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Abstract

We show that Bogoliubov theory correctly predicts the low-energy spectral properties of Bose gases in the Gross-
Pitaevskii regime. We recover recent results from [6, 7]. While our main strategy is similar to the one developed
in [6, 7], we combine it with new ideas, taken in part from [15, 25]; this makes our proof substantially simpler
and shorter. As an important step towards the proof of Bogoliubov theory, we show that low-energy states exhibit
complete Bose-Einstein condensation with optimal control over the number of orthogonal excitations.

1. Introduction

We consider a Bose gas consisting of N particles moving in the box A = [—1/2;1/2]? with periodic
boundary conditions. In the Gross-Pitaevskii regime, particles interact through a potential with scattering
length of the order 1/N. The Hamilton operator acts on the Hilbert space L2(A"™) of permutation
symmetric complex-valued square integrable functions on A", and it has the form

N N
Hy =Y =Ai+ > Vi (xi —x)) ()
i=1 i<j
where
Vy (x) := N’V(Nx),

foraV € L*(R3) nonnegative, radial and compactly supported. We denote the scattering length of V by
a > 0. Following [15, 16], we define it through the formula

1 1 1 1
dra = = Vx)dx —{ =V, ———=V). 2
na 2/]1@ (x) 2V avIv2 2)
As first proven in [22, 20], the ground state energy En of (1) satisfies
En/N — 4ma 3)
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in the limit N — oo. In particular, to leading order, the ground state energy only depends on the
interaction potential through its scattering length a. In [18, 21, 24], it was also shown that the ground
state of the Hamiltonian H in equation (1) and, in fact, every normalised sequence ¥ € L2(A") of
approximate ground states with

1
v Wn,HvYn) — 4na,

exhibits complete Bose-Einstein condensation in the zero-momentum state ¢o(x) = 1, for all x € A, in
the sense that the corresponding one-particle reduced density matrix y (normalised so that Tr yn = 1)
satisfies

A}linoo<¢o, YNdo) =1.

Recently, a rigorous version of Bogoliubov theory [8] has been developed in [4, 5, 6, 7] to provide
more precise information about the low-energy spectrum of Hy in equation (1), resolving the ground
state energy and low-lying excitations up to errors that vanish in the limit N — oco; and about the
corresponding eigenvectors, showing Bose-Einstein condensation with optimal control over the number
of orthogonal excitations. Analogous results have also been established for Bose gases trapped by
external potentials in the Gross-Pitaevskii regime [10, 11, 23, 25] and for Bose gases in scaling limits
interpolating between the Gross-Pitaevskii regime and the thermodynamic limit [ 1, 9]. Very recently, the
upper bound for the ground state energy has also been extended to the case of hard-sphere interaction,
as announced in [2].

In this paper, we propose a new and substantially simpler proof of the results established in [6, 7].
Our approach follows some of the ideas in the proof of Bose-Einstein condensation with optimal bounds
on the number of excitations obtained in [15]. Moreover, it makes use of some ideas introduced in [25]
for the case of particles trapped by an external potential. The next theorem is our main result; it describes
the low-energy spectrum of H in equation (1).

Theorem 1. Let V € L*(R3) be nonnegative, radial and compactly supported, and let Ey denote the
ground state energy of Hy in equation (1). Then the spectrum of Hy — Ex below a threshold ©® < N'/7
consists of eigenvalues having the form

Z np|pl* + 167ap? + O(N~/17©) )
pe2nrz3\{0}

withny, € N, for all p € 27Z3\{0}.

Remark. Our analysis also provides a precise estimate for the ground state energy E  of the Hamiltonian
Hpy in equation (1), showing that

En =4ray (N - 1)+l Z [w/|p|4+167rap2—p2—87ra+ (87a)* +ONYTy (5
2 2p?

pe2nz3\{0}

with a ‘box scattering length’ ay (defined in the next section) satisfying lay — a] < N~!. This
immediately implies that E is given by equation (5), with ay replaced by the true scattering length a,
up to an error that remains bounded as N — oo. In [6], the order-one correction arising from N(ay —a)
was also computed. Here we skip this step to keep our presentation as simple as possible. Note that an
estimate similar to equation (5) has recently been shown to hold in the thermodynamics limit; see [13,
14] for the lower bound and [27, 3] for the upper bound.

The main strategy we use to prove Theorem | is similar to the one developed in [6]. First we switch
to the formalism of second quantisation, expressing the Hamilton operator in momentum space in
terms of creation and annihilation operators. Then we renormalise the Hamilton operator, conjugating
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it first with a generalised Bogoliubov transformation (the exponential of a quadratic expression in the
modified creation and annihilation operators b; = aLao/ VN, b p= aga pl VN) and afterwards with the
exponential of a cubic expression in (modified) creation and annihilation operators. Effectively, these
conjugations regularise the interaction potential. As a last step, we diagonalise the resulting quadratic
Hamiltonian; this allows us to establish Bose-Einstein condensation with optimal bounds on the number
of excitations and to compute the low-energy spectrum, proving the estimate (4).

Compared with [6], our approach has the following advantages. First, we make a different choice
for the coefficients ¢, of the quadratic and cubic transformations used to renormalise the Hamiltonian,
which should model correlations among particles. Instead of the ground state of a Neumann problem on
a ball of radius ¢ > 0, we consider here the solution of an appropriate zero-energy scattering equation,
describing scattering processes inside the box A. This simplifies the proof of important properties of
¢ and improves cancellations between different terms arising in the many-body analysis. Second, we
restrict the quadratic conjugation to momenta |p| > N® for some 0 < @ < 1. Consequently, it is
enough to expand its action to first or, in a few cases, second order; higher-order contributions are
negligible. This is a substantial advantage compared with [6], where no cutoff was imposed and all
contributions had to be computed precisely (in contrast to standard Bogoliubov transformations, the
action of generalised Bogoliubov transformations is not explicit). The presence of the cutoff means the
interaction is regularised only up to length scales £ < N~¢; this needs to be compensated at the end
when we diagonalise the quadratic Hamiltonian resulting from the renormalisation procedure. Another
important simplification of the analysis concerns the final diagonalisation. As in [6], we implement
it through a generalised Bogoliubov transformation defined (like the first quadratic transformation) in
terms of the modified creation and annihilation operators b, b p- Here, however, instead of expanding
the action of the generalised Bogoliubov transformation to all orders, we compare it directly with
the explicit action of the corresponding standard Bogoliubov transformation, using an appropriate
interpolation. Finally, we use the tool of localisation in the number of particles not only to show Bose-
Einstein condensation (similarly to [7]) but also to compute the spectrum and prove Theorem 1. This
makes the analysis substantially simpler (but provides a worse estimate of the error).

2. Fock space formalism

We introduce the bosonic Fock space

F=PrLiam.

n>0
For a momentum p € A* = 27Z? and denoting u,, (x) = ¢'P**, we define a}, = a’(u,,) and a), = a(u,),

where a' and a are the usual creation and annihilation operators. They satisfy the canonical commutation
relations

[“P’QZ] =0p.q [ap’%] = [a;’Cﬁq] =0. (6)

We denote, in conﬁguration space, the creation and annihilation operator-valued distributions by at,dy;
they satisfy al p= f el rdx, ap = / e™'P* i dx. The number-of-particles operator A/ on F is given

by
N=> aha,.

pEAN*

In the formalism of second quantisation, the Hamilton operator in equation (1) takes the form

Z p al plp + VN (r)ap+r qapaq+r, (7N
pPEN* r,p,qEA*
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with
. 1~
Vn(r) = NV(V/N) 3

To recover the expression in equation (1), we have to restrict equation (7) to the sector with N = N.

Because of the presence of Bose-Einstein condensation, the mode with p = 0 plays a special role
when considering states with low energy. We introduce the notation Ny = agao and Ny = N = N
for the operators measuring the number of particles in the condensate and the number of excitations,
respectively. Following Bogoliubov [8], we decompose equation (7) according to the number of ay, ag
operators. Since (on {\ = N})

ajataoag = No(No = 1) = (N = No)(N =Ny = 1) = N(N = 1) = M. (2N = 1) + N2,

we can rewrite equation (7) as

Hy =Hy+Hi+Hy+ Q2+ Q3+ 04, 9
where
Vn (0
Hy = N )N(N—l), H, =Zp2a;r)ap,
p#0
. Vn (0
= Y Oy (plajay(N - N~ 2O - ),
p#0
and

1 N +
02=5 > Vw(p)laha’ ,aoa0 +hec.l,

p#0
Q3 = Z VN (r) [a;+ra+—raqa0 +h.c. . (10)
q.r,q+r#0
1 .\ -
o =§ Z VN (r)a;+ra;apaq+r~

p-q#0,r#—p,r¥—q

Since we isolated the contributions of the zero modes, from now on we follow the convention that
the indices appearing in creation and annihilation operators are always nonzero except when stated
otherwise.

Naive power counting, based on the fact that ao, ag ~ /N due to the presence of Bose-Einstein
condensation and on the scaling (8) of the interaction, suggests that the terms Q3 and Q4 are small. For
this reason, Bogoliubov neglected these contributions and diagonalised the remaining quadratic terms.
This led to expressions similar to equations (4) and (5) for the low-energy spectrum of Hyp , but with
the scattering length replaced by its first and second Born approximations. In fact, because of the slow
decay of the potential in Fourier space, the operators Q3 and Q4 are not small. They instead contain
important terms that effectively renormalise the interaction and produce the scattering length appearing
in the formulas in equations (4) and (5). To obtain a rigorous proof of Theorem 1, it is therefore crucial
that we first extract the large contributions to the energy hidden in the cubic and quartic operators Q3,
Qy; only afterwards can we diagonalise the remaining quadratic terms.

