦ(Ω).

1 Introduction

Let (X, ‖ · ‖) be a Banach space. S(X) = {x : ‖x‖ = 1, x ∈ X} denotes the unit

sphere of X. In 1990, Gao and Lau [4] defined the James nonsquare constant C J(X)

and Schäffer nonsquare constant CS(X) as

C J(X) = sup{min(‖x + y‖, ‖x − y‖) : x, y ∈ S(X)},(1)

Cs(X) = inf{max(‖x + y‖, ‖x − y‖) : x, y ∈ S(X)}.(2)

Clearly, if dim X ≥ 2, then 1 ≤ CS(X) ≤
√

2 ≤ C J(X) ≤ 2. Ji and Wang [6] (1994)

asserted

C J(X) ·CS(X) = 2(3)

for dim X ≥ 2. Ji and Zhan [7] found the following formulas:

C J(X) = sup{‖x + y‖ : ‖x − y‖ = ‖x + y‖, x, y ∈ S(X)},(4)

CS(X) = inf{‖x + y‖ : ‖x − y‖ = ‖x + y‖, x, y ∈ S(X)}.(5)

It was proved (see Chen [1], Hudzik [5], Wang and Chen [12]) that C J(X) = 2 if and

only if X is nonreflexive.

Let

Φ(u) =

∫ |u|

0

φ(t) dt and Ψ(v) =

∫ |v|

0

ψ(s) ds

be a pair of complementary N-functions, i.e., φ(t) is right continuous, φ(0) = 0, and

φ(t) ↗ ∞ as t ↗ ∞. We call Φ ∈ ∆2(0) (or ∆2(∞)), if there exist u0 > 0 and
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k > 2 such that Φ(2u) ≤ kΦ(u) for 0 ≤ u ≤ u0 (or for u ≥ u0). The Orlicz sequence

space is defined as the set

lΦ =
{

x(i) : ρΦ(λx) =

∞∑

n=1

Φ
(
λ|x(i)|

)
<∞ for some λ > 0

}

.

The Orlicz function space LΦ(Ω) on a nonatomic measure space (Ω,Σ, µ) is defined

as

LΦ(Ω) =
{

x(t) : ρΦ(λx) =

∫

Ω

Φ
(
λ|x(t)|

)
dt <∞ for some λ > 0

}

.

The Luxemburg norm and Orlicz norm (see [2]) are expressed as

‖x‖(Φ) = inf
{

c > 0 : ρΦ

( x

c

)

≤ 1
}

and

‖x‖Φ = inf
k>0

1

k
[1 + ρΦ(kx)].

For the Orlicz spaces equipped with Luxemburg norm with Φ satisfying the ∆2-

condition, Ji and Wang [6] gave the expressions for function spaces. Latter on, Ji

and Zhan [7] gave the corresponding results for sequences spaces. They showed:

(i) If φ(t) is a concave function, then

C J(l(Φ)) = sup
{

kx > 0 : ρΦ

( x

kx

)

=
1

2
, ρΦ(x) = 1

}

,

CS

(
L(Φ)(Ω)

)
= inf

{

kx > 0 : ρΦ

( 2x

kx

)

= 2, ρΦ(x) = 1
}

;

(iv) if φ(t) is convex, then

CS(l(Φ)) = inf
{

kx > 0 : ρΦ

( x

kx

)

=
1

2
, ρΦ(x) = 1

}

,

C J

(
L(Φ)(Ω)

)
= sup

{

kx > 0 : ρΦ

( 2x

kx

)

= 2, ρΦ(x) = 1
}

.

The author [14] then found some formulas for computations of estimates. Some

exact values of nonsquare constants was obtained. For example, for the pair of N-

function

M(u) = e|u| − |u| − 1 and N(v) = (1 + |v|) ln(|v| + 1)− |v|,(6)

the exact values of nonsquare constants for l(M) and l(N) with Luxemburg are:

C J(l(M)) =
2M−1( 1

2
)

M−1(1)
≈ 1.49656; C J(l(N)) =

N−1(1)

N−1( 1
2
)
≈ 1.48699.
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However, for the Orlicz spaces lΦ and LΦ(Ω) equipped with Orlicz norm, the ex-

pressions for C J(lΦ) and C J

(
LΦ(Ω)

)
have still remained unsolved and consequently

little achievement about the estimates has been obtained since Ren [10](1997) pro-

duced the lower bounds. This paper is devoted to this problem, so as to get practical

computation formulas for reasonable estimation.

In what follows, we will use Semenove and Simonenko indices of Φ(u):

α0
Φ = lim inf

u→0+

Φ
−1(u)

Φ−1(2u)
, β0

Φ = lim sup
u→0+

Φ
−1(u)

Φ−1(2u)
,(7)

αΦ = lim inf
u→∞

Φ
−1(u)

Φ−1(2u)
, βΦ = lim sup

u→∞

Φ
−1(u)

Φ−1(2u)
,(8)

ᾱΦ = inf
u>0

Φ
−1(u)

Φ−1(2u)
, β̄Φ = sup

u>0

Φ
−1(u)

Φ−1(2u)
;(9)

and

A0
Φ = lim inf

t→0+

tφ(t)

Φ(t)
, B0

Φ = lim sup
t→0+

tφ(t)

Φ(t)
,(10)

AΦ = lim inf
t→∞

tφ(t)

Φ(t)
, BΦ = lim sup

t→∞

tφ(t)

Φ(t)
,(11)

ĀΦ = inf
t>0

tφ(t)

Φ(t)
, B̄Φ = sup

t>0

tφ(t)

Φ(t)
.(12)

The same indices can be applied toΨ(v). We will frequently extend the indices in the

following context for the sequential usage. The author [13] obtained

2α0
Φβ

0
Ψ = 1 = 2α0

Ψβ
0
Φ,(13)

2αΦβΨ = 1 = 2αΨβΦ,(14)

2ᾱΦβ̄Ψ = 1 = 2ᾱΨβ̄Φ.(15)

Rao and Ren [9] gave the following interrelations:

2
− 1

A0
Φ ≤ α0

Φ ≤ β0
Φ ≤ 2

− 1

B0
Φ ,(16)

2
− 1

AΦ ≤ αΦ ≤ βΦ ≤ 2
− 1

BΦ ,(17)

2
− 1

ĀΦ ≤ ᾱΦ ≤ β̄Φ ≤ 2
− 1

B̄Φ .(18)

If the index function FΦ(t) = tφ(t)
Φ(t)

is monotonic (increase or decrease) at a right

neighborhood of 0 (or∞), then the limit C0
Φ
= limt→0+

tφ(t)
Φ(t)

(or CΦ = limt→∞
tφ(t)
Φ(t)

,

respectively) must exist, and hence

α0
Φ = β

0
Φ = 2

− 1

C0
Φ , and αΦ = βΦ = 2

− 1
CΦ .(19)
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These relations will play important roles in our main results. We now introduce an

auxiliary lemma.

