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Abstract
We show that Bogoliubov theory correctly predicts the low-energy spectral properties of Bose gases in the Gross-
Pitaevskii regime. We recover recent results from [6, 7]. While our main strategy is similar to the one developed
in [6, 7], we combine it with new ideas, taken in part from [15, 25]; this makes our proof substantially simpler
and shorter. As an important step towards the proof of Bogoliubov theory, we show that low-energy states exhibit
complete Bose-Einstein condensation with optimal control over the number of orthogonal excitations.

1. Introduction

We consider a Bose gas consisting of N particles moving in the box Λ = [−1/2; 1/2]3 with periodic
boundary conditions. In the Gross-Pitaevskii regime, particles interact through a potential with scattering
length of the order 1/𝑁 . The Hamilton operator acts on the Hilbert space 𝐿2

𝑠 (Λ𝑁 ) of permutation
symmetric complex-valued square integrable functions on Λ𝑁 , and it has the form

𝐻𝑁 =
𝑁∑
𝑖=1

−Δ 𝑖 +
𝑁∑
𝑖< 𝑗

𝑉𝑁 (𝑥𝑖 − 𝑥 𝑗 ) (1)

where

𝑉𝑁 (𝑥) := 𝑁2𝑉 (𝑁𝑥),

for a 𝑉 ∈ 𝐿2 (R3) nonnegative, radial and compactly supported. We denote the scattering length of V by
𝔞 > 0. Following [15, 16], we define it through the formula

4𝜋𝔞 =
1
2

∫
R3
𝑉 (𝑥)d𝑥 −

〈
1
2
𝑉,

1
−Δ + 1

2𝑉

1
2
𝑉

〉
. (2)

As first proven in [22, 20], the ground state energy 𝐸𝑁 of (1) satisfies

𝐸𝑁 /𝑁 → 4𝜋𝔞 (3)
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in the limit 𝑁 → ∞. In particular, to leading order, the ground state energy only depends on the
interaction potential through its scattering length 𝔞. In [18, 21, 24], it was also shown that the ground
state of the Hamiltonian 𝐻𝑁 in equation (1) and, in fact, every normalised sequence 𝜓𝑁 ∈ 𝐿2

𝑠 (Λ𝑁 ) of
approximate ground states with

1
𝑁

〈𝜓𝑁 , 𝐻𝑁𝜓𝑁 〉 → 4𝜋𝔞,

exhibits complete Bose-Einstein condensation in the zero-momentum state 𝜙0(𝑥) = 1, for all 𝑥 ∈ Λ, in
the sense that the corresponding one-particle reduced density matrix 𝛾𝑁 (normalised so that Tr 𝛾𝑁 = 1)
satisfies

lim
𝑁→∞

〈𝜙0, 𝛾𝑁 𝜙0〉 = 1 .

Recently, a rigorous version of Bogoliubov theory [8] has been developed in [4, 5, 6, 7] to provide
more precise information about the low-energy spectrum of 𝐻𝑁 in equation (1), resolving the ground
state energy and low-lying excitations up to errors that vanish in the limit 𝑁 → ∞; and about the
corresponding eigenvectors, showing Bose-Einstein condensation with optimal control over the number
of orthogonal excitations. Analogous results have also been established for Bose gases trapped by
external potentials in the Gross-Pitaevskii regime [10, 11, 23, 25] and for Bose gases in scaling limits
interpolating between the Gross-Pitaevskii regime and the thermodynamic limit [1, 9]. Very recently, the
upper bound for the ground state energy has also been extended to the case of hard-sphere interaction,
as announced in [2].