Let us give a little more detail about the main ideas of the proof. Following the strategy of [6],
we will first conjugate equation (9) with a unitary operator of the form 52, where B, is a quadratic
expression in creation and annihilation operators a, a;, associated with momenta p # 0. The goal of
this conjugation is to extract contributions that regularise the off-diagonal term Q5 and, at the same time,
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reconstruct the leading-order ground state energy 4ray N when combined with Hy. Roughly speaking,
neglecting several error terms, we will find

4 2
e B HyeP ~ dmany (N - 1) + Z ( ﬂa;v)
p
IpIsN* (11)
+ Z (p2 +2V(0) — 87raN)aI,ap + Z dray [a;aip +h.c.]+ Q03+ Q4.
PEAN* IpISN®

As explained in the introduction, an important difference, compared with [6], is that here we impose an
infrared cutoff in B;, defined in equation (13), letting it act only on momenta |p| > N%. On one hand, this
choice simplifies the computation of the action of B, (it allows us to expand it; important contributions
arise only from the first and second commutators). On the other hand, it produces terms, like the sum on
the first line and the regularised off-diagonal quadratic term on the second line of equation (11), which
contribute to the energy to order N“; these terms are larger than the precision we are looking for and
will need to be compensated for with the second quadratic transformation. Notice that the idea of using
an infrared cutoff in the quadratic conjugation already appeared in the proof of complete Bose-Einstein
condensation given in [4] and, more recently, in the proof of the validity of Bogoliubov theory for Bose
gases trapped by an external potential obtained in [25].

Observing equation (11), it is clear that we still have to renormalise the diagonal quadratic term
(proportional to V(0)) and the cubic term Q3. To this end, we will introduce a unitary transformation
B3, with B3, defined in equation (59), cubic in the operator a P a;, with p # 0. Up to several negligible
errors, conjugation with €53 will lead us to

4 2
e Be B Hy P e ~ dman (N -1) + Z ( ﬂazN) .
[pIsN® p (12)
+ Z (p* + 87raN)a;a,, + Z dray [a;ail, +h.c.]+0s4.
PEN® IpIsN®

The only term on the right-hand side of the last equation where we still have the original, singular,
potential VN is Qy; all other terms have been renormalised and are now expressed in terms of the
scattering length a, . Fortunately, Q4 is positive; for this reason, we do not need to renormalise it (for
lower bounds, it can be neglected; for upper bounds, it only needs to be controlled on special trial states).
Finally, in section 5, we will apply a second quadratic transformation ¢+ to diagonalise the remaining
quadratic Hamiltonian on the right-hand side of equation (12). This will lead us to

1 8may)?
e BreBie By B2 eB3eB ~ drrany (N - 1) + = Z \Jp* + 167ay p? — p* — 8ray + Bray)”
24 2p?
+ Z AP+ ptlémay a;ap + Qy4,
P

which will allow us to show Theorem 1. To control error terms, we use the tool of localisation in the
number of particles to show Bose-Einstein condensation (similarly to [7, 25]).

3. Quadratic renormalisation

Starting with the quadratic transformation, we conjugate the Hamiltonian Hp in equation (7) with the
unitary 52, where

I o+ o+
By =5 ; ¢plala’ ,apao —h.c.]. (13)
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We are going to fix the coefficients @, so that the commutator [H + Q4, B>] arising from the action of
the unitary e (13) renormalises the off-diagonal quadratic term Q, (effectively replacing the singular
potential V; with a regularised interaction having the same scattering length). To this end, we choose
¢p satisfying the relations

1 N 14
Pep+ s ;w(p ~0)eq ==5n(p). (14)

for all p € A} = A*\{0}. Equation (14) is a truncated version of the zero-energy scattering equation for
the potential Vy on the whole space R.
To prove the existence of a solution for equation (14), we consider the operator

1
=-A+=V
) SVN
acting on the one-particle space L>(A) (for N large enough, Vy is supported in [-1/2;1/2]? and can
be periodically extended to define a function on the torus). Denoting by P the orthogonal projection
onto the orthogonal complement of the zero-momentum mode g in L2(A), we find (since Vy > 0)
that PyhPy = C > 0, and therefore that PyhPy is invertible. Thus, we can define ¢ € L*(A) through

-1
1 1
¢=—3P; [Pg( A+ zvN)Pg] PLVy. (15)

It is then easy to check that the Fourier coefficients of ¢ satisfy the relations in equation (14).
Using the sequence {¢p} 273\ (0}» We can define the ‘box scattering length’ of Vv by

Sran = N[In () + ) I (0)gy| = VO + N Y W (p)gp. (16)
p p

As proven in [15], we have that jay —a] < N7,
As explained earlier, we first renormalise the high-momenta part of Q,; for this reason, we use a
cutoff version of ¢, to momenta |p| > N for some 0 < @ < 1. We therefore define

QZP =@pX|p|>Nea- (17)

The next lemma lists some important properties of the sequences ¢, ¢ and the scattering length a, that
will be useful for our analysis.

Lemma 2. Let V € L*(R?) be nonnegative and compactly supported. Define ¢ as in equation (15), and
denote by ¢, the corresponding Fourier coefficients. Then ¢, € R, ¢_, = ¢, and

lepl 5 73 (18)
Jorall p € 2nZ\{0}. Moreover, with equation (17), we have
gl s N7/, @l < N7'729, el < 1,
and
N> N (p)@p = 8man = V(0) + O(NT). (19)
P
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Proof. Multiplying equation (14) by ¢,,, summing over p and using that V > 0, we obtain

2pgll ==Y v ey = > V(P = epeg < = D Vn(p)gp. (20)
p p.q p

On one hand, this implies that ||pell> < ||[Vall21l¢ll2 < oo (the last bound is not uniform in N; it follows
from equation (15)). On the other hand, the estimate (20) leads to

2lpell; < IVa/Ipllklpell.

Dividing by ||p¢||> and squaring, we obtain
VN () _ B . A - _
pgll < > s VNP2 X p1<n I+ 1PN Do VN 22T X pisn Il S N7 21
p
Using equation (14) again, we obtain the pointwise bound

N VN (p — q)I*11/2 _
Pl < 10w (] + | = lagl < N7 (22)
q

where we proceeded as in (21) to bound |||V |? # |¢]2||c. This proves the bound (18) and immediately
implies the bounds for ||@||>, ||@|l. To obtain the bound on ||@||;, we divide equation (14) by |p|>.
Proceeding as in (21), we obtain

Z|VN(P)|
IpI? =

p#0

and hence we only have to bound |||p|~2(Vy * ¢)|;. Iterating equation (14) and using the regularising
estimate |||p| 2V * gllop/(6+p)+e < C€||\7N||2||g||p foralle > 0, p > 6/5, g € {P(A*) and some
C. > 0, we obtain that ||¢||; < co. Separating high and low momenta, we obtain for A > 1 and € > 0

el < 1+ Ixipi=an [P 2IVA @l + L pi<an P12 1HIVN * @l

1
S1+A 2glli +A,

where we used that ||@||l. < ||¢|l; and the Holder inequality as in (22) to estimate ||V * ¢||o. Taking A
sufficiently large but fixed, we obtain ||¢]||; < 1
The estimate (19) follows by noticing that, from the definition given in equation (16),

lplsN @ NIP\SN" Ipl

N . N 1 1 _
Sran —V(O) =N Y Vn(p)@p| <N Y nOligpls v >, — s N
P
where we use equation (18) and ||Vy |l < N7". O

Using the bounds in Lemma 2, we can control the growth of the number of excitations w.r.t. the
action of By; the proof of the next lemma can be found, for example, in [12, Lemma 3.1].

Lemma 3. For everyn € N and |s| < 1, we have

+(e BN e’B — N,) < CNTO2(NL + 1),
BN, + )P < (N, + D
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In the next proposition, we describe the action of the operator 3,, defined as in equation (13), on the
Hamilton operator in equation (9).

Proposition 4. We have

4 2
e B Hye™ =4nay(N-1) + Z M +Hi+Hy+ 00+ Q3+ Q4+ Ep,, (23)
[plsN«

with
H, = (2V(0) - 8ran)Na, (24)
0= > 4ray [a;aip “(]’\fo +hel, (25)

[pIsN«
and

+8p, S N™2Qu+ [N + N7 (N, + 1) + NHONZ + N72H,.
To show Proposition 4, we define
D= [Hi + 04,81+ 02 - 05 (26)
with

D! = Z W(p)a;aipaoao +h.c., 27
P

and

W(p) = X|p|<N"[Z N (p - q)soq+VN(p)]—§ IR CETI
q lgl<N<*

We observe that

eiBZHNe82

1
=Hy+H{+04+ / e B [Hy + Qy4, Bz]etlgzdl‘ + e_BngeBZ +e B (Hp + Q3)€B2
0

1
= HO +H + Q4 + / e_th(—Qz + Qé + Fz)eledt + e_BzQzeBz + 6_62 (H2 + Q:;)EB2 (28)
0

1 1 1 K
=Ho+H + Q)+ Q4+ /0 / e B2[0,, ByleB2drds + /0 /O e P20} e"P2drds
S
1
+/ e_tBZFZe’BZdt+e_BZ(H2+Q3)€Bz,
0

where, in the last step, we use

1 1 K
[ emgesa=gie [ [ o105 Bl
0 0 0

1 1 pl
e™P20,e5 - / e B20,eP2dr = / / e™P2[0,, By]eP2drds.
0 0 K
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The proof of Proposition 4 now follows by controlling the terms on the right-hand side of equation
(28). This is accomplished through a series of lemmas. We start by controlling the contribution arising
from H,.

Lemma 5. On {N = N}, we have
e B HyeP = V(O)N, + En,s (29)
with
+Em, < N"2(No +1) + N2/N + N2 H,.

Proof. We have

!
e P2 HyeP = NZ Vn (P)(a;ap +/ e~sh2 [a;ap,Bz]e“'Bzds)
0
P

. (Z O (praaph + 0O N, - 1))e32. (30)
P

The term on the second line is controlled using Lemma 3 by N~! A/2. For the second term in parenthesis
in the first line, we use Lemma 3 to estimate

+ Z NVN(p)[a’ pap: B2l =+ Z NVN(p)gapapa_paoao +h.c.
< C||90||2(N0 + DN+ 1) < NN+ 1),
where we used that Ny < N and Lemma 2. Finally, since Vy is even, we obtain
NIVn(p) = Vn(0)| < II¥*VIIN~>p® < CN72p?
which gives

NZ VN (p)a};ap - V(O)N+ < N_2H1. O
P

The estimate of the term involving Qs is obtained analogously to [7, 15]. We repeat the proof for the
sake of completeness.