Lemma 1 Let φ(t) be the right derivative of N-functionΦ(u). Then for any x ≥ y ≥ 0

and k ≥ h > 0, we have

(i) if φ(t) is concave, then

k + h

2kh

[

Φ

( 2kh

k + h
(x + y)

)

+ Φ
( 2kh

k + h
(x − y)

)]

≤ 2

k
Φ(kx) +

2

h
Φ(hy),(20)

k + h

4kh

[

Φ

( 4kh

k + h
x
)

+ Φ
( 4kh

k + h
y
)]

≤ 1

k
Φ
(

k(x + y)
)

+
1

h
Φ
(

h(x − y)
)

;(21)

(ii) if φ(t) is convex, then

k + h

kh

[

Φ

( 2kh

k + h
x
)

+ Φ
( 2kh

k + h
y
)]

≤ 1

k
Φ
(

k(x + y)
)

+
1

h
Φ
(

h(x − y)
)
,(22)

k + h

2kh

[

Φ

( 2kh

k + h
(x + y)

)

+ Φ
( 2kh

k + h
(x − y)

)]

≤ 1

2k
Φ(2kx) +

1

2h
Φ(2hy).(23)

Proof (i) We first observe that

Φ(2t) ≤ 4Φ(t)

if φ(t) is concave. In fact, we have

Φ(2t) =

∫ 2t

0

φ(s) ds = 2

∫ t

0

φ(2r) dr ≤ 4

∫ t

0

φ(r) dr = 4Φ(t).

For any real number k and h, fix y, denote

H(x) =
k + h

2kh

[

Φ

( 2kh

k + h
(x + y)

)

+ Φ
( 2kh

k + h
(x − y)

)]

− 2

k
Φ(kx) − 2

h
Φ(hy).

We first show that

H(y) =
k + h

2kh

[

Φ

( 4kh

k + h
y
)]

− 2

k
Φ(ky)− 2

h
Φ(hy) ≤ 0(24)

for x ≥ y. Treat H(y) as the function of k(k ≥ h > 0). When k = h, we have

H(y, k)
4
= H(y)|k=h =

1

h
Φ(2hy)− 4

h
Φ(hy) =

1

h
[Φ(2hy)− 4Φ(hy)] ≤ 0

since φ(t) is concave. Then we show H ′k(y, k), the right derivative of H(y) to k, is less

than or equal to 0, so that H(y, k) is decreasing and H(y, k) ≤ 0. In fact, since

H ′k(y, k) =
1

2k2

[ 4kh

k + h
yφ
( 4kh

k + h
y
)

+ 4Φ(ky)− Φ
( 4kh

k + h
y
)

− 4kyφ(ky)
]

,
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we need only to check

L(a, b) =
4ab

a + b
φ
( 4ab

a + b

)

+ 4Φ(a)− Φ
( 4ab

a + b

)

− 4aφ(a) ≤ 0(25)

Notice 4ab
a+b
≤ 2a, the function f (t) = tφ(t)−Φ(t) is increasing, and g(t) = 2tφ(2t)+

4Φ(t) − Φ(2t) − 4tφ(t) ≤ 0 (g(0) = 0 and g(t) is decreasing since φ(t) is concave),

we have

L(a, b) ≤ 2aφ(2a) + 4Φ(a)− Φ(2a)− 4aφ(a) ≤ 0.

Therefore (25) holds, and hence (24) holds.

Finally, because φ(t) is concave, we have

H ′(x) = φ
( 2kh

k + h
(x + y)

)

+ φ
( 2kh

k + h
(x − y)

)

− 2φ(kx)

≤ 2φ
( 2kh

k + h
x
)

− 2φ(kx) ≤ 0

for k ≥ h > 0. This implies H(x) is decreasing on [y,+∞). It follows that (20) holds

since we have already proved that H(y) ≤ 0.

Let x = A + B, y = A− B in (20) we immediately get (21).

(ii) The proof is similar to that of (i).

It should be noted that when k = h = 1, we can deduce Ji and Wang’s [6] re-

sult, with which they produced the expressions for spaces equipped with Luxemburg

norm:

1

2
[Φ(2a) + Φ(2b)] ≤ Φ(a + b) + Φ(a− b) ≤ 2[Φ(a) + Φ(b)], if φ(t) is concave;

2[Φ(a) + Φ(b)] ≤ Φ(a + b) + Φ(a− b) ≤ 1

2
[Φ(2a) + Φ(2b)], if φ(t) is convex.

2 Expressions For Sequence and Function Spaces

Lemma 2 Let Φ(u) be an N-function with Φ ∈ ∆2(0), then for every x ∈ S(lΦ) and

k > 1 there is unique dx,k > 1 such that

ρΦ

( kx

dx,k

)

=
k− 1

2
.

Proof Indeed, ρΦ( kx
d

), as a function of d, is continuous and strictly decreasing. Since

ρΦ(kx) ≥ ‖kx‖Φ − 1 = k − 1 > k−1
2

, and limd→∞ ρΦ( kx
d

) = 0 < k−1
2

when

Φ ∈ ∆2(0), there is unique d such that ρΦ( kx
dx,k

) = k−1
2

.

Now we give the formulas for C J(lΦ) and CS(lΦ). The idea of proof is refined from

Wang [11], Cui [3], Ji and Wang [6], Ji and Zhan [7], when they studied packing

constants, weakly convergent sequence coefficients and nonsquare constants.

Theorem 1 Let Φ(u) be an N-function with Φ ∈ ∆2(0), and φ(t) be the right deriva-

tive of Φ(u). Then
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(i) C J(lΦ) = sup‖x‖=1 infk>1{dx,k : ρΦ( kx
dx,k

) = k−1
2
} if φ(t) is concave,

(ii) CS(lΦ) = inf‖x‖=1 infk>1{dx,k : ρΦ( kx
dx,k

) = k−1
2
} if φ(t) is convex.