In this paper, we propose a new and substantially simpler proof of the results established in [6, 7].
Our approach follows some of the ideas in the proof of Bose-Einstein condensation with optimal bounds
on the number of excitations obtained in [15]. Moreover, it makes use of some ideas introduced in [25]
for the case of particles trapped by an external potential. The next theorem is our main result; it describes
the low-energy spectrum of 𝐻𝑁 in equation (1).
Theorem 1. Let 𝑉 ∈ 𝐿2 (R3) be nonnegative, radial and compactly supported, and let 𝐸𝑁 denote the
ground state energy of 𝐻𝑁 in equation (1). Then the spectrum of 𝐻𝑁 −𝐸𝑁 below a threshold Θ ≤ 𝑁1/17

consists of eigenvalues having the form∑
𝑝∈2𝜋Z3\{0}

𝑛𝑝

√
|𝑝 |4 + 16𝜋𝔞𝑝2 +O(𝑁−1/17Θ) (4)

with 𝑛𝑝 ∈ N, for all 𝑝 ∈ 2𝜋Z3\{0}.
Remark. Our analysis also provides a precise estimate for the ground state energy 𝐸𝑁 of the Hamiltonian
𝐻𝑁 in equation (1), showing that

𝐸𝑁 = 4𝜋𝔞𝑁 (𝑁 − 1) + 1
2

∑
𝑝∈2𝜋Z3\{0}

[√
|𝑝 |4 + 16𝜋𝔞𝑝2 − 𝑝2 − 8𝜋𝔞 + (8𝜋𝔞)2

2𝑝2

]
+O(𝑁−1/17) (5)

with a ‘box scattering length’ 𝔞𝑁 (defined in the next section) satisfying |𝔞𝑁 − 𝔞 | � 𝑁−1. This
immediately implies that 𝐸𝑁 is given by equation (5), with 𝔞𝑁 replaced by the true scattering length 𝔞,
up to an error that remains bounded as 𝑁 → ∞. In [6], the order-one correction arising from 𝑁 (𝔞𝑁 −𝔞)
was also computed. Here we skip this step to keep our presentation as simple as possible. Note that an
estimate similar to equation (5) has recently been shown to hold in the thermodynamics limit; see [13,
14] for the lower bound and [27, 3] for the upper bound.

The main strategy we use to prove Theorem 1 is similar to the one developed in [6]. First we switch
to the formalism of second quantisation, expressing the Hamilton operator in momentum space in
terms of creation and annihilation operators. Then we renormalise the Hamilton operator, conjugating
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it first with a generalised Bogoliubov transformation (the exponential of a quadratic expression in the
modified creation and annihilation operators 𝑏†𝑝 = 𝑎†𝑝𝑎0/

√
𝑁 , 𝑏𝑝 = 𝑎†0𝑎𝑝/

√
𝑁) and afterwards with the

exponential of a cubic expression in (modified) creation and annihilation operators. Effectively, these
conjugations regularise the interaction potential. As a last step, we diagonalise the resulting quadratic
Hamiltonian; this allows us to establish Bose-Einstein condensation with optimal bounds on the number
of excitations and to compute the low-energy spectrum, proving the estimate (4).

Compared with [6], our approach has the following advantages. First, we make a different choice
for the coefficients 𝜑𝑝 of the quadratic and cubic transformations used to renormalise the Hamiltonian,
which should model correlations among particles. Instead of the ground state of a Neumann problem on
a ball of radius ℓ > 0, we consider here the solution of an appropriate zero-energy scattering equation,
describing scattering processes inside the box Λ. This simplifies the proof of important properties of
𝜑 and improves cancellations between different terms arising in the many-body analysis. Second, we
restrict the quadratic conjugation to momenta |𝑝 | > 𝑁𝛼 for some 0 < 𝛼 < 1. Consequently, it is
enough to expand its action to first or, in a few cases, second order; higher-order contributions are
negligible. This is a substantial advantage compared with [6], where no cutoff was imposed and all
contributions had to be computed precisely (in contrast to standard Bogoliubov transformations, the
action of generalised Bogoliubov transformations is not explicit). The presence of the cutoff means the
interaction is regularised only up to length scales ℓ ≤ 𝑁−𝛼; this needs to be compensated at the end
when we diagonalise the quadratic Hamiltonian resulting from the renormalisation procedure. Another
important simplification of the analysis concerns the final diagonalisation. As in [6], we implement
it through a generalised Bogoliubov transformation defined (like the first quadratic transformation) in
terms of the modified creation and annihilation operators 𝑏†𝑝 , 𝑏𝑝 . Here, however, instead of expanding
the action of the generalised Bogoliubov transformation to all orders, we compare it directly with
the explicit action of the corresponding standard Bogoliubov transformation, using an appropriate
interpolation. Finally, we use the tool of localisation in the number of particles not only to show Bose-
Einstein condensation (similarly to [7]) but also to compute the spectrum and prove Theorem 1. This
makes the analysis substantially simpler (but provides a worse estimate of the error).