Lemma 6. We have
e™203¢% = 03+ £o,,
with
+£0, S N"Y2(Q4 + Ny + 1),

Proof. We can rewrite

e 820565 = ZVN(}")[ Bzaq+ al eBze BzaqaoeBz +h.c.|. (3D
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Via Duhamel’s formula, we have

1
e_BzaIHraLeBz = ajﬁr(f_r +/0 e~shB2 [aIIJrraL,Bz]eSBst (32)

and

1
-B B —sBy ~ ~ Ty 8B
e agape 2=aqao+‘/0 e 2(<pqaiqa0a0a0—aq E @ia—jajay)e’*ds.
I

The product of the first terms, combined with its hermitian conjugate, corresponds to Q3 in the statement
of the lemma. All other terms will be estimated in three steps.
Step 1. Passing to x-space, we find

1
| Z%VN ") / (€ ajra’ e Bal Jagaoaoe’™¢) dS|
0
q.r

1
= / / dxdyViy (x = )(§, dLd)e ™" (Gr)agaoage”™€) ds
0 A
.. 2 1/2
< ([ e -yl ) ()

by 12
([ aarvte=n [ 18 GoaoananeelPas)
A 0

< CN*P v V21110, NN NG + 1) 2|
< CN™(E (Qa+ N+ 1)8),

where we used Lemma 2, Lemma 3 and the bound Ny < N.
Step 2. Similarly, we have

1
| ZVN (r) Z ] / ds (¢, aj1+raire_SBZaqa—Iala(')ngzf)}
q.r 1 0

1
. . 4
:‘Zgﬁl/ ds/ dxdyVN(x—y)(f,alca{ye_sgzaxa_lala(')emzf)| (34)
7 0 A2

< ClIGllVa 11105 PE NN NG + 12N < CNTU2(E, Qu + No + 1)8).

Step 3. The remaining term has the form
A 1 o+
Z VN (r) /0 e B2 af at, Brle" VP2a,a0eP ds.
q.,r

A straightforward computation gives
[a;wair» B] = _(eragwar + @—r—qaira—q—r)agag

The contributions of the two terms in parenthesis can be handled similarly. Let us consider, for example,
the expectation
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1
MG / (€,e7 B al, aralage VP agane™e) di|
q.r 0
1 ! _
< D18 [ lageranane V5 ella, e aganeelds
N &,

1 1/2
~ 1/2 c—
< gl el /0 (2 Nlaret B aqane™el?) ds
r.q

S IGILINTZENING + 128 < N9, (N, + 1)8),

where we used Lemma 2 and Lemma 3.

11

(35)

]

Next, we recall the definition of I, given in equation (26) and consider the term containing I’

appearing on the right-hand side of equation (28).

Lemma 7. We have

I; = Z VN(r)‘:Dp[ p+rgd Tp q+ra0a0+h-c']
r,p.q

and
1
/ e BoyetBdr < N~ (04 + Ni + 1).
0

Proof. Straightforward calculations yield

[H1982 Zp ‘1017 p —pa0a0+hc]
and

1 N
[Q4, B8] = EZ N(p— q)(,oqapafpaoa0+ Z VN(r)gop pir@ ;aLpaq+ra0a0+h.c.
P-q r.p.q

Hence,

[Hi+04,B2] + 02 = Z (szﬁp Z Vn(p—q@)eq + VN (P))(ap al,apap +h.c.)

[pI>N<«

1 .
) Z Vn (p = q)¢q(ala’ ,apao +h.c.)
IpI>N |gl<N®

> ( > VN(p—q)soq+‘7N(p))(a;af,,aoao+h.a)

[PISN® |q|>N*

+ Z Vn(r)@pa p+raq jpaqwaoao
r.p.q
~, N v s
=Q)+ Z VN(r)cppapwac'la',paqwaoao,
r.p.q

(36)

(37

(38)

where we used the scattering equation (14) and the definition of Q~§ given in equation (27). Comparing

with equation (26), we find equation (36).
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To prove the estimate (37), we write
1 1
/ 1B, otBagy = Z Vn(r)é, / e”BZa;Ha;et&e”Bzafpanrraoaoe’Bzdt,
0 Pa.r
and we proceed similarly as in Lemma 6. We omit further details. O

Next, we focus on the contribution with the commutator [Q», 3>] on the right-hand side of equa-
tion (28).

Lemma 8. On {N = N}, we have

1 pl
//e_tBZ[Qz,Bz]e’BZdtds
0

=L 00 - sran) - TS Gn(p)gy + M (P(0) - Sran) + Elg,m
IpIsN@ 39)
and
+8(0,.5] S (N2 + N YN, + NT' (WG + D2+ N0y (40)

Proof. First, we claim that
1 pl
, NN=-1) < . S
‘/0 / e P [0,, Byle' P dtds = T) Z VN (p)@p — NN: Z VN(P)@p +E[(g, 5, (4D
S p p
with
& ZNZVN(p)<p / / [e"P NP — N, ]deds
[02.8:] P +
+ ZVN (P)¢p / / e PN (NG + 1)e'P2drds
0 s
+2ZVN(19)90p/ / “BNG(N = Dl Lape eBrdrds

—ZVN(p)soq/ / “Balal a_gag(2Np +1)e'Pdids. (42)

To prove equation (42), we calculate

1 - .
[02, 8] = ) Z Vv (p)@q [azajpaoao + a_papagag, agafqaoao - a_qaqagaz;]

4ZVN(p)<pq([ a_papa g (T),aq _qaoao] - [a;afpaoao,a_qaqagag]). (43)

The two terms in brackets are hermitian conjugates. Hence, it suffices to compute the second one

[a;alpaoao, _qaqagag] = [a_qaq,aj,alp] gagagao - a’palpa_qaq [agao,agag],
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where
la_pap.afa’ ] = (6p.q+0p-g)(1+aha, +a’ ,a_p), (44)
and

agagaoao =No(No—1)=N(N—1) =2NN; + No (N, + 1),

P (45)
[aoao, agay] = 2(2No + 1).
Inserting these identities on the right-hand side of equation (43), conjugating with e’%? and integrating
over ¢ and s, we obtain equation (42).
With the definition given in equation (16), we write

N(N -1 N N-1) . N(N -1 A

and we use the bound (19) to estimate

i[ ~NNL Y O ()@ + (8may — V(O))M] < NI\
p

’

Thus, Lemma 8 follows from equation (41), if we can prove that £ (0.5]

in (40).
Using the bound

satisfies the estimate given

|Z VN(P)¢p| < N7
p
and Lemma 3, we can bound the first term on the right-hand side of equation (42) by
1 pl
iZNZ Vn (P)@)p / / [e7B2N e'B2 — Ny |deds < NTO2 (NG +1).
0 s
p
Also, the second term on the right-hand side of equation (42) can be bounded with Lemma 3; we find
. 1 pl
+ Z VN (P&, / / e BNL (N, + De'Brdeds < N“H(N, + 1)%
0 s
p

For the third term, we use |[Vyllo < N7, [|Glle < N™'72® together with Ny(Ny — 1) < N? and
Lemma 3 again to conclude that

1 pl
J_r2z VN (P)@p / / e BN (N + 1)eP2drds < N72ON,.
0 N
p
To control the last term on the right-hand side of equation (42), we write
A 1 pl
Z VN (P)@q/ / e"BzaLaipa_qaq(ZJ\/'o + 1)e'B2drds
0 s
p.q

1 pl
= ZVN(P)/ / e_tgza;aipe’Bze"Bz@QNo+ 1e®2drds,
I3 0 K
(46)
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where we define @ = 3}, §,a-4a4 so that, by Lemma 2,

DN < IGILINEN < N7 NG (47)
Next, we expand
t
eftha};clipe”32 = a;aip +‘/0 e h [a;r,aip,Bg]eTBsz. (48)

Inserting this identity into equation (46), we obtain two contributions. The first contribution can be
controlled by passing to position space. We find

1,1
iZVN(p)/O / a;afpe_’62®(2N0+ 1)e'B2drds
P S

_+/ / drdyxVy (x = y)dLdle P d(2N + 1)e'Pdrds + h.c.
A2
<604+ 87 N2l 2, IV (Ve + 1)? S N7y + N7 (NG + 1)2

On the other hand, the contribution arising from the second term on the right-hand side of equation (48)
can be controlled by

1 pl
iZVN(p)cﬁp/ / / _TBZQT T(Za ap + De™2e7Bod(2N, + 1)eBdrds + h.c.
D 0 s 0
< NN +1)20 (49)
This concludes the proof of (39) and (40). |

Finally, we control the contribution with the commutator [Q», B>] in equation (28).

Lemma 9. We have

bors —tBar /3 tB NIN-1) %
/o‘/oe *[Q2, Ba]e Zdtdsz_T Z VN (P = Deppq +Ep,8,>  (50)

[PI>N® |g|<N®
with
£E0,81 S N72Q4+ N7 (N, + 1)%.