Proof (i) Denote d = sup‖x‖=1 infk>1{dx,k : ρΦ( kx
dx,k

) = k−1
2
}. Given ε > 0, there

exists x ∈ lΦ with ‖x‖Φ = 1, and dx,k such that dx,k ≥ d − ε for k > 1. Let y =

(x1, 0, x2, 0, x3, . . . ), and z = (0, x1, 0, x2, 0, x3, . . . ). Obviously, ‖y‖Φ = ‖z‖Φ = 1,

and we have

inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

d − ε

)]

= inf
k>1

1

k

[

1 + 2ρΦ

( kx

d − ε
)]

≥ inf
k>1

1

k

[

1 + 2ρΦ

( kx

dx,k

)]

= inf
k>1

1

k

(

1 + 2 · k− 1

2

)

= 1.

Therefore,

∥
∥
∥

y + z

d− ε
∥
∥
∥
Φ

= min

{

inf
0<k≤1

1

k

[

1 + ρΦ

(
k(y + z)

d− ε

)]

, inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

d− ε

)]}

≥ min

{

1, inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

d − ε

)]}

= 1.

It follows that ‖y + z‖Φ ≥ d − ε. Similarly we have ‖y − z‖Φ ≥ d − ε. By the

arbitrariness of ε and the definition of C J(X) we have C J(lΦ) ≥ d.

On the other hand, for any pair of x and y with ‖x + y‖Φ = ‖x− y‖Φ, and for any

ε > 0, there exist k > 1, dx,k < d+ε and h > 1, dy,h < d+ε such that ρΦ( kx
dx,k

) = k−1
2

,

and ρΦ(
hy
dy,h

) = h−1
2

. Since φ(t) is concave, we have from (20) that

∥
∥
∥

x + y

d + ε

∥
∥
∥
Φ

+
∥
∥
∥

x − y

d + ε

∥
∥
∥
Φ

≤ k + h

2kh

[

1 + ρΦ

(
2kh

k + h

( x + y

d + ε

))]

+
k + h

2kh

[

1 + ρΦ

(
2kh

k + h

( x − y

d + ε

))]

=
1

k
+

1

h
+

k + h

2kh

[

ρΦ

(
2kh

k + h

( x + y

d + ε

))

+ ρΦ

(
2kh

k + h

( x − y

d + ε

))]

≤ 1

k
+

1

h
+

2

k
ρΦ

( kx

d + ε

)

+
2

h
ρΦ

( hy

d + ε

)

<
1

k
+

1

h
+

2

k
ρΦ

( kx

dx,k

)

+
2

h
ρΦ

( hy

dy,h

)

=
1

k

[

1 + 2 · k− 1

2

]

+
1

h

[

1 + 2 · h− 1

2

]

= 2.
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Therefore, we have ‖x + y‖Φ ≤ d + ε when ‖x + y‖Φ = ‖x − y‖Φ. By (4) and the

arbitrariness of ε we have C J(lΦ) ≤ d. Consequently, (i) is proved.

(ii) Let c = inf‖x‖=1 infk>1{dx,k : ρΦ( kx
dx,k

) = k−1
2
}. Given ε > 0, there exists

x ∈ lΦ with ‖x‖Φ = 1, such that infk>1{dx,k : ρΦ( kx
dx,k

) = k−1
2
} < c + ε

2
. So, there are

k > 1 and dx,k < c + ε such that ρΦ( kx
dx,k

) = k−1
2

. Put y = (x1, 0, x2, 0, x3, . . . ), and

z = (0, x1, 0, x2, 0, x3, . . . ). We have

∥
∥
∥

y + z

c + ε

∥
∥
∥
Φ

=

∥
∥
∥

y − z

c + ε

∥
∥
∥
Φ

≤ 1

k

[

1 + ρΦ

( y + z

c + ε

)]

=
1

k

[

1 + 2ρΦ

( kx

c + ε

)]

<
1

k

[

1 + 2ρΦ

( kx

dx,k

)]

= 1,

which means that ‖y + z‖Φ = ‖y − z‖Φ ≤ c + ε, i.e., by the definition of CS(X), that

CS(lΦ) ≥ c, since ε is arbitrary.

Finally, we prove CS(lΦ) ≤ c if φ(t) is convex. By the definition of c, given x with

‖x‖Φ = 1 and k ′ > 1 we have dx,k ′ ≤ c and ρΦ( k ′x
dx,k ′

) = k ′−1
2

. Therefore, for any pair

of x, y ∈ S(lΦ) and ε > 0, there are k and h, such that

∥
∥
∥

x + y

c

∥
∥
∥
Φ

>
1

k

[

1 + ρΦ

( k(x + y)

c

)]

− ε

2
,

∥
∥
∥

x − y

c

∥
∥
∥
Φ

>
1

h

[

1 + ρΦ

( h(x − y)

c

)]

− ε

2
.

By Lemma 1(ii)(22), we have for k ′ = 2kh
k+h

,

∥
∥
∥

x + y

c

∥
∥
∥
Φ

+
∥
∥
∥

x − y

c

∥
∥
∥
Φ

>
1

k

[

1 + ρΦ

(
k(x + y)

c

)]

+
1

h

[

1 + ρΦ

(
h(x − y)

c

)]

− ε

=
k + h

kh
+

1

k
ρΦ

(
k(x + y)

c

)

+
1

h
ρΦ

(
h(x − y)

c

)

− ε

≥ k + h

kh
+

k + h

kh

[

ρΦ

( 2kh

k + h

x

c

)

+ ρΦ

( 2kh

k + h

y

c

)]

− ε

=
k + h

2kh

[

1 + 2ρΦ

( 2kh

k + h

x

c

)]

+
k + h

2kh

[

1 + 2ρΦ

( 2kh

k + h

y

c

)]

− ε

≥ k + h

2kh

[

1 + 2ρΦ

( 2kh

k + h

x

dx, 2kh
k+h

)]

+
k + h

2kh

[

1 + 2ρΦ

( 2kh

k + h

y

dx, 2kh
k+h

)]

− ε
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=
k + h

2kh

[

1 + 2 ·
2kh
k+h
− 1

2

]

+
k + h

2kh

[

1 + 2 ·
2kh
k+h
− 1

2

]

− ε

= 2− ε.