2. Fock space formalism

We introduce the bosonic Fock space

F =
⊕
𝑛≥0

𝐿2
𝑠 (Λ𝑛).

For a momentum 𝑝 ∈ Λ∗ = 2𝜋Z3 and denoting 𝑢𝑝 (𝑥) = 𝑒𝑖 𝑝 ·𝑥 , we define 𝑎†𝑝 = 𝑎†(𝑢𝑝) and 𝑎𝑝 = 𝑎(𝑢𝑝),
where 𝑎† and a are the usual creation and annihilation operators. They satisfy the canonical commutation
relations [

𝑎𝑝 , 𝑎
†
𝑞

]
= 𝛿𝑝,𝑞 ,

[
𝑎𝑝 , 𝑎𝑞

]
=

[
𝑎†𝑝 , 𝑎

†
𝑞

]
= 0. (6)

We denote, in configuration space, the creation and annihilation operator-valued distributions by 𝑎̌†𝑥 , 𝑎̌𝑥 ;
they satisfy 𝑎†𝑝 =

∫
𝑒𝑖 𝑝 ·𝑥 𝑎̌†𝑥d𝑥, 𝑎𝑝 =

∫
𝑒−𝑖 𝑝 ·𝑥 𝑎̌𝑥d𝑥. The number-of-particles operator N on F is given

by

N =
∑
𝑝∈Λ∗

𝑎†𝑝𝑎𝑝 .

In the formalism of second quantisation, the Hamilton operator in equation (1) takes the form

𝐻𝑁 =
∑
𝑝∈Λ∗

𝑝2𝑎†𝑝𝑎𝑝 +
1
2

∑
𝑟 , 𝑝,𝑞∈Λ∗

𝑉̂𝑁 (𝑟)𝑎†𝑝+𝑟𝑎†𝑞𝑎𝑝𝑎𝑞+𝑟 , (7)
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with

𝑉̂𝑁 (𝑟) =
1
𝑁
𝑉̂ (𝑟/𝑁). (8)

To recover the expression in equation (1), we have to restrict equation (7) to the sector with N = 𝑁 .
Because of the presence of Bose-Einstein condensation, the mode with 𝑝 = 0 plays a special role

when considering states with low energy. We introduce the notation N0 = 𝑎†0𝑎0 and N+ = N − N0
for the operators measuring the number of particles in the condensate and the number of excitations,
respectively. Following Bogoliubov [8], we decompose equation (7) according to the number of 𝑎0, 𝑎

†
0

operators. Since (on {N = 𝑁})

𝑎†0𝑎
†
0𝑎0𝑎0 = N0 (N0 − 1) = (𝑁 −N+)(𝑁 −N+ − 1) = 𝑁 (𝑁 − 1) −N+(2𝑁 − 1) +N 2

+ ,

we can rewrite equation (7) as

𝐻𝑁 = 𝐻0 + 𝐻1 + 𝐻2 +𝑄2 +𝑄3 +𝑄4, (9)

where

𝐻0 =
𝑉̂𝑁 (0)

2
𝑁 (𝑁 − 1), 𝐻1 =

∑
𝑝≠0
𝑝2𝑎†𝑝𝑎𝑝 ,

𝐻2 =
∑
𝑝≠0
𝑉̂𝑁 (𝑝)𝑎†𝑝𝑎𝑝 (𝑁 −N+) −

𝑉̂𝑁 (0)
2

N+(N+ − 1).

and

𝑄2 =
1
2

∑
𝑝≠0
𝑉̂𝑁 (𝑝) [𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.],

𝑄3 =
∑

𝑞,𝑟 ,𝑞+𝑟≠0
𝑉̂𝑁 (𝑟)

[
𝑎†𝑞+𝑟𝑎

†
−𝑟𝑎𝑞𝑎0 + h.c.