Proof. Using that |, <y @, = 0, similar computations as in the proof of Lemma 41 yield

(02, B>]

1 . -
== Z VN (P = 9)pqbr
|p|>N" lg|l<N<.r

x (a'al ara_,[aoao, S 0] +[a ara_;la g 0a0a0)+hc 5D

p--p —p’
1.
= Z 1V (P —aeq
[pI>N<, |q|<N"

x ((2alal , ®(2Ny+1) +hec.) - 4gap(a a,+al pa-p)No(No = 1) = 4G, No(No - 1)),

p—p
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with the notation ® =, @, a,a_,. To bound the contribution arising from the first term in parentheses,
we decompose

1 N ‘
5 2 Wp-a)ggaha 02N+ 1)
IPI>N®,g|<N<

1
=5 Z VN (p = q)¢qala _p<1>(2/\/o+1)—§ Z VN (P = @)pqaal , @Q2N, +1).

p.lglsN@ IpllglsN®

(52)

The first term can be controlled by switching to position space. With the notation $< for the Fourier
series of x|4|<ne@q, We find

Vn (p — q)pqa,a’ ,®2Ny + 1)
P.lgIsN@

=+ /2 dxdyVy (x — y)¢<(x — y)ala;d)(ZNo +1) +hc.
A

| =

<604+ 8 NIV G T+ 1D,

where we used the bound (47) for ® and Ny < N. With
1

1/2 A 1 2 _
N E= D WnG-aepea < 55| D pa| s (53)
Ipllgl<N @ lpl=ne P

a/2

and choosing § = N~%/~, we conclude (since @ < 1) that

+

D1 Un(p - egalal QNG +1) < N7204+ NN + 1),
pslglsN*

N =

For the second term on the right-hand side of equation (52), we estimate

Vn(p = @)pgaba’ ,@2No + 1) +he. S N™2| x| ene Vi + @< [l (Vo + D2,
Ipllgl<N<

| —

where, again, we used the bound (47) and Ny < N. With

A v 1/2 1/2 + _
IxipienvaVn * 0<Ib < lxiprene iz Ve @<l € N3PV LIV @<l s N2+

we conclude that

H

N =

Z Vn(p - q)goqa;,aipcb(ZJ\/'o +1)+hc. < N229N, +1)%
Ipl.lgl<N<

The contribution arising from the second term in parentheses on the right-hand side of equation (51)
can be bounded by

+ Z VN(P - Q)SOq‘)Zpa;apNO(NO -1 s N_l_aNh

[pI>N<,|g|<N*

using that ||G(Vx * @) |lze < [|@lleolVa &<|li < N3~ For the contribution arising from the last term
on the right-hand side of equation (51), we write Ng(No — 1) = N(N — 1) = 2NNy + Ny (N, + 1).
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The contribution proportional to N(N — 1) produces the main term on the right-hand side of equation
(50). The other contributions can be bounded, noticing that

VNP = )epeq| < 16VN &=l < 18llellVN &=l s N2,
[pI>N,|g|<N®

where we used || @l < |[|@|li < 1, by Lemma 2. O
We can now finish the proof of Proposition 4.

Proof of Proposition 4. Combining equation (28) with the bounds proven in Lemma 5, Lemma 6,
Lemma 7, Lemma 8 and Lemma 9, we conclude that

e P HyeP =dnany (N = 1)+ Ag + Hi + Ho + 05 + 03+ Q4 + &, (54)
where
+£ < N P04+ [N‘“/2 + N"‘l] (Ne+ 1)+ NHON2 4 N72H, (55)

and where we defined

N(N-1) N ~
Ag :_T[ Z VN (P)ep + Z VN(P—Q)SOP%]
[p|sN«@ [pI>N,|g|<N*
N(N -1)

Z_T[ Z (VN(p)+\7N*¢p)<pp— Z VN(P—‘])‘Pp‘Pq]-
IplsN@ Ipl.lglsN«

The second term in parentheses can be estimated as in (53). Setting, in position space, f = 1+ ¢, we find

Aa=-NEZD S Gk g, + O, (56)

2
IpIsN®

From equation (16), we have Vi f(0) = 8may . Hence

|(Vn * £)(p) — 8man /N| < /A Vi (x) f(x)|e™"P* = 1|dx < C|p|/N?. (57)

Moreover, from the scattering equation (14), we find
! (Vn = H(p)
= —— *
Pp 2p2 N P,

which implies, by the bound (57),

dran

|<pp * Np?

1 C
< V 8man| <
| 32l (T () = 8man| < s

Inserting in equation (56), we obtain

Ay = Z (47TaN) O(N2ar 1)

lpI<N <
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To conclude the proof of Proposition 4, we still have to compare the operator Q~§ appearing on the right-
hand side of equation (54) with the operator 0, defined in equation (25). From equation (27), we can
write, using again the notation f =1 + ¢,

s o $7an | 1 A .
0 -Q2=35 Z [(VN « f)(p) - T] aha® ,apao - 3 Z VN (p = @)pqaj,al ,a0a0 +h.c.
IplsN @ P.lglsN @
(58)

The first term on the right-hand side of equation (58) can be bounded using the bound (57) by
A A 87‘1'(1 R
+ Z [(VN * ) (p) - TN] (ala’ ,aoao +h.c.)
Ip|sN@

1 — a
< 1P Lipiene (NG + 1) 5 N5 + 1),

For the second term on the right-hand side of equation (58), we set <p; = @pX|p|<Ne and estimate,
switching to position space,

+ Z(VN 0 )(p) a;aipaoao +h.c.
p

=+ /2 dxdy Vy (x — )@= (x — y)a;a;aoao +h.c.
A
< 604+ N2V I Ig=II3 < 6Qa +67'NT12% < N7020, 4 N7IH90/2,
since [|¢<|lo < ll¢=<Ili < N®, from Lemma 2 (in the last step, we chose § = N~%/2). The last two

estimates show that the difference Qé — 05 can be added to the error (55) and therefore conclude the
proof of Proposition 4. O

4. Cubic renormalisation

While conjugation with e allowed us to renormalise the quadratic part of the Hamiltonian H , regu-
larising the off-diagonal term Q», it did not significantly change the cubic operator Q3. To renormalise
Q3, we proceed with a second conjugation, with a unitary operator e, where

B; = Zg{vp)(wgva a;waipaqao—h.c., (59)
p.q

with the same 0 < @ < 1 used in the definition given in equation (17) of ¢. Similarly to what we did in
Lemma 3 for the action of 3,, it is important to notice that conjugation with ¢ does not substantially
change the number of excitations.

Lemma 10. Forall s € [-1;1] and all k € N, we have
i[e*BSMe“”‘s N S NP, (60)

eBI(N, + DFesB < (W, + DE. 61)

Proof. We proceed similarly as in the proof of [7, Prop. 5.1]. For & € F, we set f(s) = (£, e B (N, +
1)esB3¢). For s € (0; 1), we find
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f'(5) = (€. e B[NL + 1), Bs]e*¢)

= Z GpXiglene (€ e Pal,, a’ agace’®¢) +he.
P
S0 Z@:’ e Bay,al ja_papiget®E) +67! Z |@pl* &, e B alagalaoe’™ &)
P o
S 6(e BN ) + C5TINNGI(E e BN B E) s NP £ (s),

(62)

where we put 6 = N~'7%/2 and used that N;, Ny < N, |||, < N~'=%/2, by Lemma 2. With Gronwall’s
lemma [26, Theorem 1.2.2], we obtain f(s) < (&, (Ny + 1)€) for all s € [-1;1], proving the bound
(61). Inserting this estimate on the right-hand side of (62) and integrating over s, we obtain the desired
bound (60). For k > 1, the bound given in (61) can be shown similarly. m|

The operator B3 is chosen (similarly as we did with B, in Section 3) so that the commutator
[H| + Q4, B3] arising from conjugation with ¢ cancels the main part of Q3. The goal of this section
is to use this cancellation to prove the following proposition.

Proposition 11. We have

e_B3e_BzHN B2 eB

1 8may)?
=47raN(N—1)+Z Z w
iplenve P (63)
1 apa
2 040
+Zp:(p +87TaNX|p|sN")a;ap+§l ;\] SnaN[a;ai,,T+h.c.]+Q4+533,
p_ [e3

with

+Ep, < N2H + N"¥20, + N"2 (N, + 1)

+N(3a—1)/2(N+ + 1)3/2 +N—l+5¢1/2(N+ + 1)2 (64)

To prove Proposition 11, we define
I3 := [Hy + Q4, B3] + Q3. (65)
Starting from equation (23), we compute

(47?(11\/)2 _

e Be BrHy PP — dman (N - 1) - Z 5

> 6_83 (ﬁz + QZ + 532)883
pIsN*

1
=H{+Q4 +/ e !B [H| + Qq4, B3]€thdt + 6783Q3683
0

1
=H; +Q04+ / eit83(—Q3 + F3)et83dl‘ + eiB3Q3eB3,
0

which leads to

dray)? Aox
6_636‘_82[‘11\/662663 =47T(1N(N— 1) + Z % +H1 +Q4 +e_B3(H2 +Q2 +532)eB3

[plsN@ P (66)
1 1 pl
+/ 9_’B3F36’B3dt+/ / e7B[Q3, Bs]ePrdrds.
0 0 K
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To show Proposition 11, we are going to control all terms on the right-hand side of equation (66). We
start by computing and estimating the commutator in equation (65), defining the error term I'3.

Lemma 12. We have

[H1, B3] = Z Vn (P = 1) (S0 + @r) X|pl>NoX gl <N Qpsgd pdqao +h.c. + Elm 5,1 (67)
par
[Q4, B3] = Z VN(P—r)¢rX\q|<Na(ap+q paqao +h.c.) + &0, B (68)
r.p.q
where

ig[Hl,B3] < N_Sa/zH] +N_1+Sa/2(./\/'+ + 1)2,

(69)
+E10,.55] S N™2Qu+ N2 (N, +1)2

Proof. A simple computation shows that
[H.Bs1= ) [(p+q)°+p° - q°|¢ wdl, al +hec
1,93 ptq P —4q |$PpXiglsNalpigd_pdqdo T0.C.,
p.q

2~
= ZZp gopX|q|SNaa;+qajpaqao +hc. +E&m, B,
Pq

with

5[[.11553] = 22]) . q¢px|q|sNaaL+qaipaqao +h.c.
p.q

Using the scattering equation (14) yields (67). We now estimate £y, 5,]. Using |g| < N¢, we find, for
any 6 > 0,

+EH,,B;] = +22p . q¢px|q|§N(xa;+qaip(J\/'+ + D)V l)]/zaqao +h.c.

<6Zp ap+q _,,(N++1) Ya_papsg +67! Z q2|<,5,,|2a;(./\/'++1)aq(a$ao)

pilgIsN@
< SH1 + 67 N2 1[5 (N + 12

Choosing 6 = N —3a/2 we conclude that
ig[Hl,Bﬂ < N_Sa/zH] + N_I+SQ/Z(N+ + 1)2.