Thus, when ‖x + y‖Φ = ‖x− y‖Φ we have ‖x + y‖Φ ≥ c(1− ε
2
). By the definition of

CS(X) we have CS(lΦ) ≥ c.

The proof is completed.

To give the expressions for function spaces, we first show the following lemma:

Lemma 3 Let Φ(u) be an N-function with Φ ∈ ∆2(∞), then

(i) for every x ∈ S
(

LΦ(Ω)
)

and k > 1 there is a unique cx,k > 1 such that

ρΦ

( 2kx

cx,k

)

= 2k− 2;

(ii) for every x ∈ S
(

LΦ(Ω)
)

and a number c, there are a pair of y, z ∈ S
(

LΦ(Ω)
)

such

that

ρΦ

( y + z

c

)

= ρΦ

( y − z

c

)

=
1

2
ρΦ

( 2x

c

)

.

Proof The proof for (i) is similar to that of Lemma 2. In fact, ρΦ( 2kx
c

), as a continu-

ous function, satisfies:

ρΦ(2kx) ≥ 2ρΦ(kx) ≥ 2(k‖x‖Φ − 1) = 2k− 2

and

lim
c→∞

ρΦ

( 2kx

c

)

= 0 < 2k− 2

when Φ ∈ ∆2(∞), there is unique cx,k such that ρΦ( 2kx
cx,k

) = 2k− 2.

(ii) Suppose ρΦ( 2x
c

) = A, i.e.,
∫

Ω
Φ( 2x

c
) dt = A. This means there is a set Ω1 ⊂ Ω

such that
∫

Ω1
Φ( 2x

c
) dt = A

2
. Define

y(t) = x(t), and z(t) =

{

x(t), t ∈ Ω1,

−x(t), t ∈ Ω \ Ω1.

Then we have

∫

Ω

Φ

( y + z

c

)

dt =

∫

Ω

Φ

( y − z

c

)

dt

=
1

2

∫

Ω1

Φ

( 2x

c

)

dt =
1

2

∫

Ω\Ω1

Φ

( 2x

c

)

dt =
A

2
.

Theorem 2 LetΦ(u) be an N-function withΦ ∈ ∆2(∞), and φ(t) be the right deriva-

tive of Φ(u). Then
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(i) CS

(
LΦ(Ω)

)
= inf‖x‖=1 infk>1{cx,k : ρΦ( 2kx

cx,k
) = 2k− 2} if φ(t) is concave,

(ii) C J

(
LΦ(Ω)

)
= sup‖x‖=1 infk>1{cx,k : ρΦ( 2kx

cx,k
) = 2k− 2} if φ(t) is convex.

Proof (i) Let a = inf‖x‖=1 infk>1{cx,k : ρΦ( 2kx
cx,k

) = 2k − 2}. Given ε > 0, there

exists x ∈ S
(

LΦ(Ω)
)

, such that infk>1{cx,k : ρΦ( 2kx
cx,k

) = 2k − 2} < a + ε
2
. So, there

are k > 1 and cx,k < a + ε such that ρΦ( 2kx
cx,k

) = 2k − 2. By Lemma 3(ii) there exist

y, z ∈ S
(

LΦ(Ω)
)

such that

∥
∥
∥

y + z

a + ε

∥
∥
∥
Φ

=

∥
∥
∥

y − z

a + ε

∥
∥
∥
Φ

≤ 1

k

[

1 + ρΦ

(
k(y + z)

a + ε

)]

=
1

k

[

1 +
1

2
ρΦ

( 2kx

a + ε

)]

<
1

k

[

1 +
1

2
ρΦ

( 2kx

cx,k

)]

=
1

k

[

1 +
1

2
(2k− 2)

]

= 1,

which means that ‖y + z‖Φ = ‖y − z‖Φ ≤ a + ε, i.e., by the definition of CS(X), that

CS

(
LΦ(Ω)

)
≥ a, since ε is arbitrary.

Next, we prove CS

(
LΦ(Ω)

)
≤ a if φ(t) is concave. By the definition of a, given x

with ‖x‖Φ = 1 and k ′ > 1 we have cx,k ′ ≤ a and ρΦ( 2k ′x
cx,k ′

) = 2k ′ − 2. Therefore, for

any pair of x, y ∈ S
(

LΦ(Ω)
)

and ε > 0, there are k and h, such that

∥
∥
∥

x + y

a

∥
∥
∥
Φ

>
1

k

[

1 + ρΦ

(
k(x + y)

a

)]

− ε

2
,

∥
∥
∥

x − y

a

∥
∥
∥
Φ

>
1

h

[

1 + ρΦ

(
h(x − y)

a

)]

− ε

2
.

By Lemma 1(21), we have for k ′ = 2kh
k+h

,

∥
∥
∥

x + y

a

∥
∥
∥
Φ

+
∥
∥
∥

x − y

a

∥
∥
∥
Φ

>
1

k

[

1 + ρΦ

(
k(x + y)

a

)]

+
1

h

[

1 + ρΦ

(
h(x − y)

a

)]

− ε

=
k + h

kh
+

1

k
ρΦ

(
k(x + y)

a

)

+
1

h
ρΦ

( h(x − y)

a

)

− ε

≥ k + h

kh
+

k + h

4kh

[

ρΦ

( 4kh

k + h

x

a

)

+ ρΦ

( 4kh

k + h

y

a

)]

− ε

=
k + h

2kh

[

1 +
1

2
ρΦ

( 2kh

k + h

2x

a

)]

+
k + h

2kh

[

1 +
1

2
ρΦ

( 2kh

k + h

2y

a

)]

− ε
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≥ k + h

2kh

[

1 +
1

2
ρΦ

( 2kh

k + h

2x

cx, 2kh
k+h

)]

+
k + h

2kh

[

1 +
1

2
ρΦ

( 2kh

k + h

2y

cx, 2kh
k+h

)]

− ε

=
k + h

2kh

[

1 +
1

2
·
(

2
2kh

k + h
− 2
)]

+
k + h

2kh

[

1 +
1

2
·
(

2
2kh

k + h
− 2
)]

− ε

= 2− ε.

Thus, when ‖x + y‖Φ = ‖x− y‖Φ we have ‖x + y‖Φ ≥ a(1− ε
2
). By the definition of

CS(X) we have CS

(
LΦ(Ω)

)
≥ a.