]
,

𝑄4 =
1
2

∑
𝑝,𝑞≠0,𝑟≠−𝑝,𝑟≠−𝑞

𝑉̂𝑁 (𝑟)𝑎†𝑝+𝑟𝑎†𝑞𝑎𝑝𝑎𝑞+𝑟 .

(10)

Since we isolated the contributions of the zero modes, from now on we follow the convention that
the indices appearing in creation and annihilation operators are always nonzero except when stated
otherwise.

Naive power counting, based on the fact that 𝑎0, 𝑎
†
0 �

√
𝑁 due to the presence of Bose-Einstein

condensation and on the scaling (8) of the interaction, suggests that the terms 𝑄3 and 𝑄4 are small. For
this reason, Bogoliubov neglected these contributions and diagonalised the remaining quadratic terms.
This led to expressions similar to equations (4) and (5) for the low-energy spectrum of 𝐻𝑁 , but with
the scattering length replaced by its first and second Born approximations. In fact, because of the slow
decay of the potential in Fourier space, the operators 𝑄3 and 𝑄4 are not small. They instead contain
important terms that effectively renormalise the interaction and produce the scattering length appearing
in the formulas in equations (4) and (5). To obtain a rigorous proof of Theorem 1, it is therefore crucial
that we first extract the large contributions to the energy hidden in the cubic and quartic operators 𝑄3,
𝑄4; only afterwards can we diagonalise the remaining quadratic terms.

Let us give a little more detail about the main ideas of the proof. Following the strategy of [6],
we will first conjugate equation (9) with a unitary operator of the form 𝑒B2 , where B2 is a quadratic
expression in creation and annihilation operators 𝑎𝑝 , 𝑎†𝑝 , associated with momenta 𝑝 ≠ 0. The goal of
this conjugation is to extract contributions that regularise the off-diagonal term𝑄2 and, at the same time,

https://doi.org/10.1017/fms.2022.78 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.78


Forum of Mathematics, Sigma 5

reconstruct the leading-order ground state energy 4𝜋𝔞𝑁 𝑁 when combined with 𝐻0. Roughly speaking,
neglecting several error terms, we will find

𝑒−B2𝐻𝑁 𝑒
B2 � 4𝜋𝔞𝑁 (𝑁 − 1) +

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2

+
∑
𝑝∈Λ∗

(𝑝2 + 2𝑉̂ (0) − 8𝜋𝔞𝑁 )𝑎†𝑝𝑎𝑝 +
∑

|𝑝 | ≤𝑁 𝛼

4𝜋𝔞𝑁 [𝑎†𝑝𝑎†−𝑝 + h.c.] +𝑄3 +𝑄4.

(11)

As explained in the introduction, an important difference, compared with [6], is that here we impose an
infrared cutoff inB2, defined in equation (13), letting it act only on momenta |𝑝 | > 𝑁𝛼. On one hand, this
choice simplifies the computation of the action of B2 (it allows us to expand it; important contributions
arise only from the first and second commutators). On the other hand, it produces terms, like the sum on
the first line and the regularised off-diagonal quadratic term on the second line of equation (11), which
contribute to the energy to order 𝑁𝛼; these terms are larger than the precision we are looking for and
will need to be compensated for with the second quadratic transformation. Notice that the idea of using
an infrared cutoff in the quadratic conjugation already appeared in the proof of complete Bose-Einstein
condensation given in [4] and, more recently, in the proof of the validity of Bogoliubov theory for Bose
gases trapped by an external potential obtained in [25].