Let us now turn to (68). Recalling (10) and (59), we find

Q4’ 63 2 Z Z VN (r)‘me|n\<N“ [ap+r qapaqﬂ" a;rﬂ+najmanao] +he.

r,p,q mn

=5 Z D VN ()i <na

p.q m,n

| —

T T i i
X {apwazl [apan,,, ammafm]anao +a . .a . [amraji, anao]apaq+r }

Using equation (6) and rearranging all terms in normal order, we arrive at

[Q4, B3] = Z ‘A/N (p- r)@rX\qlSN" (a1—7+qajpaqa0 +h.c) + 5[Q4,33]’
r.p.q
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where

— 1, = T ot
2810851 = — Z VN (”)‘PmX|p+r|gNa am+p+ra_mal']aq+rapao
p.q.m.r

A ~ T 4 T
- Z VN (r)QOmXVI\SN" am+qa'—map+raq+rapa()
p.q.m.r

% ~ il o
+ Z Vn (r)‘me|q+r—m|SN“ Apird_pmQgQg+r-mAdpao
p.q.m,r

A ~ -;- £y
+ Z VN (F)@mX | p-m| <N Qppr@L @b agirap mao
p.q.m,r

(NG toog ot
+ Z VN (r)go—q—"/\/\mKN" Ap+rQgl_g—r+mdpamao
p.q.m.r

6
% ~ T _.
+ Z VN (r)@—-pX|p-m|<Ne ap+ra;aimaq+rap,mao+h.c. =: Zé’i.

p.q.m,r i=1

For a parameter 6 > 0, we find

+&1 < OlVN 2 <va lhAG + 67 IG5 - enve IWNZNG

< NT1Sal2 02,

where, in the last step, we chose ¢ = N~%/2 and used Np < N (and Lemma 2). To estimate &, . . ., &,
we switch to position space. For arbitrary ¢ > 0, we find

+& =+ /2 dxdyVn (x = y) X|.|<ne (2= y)aiaT(éz)aiaxayao +h.c.
A

A

< Sl gee B Quajan +67! [ axdyVicx - yyala' (F)alasa(@)a,
A

S 6N1+3(1’Q4 +6—1N—3—(l./\/‘3

s N—d/2Q4 +N_2+5(Z/2N3,

where, in the last line, we fixed § = N~'=72/2, Similarly, we find

+& =+ /AZ dxdyVy (x — y)aia;a*(cﬁz)a(/\?hsNa)axao +h.c.

< 604+ 5" NIVN Il L1 25 BIBIF NG + 1)°

< N—(t/2Q4 +N—2+5a/2(N+ + 1)3’
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taking § = N~%/2. Furthermore, for an arbitrary ¢ € F, we have
(6. £0) =] [ dndyVi (x = 9)fjen = (€. alalal (F)ayazad)

< K enello /2 dxdyVy (x = y)llaxaza(¢*)éllllayazaof||
A

S Ixpiene @IV il [(€, NZE) + (€ N2NoE) |
< N7Wal2e A2¢).

For &5, we estimate

+& =+ /Z dxdyVy (x = y)@(y — z)a;a;a;(/\ﬁr + 1)V (N 1)1/2axa()2|_|<N(,)ao +h.ec.
\ <

<604+ /A dxdyVy (v = 3)[6(z = y)Pala’ OF |y a)agWVe + Daoa (¥ ya)ax

<604+ NIV ¥ <na IS IB15 (NG + 1)
s N—w/2Q4 +N—2+5Q/2N3’

21

again choosing § = N~%/2. By a simple change of variable, it is easy to check that & = &s. This

concludes the proof of the lemma.

With the bounds from the last lemma, we can estimate the operator I3 defined in equation (65).

Lemma 13. We have
I3 < NPH, + N7*P2Q4 + N3PV, +1)32 4 NPV, + 1)%
Proof. With Lemma 12, we find, using the scattering equation (14),
[3=[Hi +04. B3| +03= 031+ 032+ 03 +E[m.58,] + 104,55
with

_ 2 P
Q3’1 = - Zp CpX|pl<NeX|g|<N@ ap+qa'_paqa0 +h.c.,
p.q

~ _ A T EX
Q32=- Z Vn(p - r)‘PerrlsN"qulsN" ap+qa'_paqao +h.c,
pP.q,r

07 = Z Vn (p))(‘q|>Naa;+qafpaqao +h.c.
p.q

It follows easily from Lemma 2 that ||X|p|§N¢1p2¢p||2 < N™1%¥39/2; thus
+031 s N7V2Ba2(N, 4 1)32,
Denoting ga; = @pX|p|<Na, WE Write Q~3,2 in position space as
+03, =+ /} dxdydz Vi (x — y)@=(x = y) ¥|.j<nve (x — z)a};a;azao +h.c.
A‘

_ 1/2
< 604+ 5 NIV G IR Iy anve (NG + 1)
S N—(l/2Q4 +N—2+5(I/2(N+ + 1) ,
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al2

where we chose § = N~ and used the estimate

/A“T(/\V/I)fISN“) a(¥f|cya) v = (] cya) < lpsnve QNG < AL

Proceeding similarly, we find
iQ3> = i/ dxdydz VN (x - )’)/\\;||>N“(x — Z)a;a;azao +h.c.
A3
<604+ 6 'N2Vy 1 Hy < N~ Qy + NT392Hy,

where we took § = N~%/2 and used that

/AaT()zlx_bN(,)a()szbN(,)dx: Z aha, < N7“Hj.
IpI>N<«

(74)

Combining the bounds for Q~3,1, Q~3,2, Q7 with the estimates for &g, 5,1, £[0,.5;] from Lemma 12, we

obtain the bound (70).

O

To obtain similar bounds for the integral, we also need a priori control over the growth of Hy, Q4.

Lemma 14. We have
e B0, < Qs+ No+ 1+ NN, + 1),
eBH 1B < Hy + Q4 + Ny + 1+ NTIPON, +1)2
Proof. For arbitrary & € F, we define f(s) = (¢, e™*53Q4e*B3¢) so that

f(s) = (£, e753[Q4, B]eB2¢).

From Lemma 12, we find

[Q4, B3] = Z VN (p = 1)@rxiglena(@higal yagao +he) + Eg, 5,
r’P’q

where
£E10,,8:] S Nﬁa/2Q4 + N71+5a/2(/\/’+ + 1)2.

Switching to position space, we have
Z Vn (P = 1)@rxiqi<ne (@ al jagao +he)
r.p.q

= Z Vn(p - r)cﬁr/\(|q|sNa(a;+qaipaqao +h.c.)
r.p.q

= [ axdy Vi = 30 - yalalalef ey oao + e
A

< 0+ [ vy Viv(x = DI - »)Pafa’ Gf ey ) o)

S Qu+ NIVN GBI IXT cnelloo S Qa + N,
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where we used Lemma 2 and argued as in (74). We conclude that
+[04.B3] < Q4+ No + NN+ 1)2,
Therefore, using Lemma 3, we find
F1(5) S f(5) + (€N + NTIOE (N + 1),

By the Gronwall lemma, we obtain the bound (75).
To prove the estimate (76), we proceed similarly. For ¢ € F, we define g(s) = (£, e B3 H e’B3¢)
for any |s| < 1, which leads to

g'(s) = (&, e B H 1 e*P¢).

From Lemma 12, we have

[Hla 83] = Z VN (P - r)(éo,r + ‘Pr))(lp|>N"X|q|SN"a;+qaipaqa0 +he. + ngl»BJJ’
p.q,r

where
+E1m,.5] < NZPH + NTW(NL +1)2

Writing y|p|sne =1 = x|p|<ne, We decompose

Z VN (p - }’)(50,r + <pr)/\(|p|>Na)(|q|SNaaIaniPaqao +h.c.= 51 + 52,
p.4q.r

where

== /2 dxdyVy (x — y)(1 + @) (x — y)a;a;a()zmsN(,)ao +h.c.
A
S Qa+ NIVN LI+ DMy v NG € Qa + Ny
and

igz =+ Z VN (p - r)(éo’r + ‘p,))ﬂ,,|3Na)(|q|sma;+qaipaqao +h.c.
p.q.r

< VAT + )l [SAZ + 67 NIy <130
<N [cwf + 6‘1N1+3"N+] S No+ NT1Bap2
choosing in the last step 6 = N 3@ Thys, with Lemma 3, we find

8'(5) S f(5) +8(s) + (€, N + N7 (Mo + D)%),
With the estimate (75) and applying Gronwall’s lemma, we obtain the desired estimate (76). m

In the next lemma, we control the contribution on the right-hand side of equation (66) arising
from the commutator [Q3, Bs].

Lemma 15. We have

1 1
/ / e™'P3[ 03, B3]e™P3drds = 2(8ran — V(0)N: + E[0,.5]»
0 s

https://doi.org/10.1017/fms.2022.78 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.78

24 Christian Hainzl, Benjamin Schlein and Arnaud Triay
with
ig[QLss] < 1\[’2(71-11 +N*0/2Q4 + I:]\]*a/2 +N*1+a/] (N+ + 1) +N—1+5a//2(N+ + 1)2

Proof. We compute

[03, B3] = Z Vn (P)@rXx|si<Ne [a;waipaqao +aga2a_1,ap+q,ai+sairasa 00— agaza |
P.q.r.s
= >, WPrxisienalapgal jagao,al,al,aga: 0] +he.
p.q.r,s
+ Z Vn(p)@ lalala : —rayes,al,a’ agag] +h.c. =: (I) + (1)
N\P)¥rX|s|<Na o%sY - r+s> U prgl-ptqdo L. = .
P.q.,r,s
77
We start by estimating term (I). With the canonical commutation relations, we obtain
% = SR ~ LS
I = Z Vv (p) [gor/\/‘q_,|3Naa;+qa'_pa_raq_r + (,pq)(|r|SNaa;+qa_pa,q+rar
P-q.r
N (78)

- + T ~ f ot
~ @rX|g+p|<N@OriprgdrQ_pdg — PrX|p|<N@Cp_pa_,ap 404 (dodo + h.c.

= (D + Dp + De + (Da.