(ii) Denote b = sup‖x‖=1 infk>1{cx,k : ρΦ( 2kx
cx,k

) = 2k − 2}. Given ε > 0, there

exists x ∈ LΦ(Ω) with ‖x‖Φ = 1, and cx,k such that cx,k ≥ b − ε for k > 1. By

Lemma 3(ii) there are y, z ∈ S
(

LΦ(Ω)
)

such that

inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

b− ε

)]

= inf
k>1

1

k

[

1 +
1

2
ρΦ

( 2kx

b− ε
)]

≥ inf
k>1

1

k

[

1 +
1

2
ρΦ

( kx

cx,k

)]

= inf
k>1

1

k

(

1 +
1

2
· (2k− 2)

)

= 1.

Therefore,

∥
∥
∥

y + z

b− ε
∥
∥
∥
Φ

= min

{

inf
0<k≤1

1

k

[

1 + ρΦ

(
k(y + z)

b− ε

)]

, inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

b− ε

)]}

≥ min

{

1, inf
k>1

1

k

[

1 + ρΦ

(
k(y + z)

b− ε

)]}

= 1.

It follows that ‖y + z‖Φ ≥ b − ε. Similarly we have ‖y − z‖Φ ≥ b − ε. By the

arbitrariness of ε and the definition of C J(X) we have C J

(
LΦ(Ω)

)
≥ b.

Finally, for any pair of x and y with ‖x + y‖Φ = ‖x− y‖Φ, and for any ε > 0, there

exist k > 1, cx,k < b + ε and h > 1, cy,h < b + ε such that ρΦ( 2kx
cx,k

) = 2k − 2, and

ρΦ( 2hy
cy,h

) = 2h− 2. Since φ(t) is convex, we have from (23) that

∥
∥
∥

x + y

d + ε

∥
∥
∥
Φ

+
∥
∥
∥

x − y

d + ε

∥
∥
∥
Φ

≤ k + h

2kh

[

1 + ρΦ

(
2kh

k + h

( x + y

d + ε

))]

+
k + h

2kh

[

1 + ρΦ

(
2kh

k + h

( x − y

d + ε

))]
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=
1

k
+

1

h
+

k + h

2kh

[

ρΦ

(
2kh

k + h

( x + y

b + ε

))

+ ρΦ

(
2kh

k + h

( x − y

b + ε

))]

≤ 1

k
+

1

h
+

1

2k
ρΦ

( 2kx

b + ε

)

+
1

2h
ρΦ

( 2hy

b + ε

)

<
1

k
+

1

h
+

1

2k
ρΦ

( 2kx

cx,k

)

+
1

2h
ρΦ

( 2hy

cy,h

)

=
1

k

[

1 +
1

2
(2k− 2)

]

+
1

h

[

1 +
1

2
(2h− 2)

]

= 2.

Therefore, we have ‖x + y‖Φ ≤ b + ε when ‖x + y‖Φ = ‖x − y‖Φ. By (4) and the

arbitrariness of ε we have C J

(
LΦ(Ω)

)
≤ b. Consequently, (ii) is proved.

The proof is completed.

3 Bounds of C J(lΦ) For Sequence Spaces

In view of (3), we now mainly deal with C J(lΦ). We first estimate the lower bound of

it. This work is an extension of Ren [10], who obtained that

max
(

2β0
Ψ,

1

α0
Ψ

)

≤ C J(lΦ),(26)

where α0
Ψ
, β0
Ψ

are defined as in (7). We first extend these indices for Ψ(v), the com-

plementary function of Φ(u), and denote

α ′Ψ = inf

{
Ψ
−1( 1

2k
)

Ψ−1( 1
k
)

: k = 1, 2, . . .

}

, β ′Ψ = sup

{
Ψ
−1( 1

2k
)

Ψ−1( 1
k
)

: k = 1, 2, . . .

}

.

(27)

Theorem 3 LetΦ(u) be an N-function. Then the nonsquare constant of sequence space

lΦ generated by Φ equipped with Orlicz norm satisfies:

max
(

2β ′Ψ,
1

α ′
Ψ

)

≤ C J(lΦ).(28)

Proof First we show

2β ′Ψ ≤ C J(lΦ).(29)

For any natural number k, put

x =

(
k

︷ ︸︸ ︷

1

kΨ−1( 1
k
)
, . . . ,

1

kΨ−1( 1
k
)
, 0, 0, . . .

)
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and

y =

( k
︷ ︸︸ ︷

0, . . . , 0,

k
︷ ︸︸ ︷

1

kΨ−1( 1
k
)
, . . . ,

1

kΨ−1( 1
k
)
, 0, 0, . . .

)

.

Then we have ‖x‖Φ = ‖y‖Φ = 1 and

‖x − y‖Φ = ‖x + y‖Φ =
1

kΨ−1( 1
k
)
· 2kΨ−1

( 1

2k

)

=
2Ψ−1( 1

2k
)

Ψ−1( 1
k
)
.

Therefore,

min(‖x − y‖Φ, ‖x + y‖Φ) ≥ 2Ψ−1( 1
2k

)

Ψ−1( 1
k
)

(k = 1, 2, . . . ).

We have proved (29) by the definition (1) and (27).

Secondly, we prove

1

α ′
Ψ

≤ J(lΦ).(30)

Given a natural number k, put t = 1
2kΨ−1( 1

2k
)
. Denote

x = (

k
︷ ︸︸ ︷

t, . . . , t,

k
︷ ︸︸ ︷

t, . . . , t, 0, 0, . . . )

and

y = (

k
︷ ︸︸ ︷

t, . . . , t,

k
︷ ︸︸ ︷

−t, . . . ,−t, 0, 0, . . . ).

Then ‖x‖Φ = ‖y‖Φ = 1 and

‖x − y‖Φ = ‖x + y‖Φ = 2t · kΨ−1
( 1

k

)

=
Ψ
−1( 1

k
)

Ψ−1( 1
2k

)
.

Therefore,

min(‖x − y‖Φ, ‖x + y‖Φ) ≥ Ψ
−1( 1

k
)

Ψ−1( 1
2k

)
(k = 1, 2, . . . )

and we obtain (30). Finally, (28) follows from (29) and (30).

We now deal with the upper bound of C J(lΦ).