Observing equation (11), it is clear that we still have to renormalise the diagonal quadratic term
(proportional to 𝑉̂ (0)) and the cubic term 𝑄3. To this end, we will introduce a unitary transformation
𝑒B3 , with B3, defined in equation (59), cubic in the operator 𝑎𝑝 , 𝑎†𝑝 , with 𝑝 ≠ 0. Up to several negligible
errors, conjugation with 𝑒B3 will lead us to

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3 � 4𝜋𝔞𝑁 (𝑁 − 1) +

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 .

+
∑
𝑝∈Λ∗

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝𝑎𝑝 +
∑

|𝑝 | ≤𝑁 𝛼

4𝜋𝔞𝑁 [𝑎†𝑝𝑎†−𝑝 + h.c.] +𝑄4 .
(12)

The only term on the right-hand side of the last equation where we still have the original, singular,
potential 𝑉̂𝑁 is 𝑄4; all other terms have been renormalised and are now expressed in terms of the
scattering length 𝔞𝑁 . Fortunately, 𝑄4 is positive; for this reason, we do not need to renormalise it (for
lower bounds, it can be neglected; for upper bounds, it only needs to be controlled on special trial states).
Finally, in section 5, we will apply a second quadratic transformation 𝑒B4 to diagonalise the remaining
quadratic Hamiltonian on the right-hand side of equation (12). This will lead us to

𝑒−B4𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3𝑒B4 � 4𝜋𝔞𝑁 (𝑁 − 1) + 1

2

∑
𝑝

[√
𝑝4 + 16𝜋𝔞𝑁 𝑝2 − 𝑝2 − 8𝜋𝔞𝑁 + (8𝜋𝔞𝑁 )2

2𝑝2

]
+
∑
𝑝

√
𝑝4 + 𝑝216𝜋𝔞𝑁 𝑎†𝑝𝑎𝑝 +𝑄4,

which will allow us to show Theorem 1. To control error terms, we use the tool of localisation in the
number of particles to show Bose-Einstein condensation (similarly to [7, 25]).

3. Quadratic renormalisation

Starting with the quadratic transformation, we conjugate the Hamiltonian 𝐻𝑁 in equation (7) with the
unitary 𝑒B2 , where

B2 =
1
2

∑
𝑝

𝜑̃𝑝 [𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 − h.c.] . (13)
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We are going to fix the coefficients 𝜑̃𝑝 so that the commutator [𝐻1 +𝑄4,B2] arising from the action of
the unitary 𝑒B2 (13) renormalises the off-diagonal quadratic term 𝑄2 (effectively replacing the singular
potential 𝑉𝑁 with a regularised interaction having the same scattering length). To this end, we choose
𝜑𝑝 satisfying the relations

𝑝2𝜑𝑝 +
1
2

∑
𝑞≠0
𝑉̂𝑁 ((𝑝 − 𝑞))𝜑𝑞 = −1

2
𝑉̂𝑁 (𝑝) , (14)

for all 𝑝 ∈ Λ∗
+ = Λ∗\{0}. Equation (14) is a truncated version of the zero-energy scattering equation for

the potential 𝑉𝑁 on the whole space R3.
To prove the existence of a solution for equation (14), we consider the operator

𝔥 = −Δ + 1
2
𝑉𝑁

acting on the one-particle space 𝐿2 (Λ) (for N large enough, 𝑉𝑁 is supported in [−1/2; 1/2]3 and can
be periodically extended to define a function on the torus). Denoting by 𝑃⊥0 the orthogonal projection
onto the orthogonal complement of the zero-momentum mode 𝜑0 in 𝐿2 (Λ), we find (since 𝑉𝑁 ≥ 0)
that 𝑃⊥0 𝔥𝑃

⊥
0 ≥ 𝐶 > 0, and therefore that 𝑃⊥0 𝔥𝑃

⊥
0 is invertible. Thus, we can define 𝜑̌ ∈ 𝐿2 (Λ) through

𝜑̌ = −1
2
𝑃⊥0

[
𝑃⊥0

(
− Δ + 1

2
𝑉𝑁

)
𝑃⊥0

]−1
𝑃⊥0𝑉𝑁 . (15)