To estimate the first term, we rewrite it in position space. We find

+(D, =+ /2 dxdy Vy (x — y)a;a;a%(gfvx)a()z‘x_lsNa)aoao +h.c.
A

<6Q4+6"" / dxdy Viy (x = y)a" Gl oy )a(@)a’ (8%)a (] <y o) agagaoan
A
< 6Q4 + 67 N2 GIEIVA il <nve 2 (Ne + D)2

<604+6 NN+ 1)2 < N2, + NTITU2(N, + 1),

where we used that My < N and the bound (74) and, in the last step, set 6 = N ~@/2 The second term in
equation (78) is dealt with similarly. We obtain

+(I)p =+ /3 dxdydz Vi (x — y)@(x — 2) aia;aia()zf|<NQ)aoao +h.c.
\ <

<6Q4+67" /A dxdyde Vi (x = )G (0x = 2)a’ (FF ) (Vo + Dalif |y w)agagaoan
<604+ 6~ NGIZ IV Ity <nve 3 (N + 1)

SN PO+ NP+ 1),

choosing again 6 = N ~@/2_ For the third term in equation (78), we bound it, for an arbitrary § > O,
with Cauchy-Schwarz by
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(e 6 > ON(Da)spgal,al, (W + D)7 pararipig
p.4q.r

+67 3 1N (DG P Xigepineal (Vs + Dagagataoas
pP.q,r

S (OlVa Il + 67 NG IVN # x) 1 <velloo) (Na +1)2
< N—1+5(t/2(N+ + 1)2,

where, at the end, we took § = N~ and used ||Vx # X[ |<Nelloo < ||\7N||OO|IX|.‘SNQ||1 < N7 The
last term in equation (78) can be bounded, again by Cauchy-Schwarz, by

£(Da $ 6NG + D2+ 67 N IVN NG Ly enve li (Vs + D s NTHON+ 1)

where we used 6 = N?.
Let us now consider term (II) in equation (77). We write

()= > In(P)Erxisizne

p.q,r,s
‘ oot g 79
X {agal [a_rarﬂ., a;”qa_p]aqao + aIanip [aoal, aqao]a_rarﬂ} +h.c. (79)
=: (Il), + (11)p.
With
a;maip [agai, aqao]a_rarﬂ = —0sq aIanipagaoa_,arﬂ - a;+qafpaqa:a_rar+s,
we obtain
Dy = - Z VN (p)‘ﬁﬂ(lglsN“ a;+qajpagaoa—rar+q
Pq.r
— Vv (p)@ i ot
N\P)PrX|s|<N@ ap+qa—pasaqa—rar+s
P.q,r,s
- Z VN (p)¢rX|q|SNa a;+qajpa—rar+q = (IDp1 + (Ip2 + (ID)p3.
pr.q
We can bound (II),3 by switching to position space. We find
(s = + / dxdydudv Vi (x = y) ¥} j<ve (¥ = 1) (u = v)aiala,ay +hie.
A4
S ONIGI3 Qa+ 67 1k <nvells (Wi + 1)F NP0+ NN, +1)%,
Term (II)p; can be bounded analogously, but it contains an additional factor Ny = agao < N.Thus

+(I)p; < N™2Qq + NN, +1)%
Term (II)p; can also be bounded in position space. We obtain
+(I)py = + '/'3 dxdydu Vy (x — y) a;a;aT()?rlqu)axa(tﬁ”)au +h.c.
AA
< 6l <nvall} QaNe + 67 IV IHIGIE N + 1)7 s N72Q4 + NTHO2 (N, +1)2,

where we chose § = N~1-7/2,
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Let us now consider term (II),,, defined on the right-hand side of equation (79). With
agai [a_raHS, a;ﬂlafp] aqao
. 4 . .
= agai{(s—r,pﬂga_parﬂ' + 6r,pa,')+qar+s + 6r+s,p+qa—raip + 5r+s,—pa—ra1;+q}aq309

we obtain, rearranging the terms in normal order (with appropriate changes of variables),

(IDg = Z (Vv (p) +Vn(p - 6]))95pX|q|gNaa(T)a;aqao

pP.q
+4 Z Vn (P)PprgXis|<Ne agazaipa,p,q”aqao +h.c. (80)
P49,
=23 (W (P) + VN (P = 0)Bpxigisneaalaga + (M,
p.q

where we can bound, with Ay = agao <N,
(a1 < NV llo [SIIBIE + 67 i el [NZ < NN, +1)2,

choosing § = N'~®. Collecting all the estimates we have proved so far, we conclude from equation (77)

that
[03.B3] = 22 (Vv (p) +Vn(p - 61))95pX\q|sta$a;aqao +&1,
p.q
where
+€ < N™2Q4 + N2 (N +1)% (81)

At the expense of adding an additional small error to the right-hand side of the estimate (81), in the

main term, we can replace agao = N — N, by a factor of N, since

£ 3 (In(p) + VN (p —~ ) EpigrenealNaag < NGl NG +1)> s NN + 1)
p.q

Moreover, from

=N (Vv (p = @) = Vn (2))pXiglenaalag
p.q

< > 1a/NIIVVlsl@plxigisveabag < IGINTTON, s NTHONL, - (82)
pP.q

we arrive at

[03,B5] =4N Y Vn(p)gp Y. ahag+&s,
p

lgl<sN<*

where
igg $ N—(I’/ZQ4+N—1+QN‘++N—1+5G/2(N‘++ 1)2.

Conjugating with ¢33 and integrating over ¢ and s, we obtain, with the help of Lemma 10 and Lemma
14 (and the observation that the first estimate in Lemma 10 also holds, if we replace N, on the left-hand
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side by 2|, |<ne a;f,ap),

1 1
B 03, BsleBrdrds = 2N Y Uy () apap + &,
‘/0' [ Zq: q Z p=p

[pIsN®

where
£8 S N2(Qs+ No +1) + NTHONL + NTIP2 (N 4+ 1)2,

The claim now follows from equation (19) and the observation that

Ny - Z aj,apz Z a;apSN_z"Hl.

lpIsN <@ lp|zN*
Finally, we consider the conjugation of the operator Q,, defined in equation (25).

Lemma 16. We have
e P02 = 0r + &,
with
+Ep, S NN+ 1)+ NN+ 1),

Proof. We have

|
e 30,5 - 0 =/ e™B3[0,, By]e*Bids
0

471'ClN 1 _
= Z e SB3[ I _ra()a()+hC B3]€SB3dS
N L iReJo

We compute the commutator

[a L,ap0a0 +h.c. a;waj agap —h.c.]

= [aTa'_ apayp, a I,Jrq _paqao] + [agaga,a_r,a‘

s
pqdlpagaol +hec.

i T
2{ a, 0(6!""‘1 Pl A p g+ 6p ), ap)agao
T T T
- 6r,qap+qajpaiqa0a0ag - ap+qaipa(')aqara,r} +hec.
Hence, we obtain

47((11\/ [aT ¥

rd—r

apap + h.c. 33]
[risN«

_ Sﬂ'aN ~ T Tt
=N PpXlglsNalyaya_,a—p—qaqdo
P.q:|lp+q|<N
dran

~ Toal
Z PpXlglsNalpigld_p _qa()a()a()
pilg|sN@

471'C(N - &
-y Z gop)(|q|SNaa,'anipagaqa,a_r =: () + (1) + (III).

P.q,lr|sN@
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With Cauchy-Schwarz and using the bounds from Lemma 2, we can bound

+(I) s NN + 1),
+(I) < N VPN +1)32,
£(II) < N3N, +1)°2.

The claim now follows with Lemma 10. O
We are now ready to conclude the proof of Proposition 11.

Proof of Proposition 11. Recall from equation (66) that

(471'(11\])2

e BeBHy P eP = dray (N-1)+ Z 5

[pIsN@

i 1 opl
+/ e_’B3F3etB3dt+/ / e 7B [Q3, Bsle'Prdtds,
0 0 s

+H + Q4+ e B3 (Hy+ 0y + Ep, )P

where
+8p, < N72Qu + [N + N7 (N, + 1) + NHONZ + N72H.
With Lemma 10 and Lemma 14, this also implies that

+e™B3Ep,e% < NT2Q4 + N2 H) + N7 + N7 (N, + 1)
+ NIP29N, +1)%

Applying the first bound in Lemma 10 to the operator H> = (2V(0) — 87ay )N, defined in equation
(24), we obtain

i[eiB3I:]26‘B3 - [:Iz < Nﬁa/z(/\/’_,_ +1).
Combining Lemma 13 with Lemma 14, we obtain

1
/ e Bse!Bidy
0

SNTPH + NT2Q4+ NN, +1)
+N3a/271/2(N+ + 1)3/2 +N71+5Q/Z(N+ + 1)2

Together with the bounds in Lemmas 15 and 16, and with the observation that

8ran Z a;apstz"Hl,
IpI>N*

we conclude the proof of Proposition 11. O
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5. Diagonalisation of a quadratic Hamiltonian

From Proposition 11, we find

e_B3e_BzHN6526133

1 8 2
:4mN(N_])+Z Z (ﬂaN) Z paap+Q4

IpIsN® [pI>N«
T
aoa, 1 . apa
2 t o4 040
+ Z (p? +8ﬂaN)ap N ap+2 Z 8ray [ayal +h.c]+¢€,
IpIsN@ [pIsN*

29

(86)

with an error £ satisfying the bound (64). Here we used the observation that, on the sector {\ = N},

we can write

,aa0+N++1

Z (p2+87raN)a;r)a Z (p +8nay)a, N

[pIsN@ IpIsN@

ap
= Z (p +87raN)a N
lpIsN* |p|<N"

where the term

Z (p* +8may)al, Nea, s N* NN, + 1)?

|p\<N"

can be absorbed on the right-hand side of the estimate (64).

’r
ap Z (p? +87raN)a Nia,

In this section, we will diagonalise the operator on the last line of equation (86). Inspired by
Bogoliubov theory (on states with ao, a, ~ VN, this operator is approximately quadratic), we define,

for |p| < N, the coeflicients

_ 11 1 167TC(N
Tp = —Z og + p2
so that
8
tanh(27,) = —ﬁ.
p? +8may

We also introduce the notation y,, = cosh 7, and v, = sinh 7).