Theorem 4 Let Φ(u) be an N-function, φ(t) being its right derivative. We have

https://doi.org/10.4153/CJM-2003-009-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-009-1


216 Yaqiang Yan

(i) if φ(t) is concave, then

C J(lΦ) ≤ 1

α∗
Φ

;(31)

(ii) if φ(t) is convex, then

C J(lΦ) ≤ 2β∗
Φ
,(32)

where

α∗Φ = inf

{
Φ
−1(u)

Φ−1(2u)
: 0 < u ≤ 1

2
(QΦ − 1)

}

,(33)

β∗Φ = sup

{
Φ
−1(u)

Φ−1(2u)
: 0 < u ≤ 1

2
(QΦ − 1)

}

,(34)

with

QΦ = sup
‖x‖Φ=1

{

kx > 1 : ‖x‖Φ =
1

kx

[1 + ρΦ(kxx)]
}

.(35)

Proof If φ(t) is concave, then Φ ∈ ∆2(0) (see Krasnosel’skii and Rutickii [8]). If

φ(t) is convex and Φ 6∈ ∆2(0), then C J(lΦ) = 2 while 2β∗
Φ
≥ 2β0

Φ
= 2, which means

that (32) holds. Therefore, it suffices for us to check (31) and (32) when Φ ∈ ∆2(0).

(i) Define the index function GΦ(u) = Φ
−1(u)
Φ−1(2u)

for u > 0. Then

Φ[GΦ(u)Φ−1(2u)] = u.

For any given x = (x1, x2, . . . ) ∈ S(lΦ), there exists k > 1 such that

1 = ‖x‖Φ =
1

k
[1 + ρΦ(kx)].

Let ui =
1
2
Φ(k|xi |) for all xi 6= 0. ThenΦ(k|xi |) ≤ ρΦ(kx) = k− 1 ≤ QΦ − 1, and so

ui ≤ 1
2
(QΦ − 1). It follows from (33) that

ρΦ(α∗Φkx) =

∞∑

i=1

Φ(α∗Φk|xi |) ≤
∞∑

i=1

Φ

[

GΦ

( 1

2
Φ(k|xi |)

)

k|xi |
]

=
1

2

∞∑

i=1

Φ(k|xi |) =
k− 1

2
.

Because of Theorem 1(i), we obtain (31).

(ii) Analogously, one can prove

C J(lΦ) ≥ 1

β∗
Φ

.
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By (3), we obtain (32).

To improve the above results, we give:

Lemma 4 Let Φ and Ψ be a pair of complementary N-functions, φ(t) be the right

derivative of Φ. We have

(i) if φ(t) is concave, then

1

α ′
Ψ

≤
√

2 ≤ 2β ′Ψ;(36)

(ii) if φ(t) is convex, then

2β ′Ψ ≤
√

2 ≤ 1

α ′
Ψ

.(37)

Proof (i) It is easy to check that B̄Φ ≤ 2, since the function M(t) = tφ(t)− 2Φ(t) is

decreasing on [0,∞) and≤ 0, when φ(t) is concave. Therefore, by (15) and (18):

2β ′Ψ ≥ 2ᾱΨ =
1

β̄Φ
≥ 2

1
B̄Φ ≥ 2

1
2 =
√

2,

1

α ′
Ψ

≤ 1

ᾱΨ
= 2β̄Φ ≤ 2 · 2−

1
B̄Φ ≤ 2 · 2− 1

2 =
√

2,

which implies (36).

(ii) Observe that ĀΦ ≥ 2 by the same reason as in (i) when φ(t) is convex. There-

fore, (37) holds since

1

α ′
Ψ

≥ 1

β̄Ψ
= 2ᾱΦ ≥ 2 · 2−

1
ĀΦ ≥ 2 · 2− 1

2 =
√

2,

and

2β ′Ψ ≤ 2β̄Ψ =
1

ᾱΦ
≤ 2

1
ĀΦ ≤ 2

1
2 =
√

2.

Theorem 5 Let Φ(u) be an N-function, φ(t) being its right derivative. We have

(i) if φ(t) is concave, then

2β ′Ψ ≤ C J(lΦ) ≤ 1

α∗
Φ

;(38)

(ii) if φ(t) is convex, then

1

α ′
Ψ

≤ C J(lΦ) ≤ 2β∗Φ.(39)
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Proof (38) directly results from (28), (31) and (36), while (39) from (28), (32) and

(37).

To make Theorem 4 easier to use, we shall further improve it. First of all, note that

the author [13] gave a fine estimate of QΦ in (35):

QΦ ≤ b∗Ψ,(40)

where

b∗Ψ = sup

{
sψ(s)

Ψ(s)
: 0 < s ≤ Ψ−1(1)

}

.(41)

Denote the index functions by

FΦ(t) =
tφ(t)

Φ(t)
, GΦ(c, u) =

Φ
−1(u)

Φ−1(cu)
(c > 1).(42)

Then the author [13] proved that

Lemma 5 Suppose Φ,Ψ be a pair of complementary N-functions.

(i) FΦ(t) is increasing (decreasing) on (0,Φ−1(u0)] if and only if GΦ(c, u) is increasing

(decreasing) on (0, u0

c
] for every c > 1.

(ii) FΦ(t) is increasing(decreasing) on (0, ψ(C)] if and only if FΨ(s) = sψ(s)
Ψ(s)

is decreas-

ing (increasing) on (0,C].

Theorem 6 Let Φ,Ψ be a pair of N-functions, φ(t) and ψ(s) be their right derivatives,

respectively.