Lemma 17. We have the pointwise bound y, < 1 and 7, vp < X|p|<N0/p Moreover,

ITllo < lI7ll2 S 1, Vo < lIvll2 1, ly =l < lly -1 51
and

7Moo < M7l < N, V]l < lIvIli < N¥.
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With these coefficients, we can write

+
. aod 1 + o+
Z (p* + 8ﬂaN)a;,TOap + 5 Z 8may [alpa'_p dodo h.c.]

[p|sN@ [pIsN@ N
ao "T T ao
= \Ipl* + 16may p? (ypal —+v ») a,+vpal  —=)
mg;,a rr p\/_ p\/_ A/
Z [p2+87raN—w/|p|4+16ﬂaNp2]+(5
IpIsN <

with an error ¢ satisfying
+6 S NTYWN, + 1).

Here, we used the relations

1 2+8
yf, + vf, = cosh(27,) = =P TN ,
J1-tnn’2r,)  VIplt+ 16man p?
tanh(ZTp) _ 8mray

2ypvp = sinh(27,) =

\/l - tanh2(2‘r ) \/|P|4 + l6may p?

1 p? +8man — +/|p|* + 16may p?
= —[cosh(ZTp) -1] = _p may — Vlp| NP
VIp|* + 16may p?

and the commutator

0 + 0 _ 1 T 1 _ 1 2
[\/—Na_l,,a_p\/—ﬁ] = %040 ~ Naipa_p =1- N(NJr +al,a p).

The contribution proportional to N~! on the right-hand side of the last equation produces (using
Lemma 17) the error ¢. Inserting in equation (86), we conclude that

e_B3e_BzH BB

[ (Sman)?
_47raN(N—1)—— Z [p +8man —+/|p|* + 16may p _2—12/]

|p|<N" P (87)
+ Z ,/|p|4+167raNp y,,bp+vp ) (¥pbp +v,, Z p’a a,,+Q4+5,
lp|sN@ lpI>N<

where £ still satisfies the estimate (64) and where we introduced the modified creation and annihilation
operators

bp=—La, b} =a,> (88)
p \/ﬁ p )4 )4 \/ﬁ
satisfying the commutation relations
; Noy 1,
[bp’bq] [b;wbq] =0, [bp’bq] =0pq(l - W) ~ y%alr 89)

https://doi.org/10.1017/fms.2022.78 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.78

Forum of Mathematics, Sigma 31

and [a}ar,bg] = 6r,qb;, [aLar,bq] = —0,,4br. On states with few excitations ao,ag ~ VN, we

T
P

(vp b; +v,b_p)and (y,b,+v,bl p) can be rotated back to b; and, respectively, b, through conjugation
of the Hamiltonian with the unitary transformation generated by the antisymmetric operator

aopao
Bi=3 Z TP(b;bip_be*P)z Z Tp(a;aip N —h.c.).
[pIsN@ Ipl<N@

have b; ~ a,, by = ap. According to Bogoliubov theory, we can therefore expect that the operators

N =

Notice that B4 has the same form as the operator 3, defined in equation (13) (with a different choice
of the coefficients, of course; here it is more convenient to keep the factor N -1 out of 7). To control
the action of B4, we will need rough a priori bounds on the growth of the number and the energy of the
excitations.

Lemma 18. For every k € N, we have’

e BN + DREB < (N + DF. (90)

Moreover,
e B H\ B < H +N?, 91)
e B04eB < Qs+ N2 NN, + 1) (92)

Proof. The proof of the bound (90) is standard (based on Gronwall’s lemma and the bounds in Lemma
17). To prove equation (91), we define g(s) = e *B*He*B* and compute (using the commutation
relations after equation (89))

p?-p
[pI<N<@ Ip|<N@

g'(s) = e B [Hy, Byle®Ps = Z prrpe B bl bl +he|et 5 e B H e + Z pz‘rlz,.
From Lemma 17, we have ), » pQTIZ) < N9; with Gronwall’s lemma, we obtain the bound (91).
To show the bound (92), we set h(s) = e5B+Qe54, and then
h'(s) = e P4 [Qu4, By]e*P*. (93)

Proceeding as in (38), we find (we use here the convention that 7, = 0, for |g| > N¢)

1O 0 ) )
[Qa.Bal = 5 ) (W « D)(@bjbTy + ) V(g = p)tabjesgblalsap +he.
q pP-4q,s

Switching to position space, we write

1 . v
[Q4,B4] = B //;2 dxdyVy (x — y)T(x — y)bib; + ‘/A% dxdydzVy (x = y)T(x — z)blb;aiay +h.c.
With the bounds from Lemma 17, we conclude
+[04,Bs] S Qs+ N2 4 NTHNG +1)2,

Inserting this in equation (93), applying the bound (90) and then Gronwall’s lemma, we obtain the
desired bound (92). ]

IThe estimate for Q4 will only be used in the next section to show upper bounds on the eigenvalues of Hp ; for the lower
bounds, we will only use the fact that Q4 > 0.
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We are now ready to state the main result of this section, which shows that conjugation with ¢
diagonalises the quadratic part of the Hamilton operator.

Proposition 19. We have

e_B4e_B3e_BZHNeB2eB3eB4

8man)?
APt + 16may p? — p? — 8ray + %

1
=47raN(N—1)+§Z

P 2p (94)
+ Z \/p*+ 16may p? a;ap +e B4 + Ea,s
p
where
+Ep, S N7 (Hy + N®) + N~ 2e™B4QueB + NN, + 1) (95)

+ NGaDR2(A7 4 1)32 4 NI5e2 (£, 4 1)2,

Proof. For s € [0; 1], we define

E(s) = Z ,/|p|4+16naNp2(y;b;+v;b_p)(y;b,,+v;;bip)

IpIsN®

with the operators b, b; defined in equation (88) and with the notation y), = cosh(st,) and v, =
sinh(s7,). In particular, for s = 1, this is exactly the operator appearing on the third line in equation
(87). For ¢ in the sector {\ = N}, we define fy : [0;1] — R by

fus) = (Y, e B E(s)e"By).

The idea is that the generalised Bogoliubov transformation ¢*%* approximately cancels (on states with

few excitations) the symplectic rotations determined by the coefficients y;,, vy, (it would precisely
cancel them if the operators b;, b, satisfied canonical commutation relations); hence, on states with
few excitations, we expect f to be approximately constant in s. More precisely, we claim that

£ ()] s N2y, (NG + D)%y). (96)
Assuming for a moment that the bound (96) holds true, we could conclude, integrating over s € [0; 1],
that
e BE()eB = E(0) +6
with

+6 < N2V WL +1)2%

With the bounds from Lemma 18 (and noticing that the action of B4 on the high-momenta part of the
kinetic energy is trivial), this would imply that

e_B4e_B3e_BzHNeBzeB3eB4

1 8 2
:47T(1N(N—1)—§ Z [P2+871aN— |p|4+167T0Np2— ( naz;) ]

pi<Ne 2p 97)
[i 14 2  a0a 2 % ~Bigy B
+ Z |p|* + 16may p*a,, Nt Z paha, +e Qe + €,
|[pI<sN* |p|>N«
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where £ satisfies the bound (95). Writing aoag = aTao +1=N - N, +1, we could then replace

0

+
apa
|p|4+16ﬂaNp2a; Noapz Z ‘/|p|4+167raNp2a;ap+6

IpIsN® [pIsN®

with

+
%)
IA

1 .
v >0 Iplt+ 16man p2al, (Vs + Dap s N7 + 1)

IpISN@

Furthermore, since

8ran)?
’pz +8ray —+/|p|* + 16may p? — (7;—1;])‘ < (1+pH)72,
14
we could write
2 4 2 (87T(1N)2
Z p-+8may —+/|p|* + 16mayn p -

Ipl=Ne 2p
8ray)?
= Z P> +8man — +f|p|* + 16may p? — (Z—g)] +O(N™Y).
14
p

Similarly, from |p* — /|p|* + 16may p?| < 1, we could bound

+ Z [pz—w/|p|4+16n'aNp2]a;a,,gN_MHl.

I[pI>N*

Inserting all these estimates in equation (97), we would end up with (94) and (95).
It remains to show the bound (96). To this end, we observe that

OE(s)\ _s8,
5 fe=By). (98)

, d -
fy(s) = $<¢,€SB4E(S)€ SBW) = <¢,6’SB4{[B4,E(S)] +
We have, denoting €, = v|p|* + 16may p2,

1 o -+ o o o
[Bs, E(s)] = 5 Z Ep Z Tq{[b;biq’ (rpbp+ V;b*p)](ysz + V;bip)
IpIsN@ lg|<N®

+ (vpbh +vibp) [bibL,, (vhby + Vbl )]} +he.

A long but straightforward computation, based on the commutation relations (89), leads to
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|Bs, E(s)]
__ 1 st ty_ 1 Niy s
=-3 Z epTpVybh (1= )()/pb +v,bl,) - 5 Z epTpvp (1= )b (Vpbp +vybl,)
IpI<N@ I[pI<N@
1 ; N, 1 N.
-5 ap‘rp)/p(ypr +vyb_ p)b,p(l - WJ') ) Z 8pr‘yp(’)/pr +vyb_ ) (1 - ﬁ)bip
IpISN® [pl<N@
1 ¥ T t
+ IN Z EpTqV) [bqaiqa_p + a;a_pb_q] (ypbp +vy,bl )
Ipl.lglsN®
1 ) +
+ IN Z EpTqYp (yf)b; +v,b_p) [bga'_qa,, + a:;a,,biq] +h.c.
Ipl.lgI<N<
99)

To compute the explicit time derivative of the observable E(s), on the other hand, we notice that
dyy,/ds = tpv), and dv},/ds = 7p},. Thus, we obtain

0E(s)
as

= Z 8,,Tp(v;,b;+yf,b_p)( b +vpb_p) Z 8pr(ypb +vib_p) (Vb +)/pr ).
IpISN* [pIsN*

Combining the last equation with equation (99), we observe that (as expected) all large contributions
cancel. We find

0E(s) 1 N
- :Nlplzq“vnsprv »Naby, (v, bp + v, _p)

1 .
Y Z EpTpYp (ypr +v b_,,)J\erbfp
IplsN@

[Bs, E(s)] +

1 ‘ .
s 1T . F s s
+— E epTqvp bgalja_p(v,bp +vy,bl,)

Ipllgl<N®

1 -
+ — Z EpTqYp (ypb‘ +v b_p)bjia’_qap +h.c.
Ipl.lg|<N<

Using the bounds in Lemma 17, with the estimate £, < p? and the restrictions |p/|, || < N®, we arrive at

i{[B4,E(s)] + aiis)} S NN+ D)2

From equation (98), this implies that
£ (9] € N7 g, BN+ 1)2e By,

Applying Lemma 18, we obtain the desired bound (96). O

6. Optimal BEC and proof of Theorem 1

Let us denote

~ 1 8 2
Hy =Hy —4may (N - 1) + —Z[w/|p|4+ l6may p? — p*> — 8may + Bran)” , (100)
24 2p?
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and
Ee =Z,/|p|4 + p216may aha,. (101)
p

Bs¢Bs_ Observe that I/ is a unitary operator. From Proposition 19, we have

Moreover, let U = ¢B2e
UTHNU = Eo + e B Q4¢P + Eg,, (102)

where &g, satisfies the bound (95). To prove that the error term £g, is small, we show first that low-
energy states exhibit complete Bose-Einstein condensation.