(i) If φ(t) is concave, we have

(A) if FΦ(t) is increasing on
(

0, ψ[Ψ−1(1)]
]

, then

C J(lΦ) = 2
1

C0
Φ , C0

Φ = lim
t→0+

FΦ(t);(43)

(B) if FΦ(t) is decreasing on
(

0, ψ[Ψ−1(1)]
]

, then

2Ψ−1( 1
2
)

Ψ−1(1)
≤ C J(lΦ) ≤ ψ[Ψ−1(1)]

Φ−1
{

1
2
Φ
(
ψ[Ψ−1(1)]

)} .(44)

(ii) If φ(t) is convex, we have

(A) if FΦ(t) = is increasing on
(

0, ψ[Ψ−1(1)]
]

, then

Ψ
−1(1)

Ψ−1( 1
2
)
≤ C J(lΦ) ≤ 2Φ−1(

C0
Ψ
−1

2
)

Φ−1(C0
Ψ
− 1)

, C0
Ψ = lim

s→0+
FΦ(s);(45)
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(B) if FΦ(t) is decreasing on
(

0, ψ[Ψ−1(1)]
]

, then

C J(lΦ) = 2
1− 1

C0
Φ .(46)

Proof Under the condition of (A) in (i), FΨ(s) = sψ(s)
Ψ(s)

is decreasing on (0,Ψ−1(1)],

which implies that GΨ(v) = Ψ
−1(v)

Ψ−1(2v)
is decreasing on (0, 1

2
], and GΦ(u) = Φ

−1(u)
Φ−1(2u)

is

increasing on (0, 1
2
Φ(ψ[Ψ−1(1)])], and hence

b∗Ψ = [FΨ(s)]s=Ψ−1(1) = Ψ
−1(1)ψ[Ψ−1(1)]

= Φ{ψ[Ψ−1(1)]} +Ψ[Ψ−1(1)]

= Φ{ψ[Ψ−1(1)]} + 1,

i.e.,

b∗Ψ − 1 = Φ{ψ[Ψ−1(1)]}.
It follows that

(

0,
1

2
(QΦ − 1)

]

⊂
(

0,
1

2
(b∗Ψ − 1)

]

=

(

0,
1

2
Φ
(
ψ[Ψ−1(1)]

)]

.

By (13) and (19), we have

2β ′Ψ = 2β0
Ψ =

1

α0
Φ

= 2
1

C0
Φ ,

and
1

α∗
Φ

=
1

α0
Φ

= 2
1

C0
Φ .

It follows that C J(lΦ) = 2
1

C0
Φ from (38). So (43) is proved. Similarly, since GΦ(u) is

decreasing, one has

α∗Φ =
Φ
−1{ 1

2
(QΦ − 1)}

Φ−1(QΦ − 1)
≥ Φ

−1
{

1
2
Φ
(
ψ[Ψ−1(1)]

)}

ψ[Ψ−1(1)]
.

Then by (38), we have

C J(lΦ) ≤ 1

α∗
Φ

≤ ψ[Ψ−1(1)]

Φ−1
{

1
2
Φ
(
ψ[Ψ−1(1)]

)} ,

and

C J(lΦ) ≥ 2β ′Ψ =
2Ψ−1( 1

2
)

Ψ−1(1)

since GΨ(v) is increasing on (0, 1
2
]. Thus, (44) holds.
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(ii)(A) If FΦ(t) is increasing on
(

0, ψ[Ψ−1(1)]
]

, by the argument as in (i), we

have

QΦ ≤ b∗Ψ = C0
Ψ.

Hence, it follows that β∗
Φ

satisfies

β∗Φ ≤
Φ
−1(u)

Φ−1(2u)

∣
∣
∣
∣ C0
Ψ
−1

2

.

Finally one has

C J(lΦ) ≤ 2Φ−1(
C0
Ψ
−1

2
)

Φ−1(C0
Ψ
− 1)

and

C J(lΦ) ≥ 1

α ′
Ψ

=
Ψ
−1(1)

Ψ−1( 1
2
)

by (39). So (45) holds.

(B) It can be proved analogously as in (i)(A). In fact, observe that

2β∗Φ = 2β0
Φ = 2 · 2

− 1

C0
Φ = 2

1− 1

C0
Φ ,

and
1

α ′
Ψ

=
1

α0
Ψ

= 2β0
Φ = 2

1− 1

C0
Φ .

Therefore, (46) is proved from (39). The proof is completed.

Example 1 Let the N-function be Φ(u) = 1
p
|u|p, p > 1, which generates lp space.

The complementary N-function isΨ(v) = 1
q
|v|q, with 1

p
+ 1

q
= 1.

Since φ(t) = t p−1, we see that φ(t) is concave for 1 < p ≤ 2 and is convex for

p ≥ 2. Because FΦ(t) = tφ(t)
Φ(t)
= p is a constant function and can be considered as

either increasing or decreasing, we have immediately from (43) and (46) that

C J(lp) = 2
1
p , 1 < p ≤ 2;(47)

C J(lp) = 21− 1
p , p ≥ 2.(48)

Example 2 Let a pair of N-functions be defined as (8), i.e.,

M(u) = e|u| − |u| − 1 and N(v) = (1 + |v|) ln(|v| + 1)− |v|.

It is easy to check that M ′(t) = et − t is convex and N ′(t) = ln(1 + t) is concave and

FM(t) is increasing on [0,∞) while FN (t) is decreasing. Now we estimate C J(lM) and
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C J(lN ) with (45) and (44), respectively. It is easy to check that

N−1(1)

N−1( 1
2
)
≤ C J(lM) ≤ 2M−1(

C0
N−1

2
)

M−1(C0
N − 1)

,

2M−1( 1
2
)

M−1(1)
≤ C J(lN ) ≤ M ′[M−1(1)]

N−1
{

1
2
N
(

M ′[M−1(1)]
)} .

Note that C0
M = 2. By a simple computation we have:

1.487 ≤ C J(lM) ≤ 1.497; 1.496 ≤ C J(lN ) ≤ 1.498.(49)

4 Bounds of C J(LΦ[0, 1]) For Function Spaces

Similar to last section, we mainly deal with C J

(
LΦ(Ω)

)
. For the sake of convenience,

we assume Ω = [0, 1]. We now estimate the lower bound of it. Observe that Ren

[10] obtained the following result:

max
(

2βΨ,
1

αΨ

)

≤ C J(LΦ[0, 1]),(50)

where αΨ, βΨ are the limits of GΨ =
Ψ
−1(v)

Ψ−1(2v)
at the neighborhood of∞ (see (8)). We

first extend these indices forΨ(v), and denote

αΨ[1,∞) = inf
v∈[1,∞)

Ψ
−1(v)

Ψ−1(2v)
, βΨ[1,∞) = sup

v∈[1,∞)

Ψ
−1(v)

Ψ−1(2v)
.(51)

Theorem 7 Let Φ(u) be an N-function. Then the nonsquare constant of function space

LΦ[0, 1] generated by Φ equipped with Orlicz norm satisfies:

max

(

2βΨ[1,∞),
1

αΨ[1,∞)

)

≤ C J(LΦ[0, 1]).(52)

Proof For any v ∈ [1,∞), choose on [0, 1] a pair of subsets G1, and G2 such that

G1 ∩ G2 = ∅, µ(G1) = µ(G2) = 1
2v

. Denote

x(t) =
2v

Ψ−1(2v)
χG1

(t) and y(t) =
2v

Ψ−1(2v)
χG2

(t).

Since

‖χG1
‖Φ = ‖χG2

‖Φ = µ(G1)Ψ−1

(
1

µ(G1)

)

=
1

2v
Ψ
−1(2v),

we have ‖x‖Φ = ‖y‖Φ = 1 and ‖x− y‖Φ = ‖x + y‖Φ = 2Ψ−1(v)
Ψ−1(2v)

. Taking the supreme

over v ∈ [1,∞), we have

J(LΦ[0, 1]) ≥ 2βΨ[1,∞).
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Next we show
1

αΨ[1,∞)

≤ J(LΦ[0, 1]).

Given v ∈ [1,∞), define E1, E2 ⊂ [0, 1], satisfying E1 ∩ E2 = ∅ and µ(E1) =

µ(E2) = 1
2v

. Put

x(t) =
v

Ψ−1(v)
[χE1

(t) + χE2
(t)], y(t) =

v

Ψ−1(v)
[χE1

(t)− χE2
(t)],

Then ‖x‖Φ = ‖y‖Φ = 1, and ‖x − y‖Φ = ‖x + y‖Φ = Ψ
−1(2v)
Ψ−1(v)

. Take supreme over

v ∈ [1,∞), we immediately have

J(LΦ[0, 1]) ≥ sup
v∈[1,∞)

Ψ
−1(2v)

Ψ−1(v)
=

1

infv∈[1,∞)
Ψ−1(v)
Ψ−1(2v)

=
1

αΨ[1,∞)

.

The proof is completed.

We now deal with the upper bound of C J(LΦ[0, 1]).

Theorem 8 Let Φ(u) be an N-function, φ(t) being its right derivative. We have

(i) if φ(t) is concave, then

C J(LΦ[0, 1]) ≤ 1

ᾱΦ
,(53)

(ii) if φ(t) is convex, then

C J(LΦ[0, 1]) ≤ 2β̄Φ(54)

Proof If φ(t) is concave, then Φ ∈ ∆2(∞) (see Krasnosel’skii and Rutickii [8]). If

φ(t) is convex and Φ 6∈ ∆2(∞), then C J(LΦ[0, 1]) = 2 while 2β̄Φ = 2, which means

that (54) holds. Therefore, it suffices for us to check (53) and (54) whenΦ ∈ ∆2(∞).

(i) Define the index function HΦ(u) = Φ
−1(2u)
Φ−1(u)

for u > 0. Then

Φ[HΦ(u)Φ−1(u)] = 2u.

For any given x = x(t) ∈ S(LΦ[0, 1]), there exists k > 1 such that

1 = ‖x‖Φ =
1

k
[1 + ρΦ(kx)].

Put u(t) = Φ(k|x(t)|) for all x(t) 6= 0 then

2Φ
(

k|x(t)|
)
= Φ

[

H
(

Φ
(

k|x(t)|
))

· k|x(t)|
]

.
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Therefore, when u = Φ
(

x(t)
)
≥ 0 we have

ρΦ

(
2kx(t)

2ᾱΦ

)

= ρΦ

(
kx(t)

ᾱΦ

)

≥ ρΦ
(
Φ
−1(2u)

Φ−1(u)
· k|x(t)|

)

= ρΦ[H(u) · k|x(t)|] = 2ρΦ
(

kx(t)
)
= 2k− 2.

Because of Theorem 2(i), we obtain

CS(LΦ[0, 1]) ≥ 2ᾱΦ,

which implies (53), by (3).

(ii) Analogously, one can prove (54).

Observe the right sides of (53) and (54) can be changed to be 2β̄Ψ and 1/ᾱΨ by

(15), respectively. From the above two theorems and the same reason as in Lemma 4

and 5, we deduce the results parallel to Theorem 5 and 6:

Theorem 9 Let Φ,Ψ be a pair of N-functions, φ(t) being the right derivative of Φ. We

have

(i) if φ(t) is concave, then

2βΨ[1,∞) ≤ C J(LΦ[0, 1]) ≤ 2β̄Ψ;(55)

(ii) if φ(t) is convex, then

1

αΨ[1,∞)

≤ C J(LΦ[0, 1]) ≤ 1

ᾱΨ
.(56)

Theorem 10 Let Φ,Ψ be a pair of N-functions, φ(t) be the right derivative of Φ. Then

(i) If φ(t) is concave, we have

(A) if FΦ(t) is increasing on (0,∞), then

2Ψ−1(1)

Ψ−1(2)
≤ C J(LΦ[0, 1]) ≤ 2

1

C0
Φ ,(57)

(B) if FΦ(t) is decreasing on (0,∞), then

C J(LΦ[0, 1]) = 2
1

CΦ ;(58)

(ii) If φ(t) is convex, we have

(A) if FΦ(t) is increasing on (0,∞), then

C J(LΦ[0, 1]) = 2
1− 1

CΦ ,(59)
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(B) if FΦ(t) is decreasing on (0,∞), then

Ψ
−1(2)

2Ψ−1(1)
≤ C J(LΦ[0, 1]) ≤ 2

1− 1

C0
Φ ,(60)

where C0
Φ

and CΦ are defined as in (19).

Remark For the N-function Φ(u) = 1
p
|u|p, p > 1, which generates Lp space, by the

argument as in Example 1, we have from (58) and (59) (or (57) and (60)) that

C J(Lp) = 2
1
p (1 < p ≤ 2) and C J(Lp) = 21− 1

p (p ≥ 2).(61)

For the pair of N-functions described in Example 2, i.e.,

M(u) = e|u| − |u| − 1 and N(v) = (1 + |v|) ln(|v| + 1)− |v|.
Since CM = limt→∞ FM(t) = ∞,CN = limt→∞ FN (t) = 1, which implies M 6∈
∆2(∞), N 6∈ ∇2(∞), we have from (59) and (58) that

J(LM[0, 1]) = 2
1− 1

CM = 2; J(LN [0, 1]) = 2
1

CN = 2.(62)

This result agrees with the fact that the spaces LM[0, 1] and LN [0, 1] are both nonre-

flexive.
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