Proposition 20 (Optimal BEC). On {N = N}, we have
Hy > 4nayN +C '\, - C, (103)

for some constant C > 0 independent of N.

Proof. To take care of the terms on the second line of the bound (95), we use localisation in the number
of particles, a tool developed in [17] and, in the present setting, in [7]. Here, we make use of the results
of [18, 19, 24], which imply that, if yn € LE(AN ) is a normalised sequence of approximate ground
states of the Hamilton operator Hp satisfying

1
N(‘ﬂN,HN'J’N) —4may|— 0

as N — oo, then ¢y exhibit condensation, in the sense that
1
A}iE]OONWN’N*"bN) =0. (104)
Now let f, g : R — [0, 1] be smooth functions such that f(s)>+g(s)> = 1 forall s € R, and f(s) = 1 for
s <1/2, f(s) =0fors > 1.For My > 1, we define far,(N3) = f(N+/Mo) and gar, (N-) = g(N+/Mp).
Then we have
Hn = fmoHN fmy + 8N 8y + Emtys (105)

with

([fno» [fmao HN 11 + (8005 (8010, HN D). (106)

| —

Em, =
In view of equation (9), we can write (with & = f, g)

[hMo’ [hMo’ HN]] = [h(N+/MO) - h((/\[+ - 2)/M0)]2 Z VN (p)a;,afpaoao +h.c.,

p#0
2 5 T +
+ [ANL/Mo) = (N = /M) 3 Vv (n)ags,al,agao +he.
q,r,q+r#0
This easily implies that
+Ep1y S My?(Q4 + N) L IMo3<Ne<2Mo}, (107)

We choose My = &N, for some € > 0 independent of N, to be fixed later. We introduce the
notation NY = UTNU. We use equation (102) with the bound (95) for the error term &4; we pick
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a = —log{/log N so that N¢ = 1/¢, for some ¢{ > 0 independent of N, to be specified below. For N
large enough, we obtain from Proposition 19

Fato NDHN faty (N2 = U farg WU HNU frgy NEOUT
> U fug, (NH) (47raNN L H - C+eBiQeb 4 54) fuy NEUT
> U fagy (N (dray N + (1 = CLV2 - Ce3PNT — ce7e) (Hy + 1)
+ (1= C') e Q4eB) far, (WU
> fuy (N2 (dray N — C + C7IN), (108)

choosing first £ > 0 small enough and then & > 0 sufficiently small. Here, we used (M, +1)7 < (MY +1)/
(as follows from Lemma 3, Lemma 10 and Lemma 18), to estimate the error terms on the second line
of (95). Moreover, we used the bounds Ny, N < H;.

On the other hand, following an argument from [7, Prop. 6.1], we find

gy (N (Hy = 4man N)gar, (N2) = C ' WNagar, (NV2)2. (109)

Indeed, otherwise, we could find a normalised sequence ¥y, supported on {\; > eN}, satisfying

1
N(‘/’N’HNWN>‘I‘N —4ray|— 0

as N — oo, in contradiction with (104).
Finally, we deal with the error term Epg—cn. For Yy with (Y n, Hyyn) < CN, we immediately
find, from the bound (107), that

<lﬁN’ 5M(]:<‘:1\/le> < 8_2N_1 .

Since the bound (103) holds trivially on states with (¢, Hy¥n ) = CN, this, together with the estimates
(108) and (109), concludes the proof of Proposition 20. |

With Proposition 19 and Proposition 20, we are now ready to show Theorem [, determining the
low-energy spectrum of the operator Hamilton operator Hy .

Proof of Theorem 1. We continue to use the notation Hy and E, introduced in equations (100) and
(101). Moreover, we denote by A, (Hy) < A2(Hy) < ... and A1(Es) < A2(Es) < ... the ordered
eigenvalues of ﬁN and, respectively, E.,. We now choose L € N, with /lL(ﬁN) < O for some
1 < ® < N7 Then we claim that

AL(Hy) = A1 (Es) + OGNy, (110)

Since Ap(E«) = 0, the estimate (110) shows that the ground state energy En of Hy satisfies the
estimate (5). It is then easy to check, using (110), that the excitations of Hy — En satisfy the claim in (4).

To prove equation (110), we show first a lower bound and then a matching upper bound. We again
use Proposition 19, but this time we choose the exponents a = 2/17.

Lower bound on A (Hy). We again use the localisation identity given by equation (105), but this
time we take My = N'/2*1/3* Let ¥ denote the subspace generated by the first L eigenfunctions of Hn,
and let us denote Z = Y'Y, which is of dimension L. From the decomposition (105), we have

ALCHN) = Py ( futg (NN futg (N2 + 8ty (N 81y (N + En, ) Py (1
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From Proposition 20, we have
gMo(N+)ﬁNgMo(N+) > Cg12v10(N+)(C_]M0 -C)20

for N large enough (recall the choice My = N'/2*1/3%). Here, we used that gMm, is supported on
N, > My/3. Moreover, with the bound (107), we find

Py&myPy = _CM()_QPY(Q4 +N)Py > —CMO_ZPY(HN +N)Py > —CMgN > _CN-V
because (from the upper bound), we know that Hy < CN on Y. From the estimate (111), we obtain
AL(Hy) = Py faty (N By far (N2 Py — CN7117,

We now use Proposition 19 to estimate

Py fary(N2) Hy far,(N2) Py
> UpszO(Nf{) ]l{N*SN}(EB“(EOO + 54)8_34 + Q4)]1{N+SN} fMo (Nj_/{)qu*.

Using that N, < H; < E., and the choices My = N'/>*1/3% o =2/17, we find

Py fary(N2) Hy fagy (N2) Py
> (1 - CN71/17)UP2fM0(./\/‘£{)eB4 Es eiB4fM0(./\/;Z_/{)quT.

Now it turns out that for N large enough, dim fy, (NY)Pz = L because

”\/1 — fiy NH)2¢ 1/2 112
max < CMO_] max M

bz €11 gepy €117

2

< CAL(HN)M;! .0

see, for instance, [17, Prop. 6.1 ii)]. Thus

(€8 fary W PZUTE, Ecoe™ fior, (NUYPZUTE)

_coN-MT
€112

Ar(Hy) > max
gey

Ew _ _
> EED) (| _ oy (AnMg!) - CONTIT
£eeBafyy, N Z  ||€]]
Ew ~ _
min max u(1 — CAL(HN)My') - CON I

T dimX=L £éeX  ||&]|?
> A (Ew)(1 - CONT2) — coN~/17,

which implies AL(Hy) 2 AL(Ex) + O(ON-/17),
Upper bound on A1, (Hy ). Let Z denote the subspace generated by the first L eigenfunctions of E,
and Pz be the orthogonal projection onto Z. The normalised eigenfunctions of E., have the form

Lal(p)m
E=| | —=—a (112)
oy

for some k > 1, p; € A}, nj > 1 and where Q is the vacuum. Note that

PsN.P; < PzH\Pz < PzEowPy < A1(Es) < CO < CNVV,
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where we used the lower bound that we proved above. Since [Pz, N.] = 0, this bound can also be
applied to powers of ;. Note also that ¢ E.,e™5* almost commutes with A/, in the sense that

1
IL{N“fSN}eB“Eme*B“IL{N*SN} — eB“Emf64 < 3 Z 87raNX|p|SNa[IL{N+>N}a;aiI, +apa,p1L{N+>N}]
P

CN32=V (N, + 12,

IN

Hence, we have

Pze B WesNlBip o~Big NesNIoBip, < p, (Eoo +CN¥* PN + 1)2)Pz
< A1(Es) + CON~VIT,
Together with Proposition 19, we find
AL(Es) + CON~MT > Pze—&]l{MfN}(uTﬁNu —eBigye B Q4)]1W+SN}eB4PZ. (113)

Again because

{Na>N} |2 By A r1/2 4112
g et

<CON!' — 0,
£eelBapy ”‘f”2 £epPz ”f”2 N —o0

we have dim 1WV+=N}teBip, = [ for N large enough. With Lemma 18, we obtain
Pze_BA]l{NJ'SN} (884846_84 + Q4)]1{N+SN}€B4PZ < N_l/”@ + PzQ4Pz.

To estimate PzQ4P7, we use an argument from [6, Lemma 6.1]: from PzE.Pz < ©, we must have
apé =0forall [p| > ©'/2 and ¢ € Z. This implies that

(€ 048) < DL Iy corllapragélllapag €|
p.q,r
< COPNT|(N, + DEN* < COENTg]? < N~V )1,

for all ¢ € Z. Applying the min-max principle, we conclude from the estimate (113) that

(¢, Hné)

A (EL) > e, ANS) CGN—1/17
LE) 2 e, TR
H
S max S NEY o1
dimX=L ¢eX ||&]|?
ZAL(ﬁN)—CeN_l/”' O
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