It is then easy to check that the Fourier coefficients of 𝜑̌ satisfy the relations in equation (14).
Using the sequence {𝜑𝑝}𝑝∈2𝜋Z3\{0}, we can define the ‘box scattering length’ of 𝑉𝑁 by

8𝜋𝔞𝑁 := 𝑁
[
𝑉̂𝑁 (0) +

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑𝑝
]
= 𝑉̂ (0) + 𝑁

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑𝑝 . (16)

As proven in [15], we have that |𝔞𝑁 − 𝔞 | � 𝑁−1.
As explained earlier, we first renormalise the high-momenta part of 𝑄2; for this reason, we use a

cutoff version of 𝜑𝑝 to momenta |𝑝 | > 𝑁𝛼 for some 0 < 𝛼 < 1. We therefore define

𝜑̃𝑝 = 𝜑𝑝𝜒 |𝑝 |>𝑁 𝛼 . (17)

The next lemma lists some important properties of the sequences 𝜑, 𝜑̃ and the scattering length 𝔞𝑁 that
will be useful for our analysis.

Lemma 2. Let 𝑉 ∈ 𝐿2 (R3) be nonnegative and compactly supported. Define 𝜑̌ as in equation (15), and
denote by 𝜑𝑝 the corresponding Fourier coefficients. Then 𝜑𝑝 ∈ R, 𝜑−𝑝 = 𝜑𝑝 and

|𝜑𝑝 | �
1
𝑁𝑝2 (18)

for all 𝑝 ∈ 2𝜋Z\{0}. Moreover, with equation (17), we have

‖𝜑̃‖2 � 𝑁−1−𝛼/2, ‖𝜑̃‖∞ � 𝑁−1−2𝛼, ‖𝜑̃‖1 � 1,

and

𝑁
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝 = 8𝜋𝔞𝑁 − 𝑉̂ (0) +O(𝑁𝛼−1). (19)
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Proof. Multiplying equation (14) by 𝜑𝑝 , summing over p and using that 𝑉 ≥ 0, we obtain

2‖𝑝𝜑‖2
2 = −

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑𝑝 −
∑
𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞 ≤ −
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑𝑝 . (20)

On one hand, this implies that ‖𝑝𝜑‖2 � ‖𝑉𝑁 ‖2‖𝜑‖2 < ∞ (the last bound is not uniform in N; it follows
from equation (15)). On the other hand, the estimate (20) leads to

2‖𝑝𝜑‖2
2 ≤ ‖𝑉𝑁 /|𝑝 |‖2‖𝑝𝜑‖2.

Dividing by ‖𝑝𝜑‖2 and squaring, we obtain

‖𝑝𝜑‖2
2 �

∑
𝑝

|𝑉̂𝑁 (𝑝) |2

𝑝2 � ‖𝑉̂𝑁 ‖2
∞‖|𝑝 |−2𝜒 |𝑝 |<𝑁 ‖1 + ‖𝑉̂𝑁 ‖∞‖𝑉̂𝑁 ‖2‖|𝑝 |−2𝜒 |𝑝 |>𝑁 ‖2 � 𝑁−1. (21)

Using equation (14) again, we obtain the pointwise bound

|𝑝2𝜑𝑝 | ≤ |𝑉̂𝑁 (𝑝) | +
[∑
𝑞

|𝑉̂𝑁 (𝑝 − 𝑞) |2

𝑞2

]1/2
‖𝑞𝜑‖2 � 𝑁−1, (22)

where we proceeded as in (21) to bound ‖|𝑉̂𝑁 |2 ∗ |𝑞 |−2‖∞. This proves the bound (18) and immediately
implies the bounds for ‖𝜑̃‖2, ‖𝜑̃‖∞. To obtain the bound on ‖𝜑̃‖1, we divide equation (14) by |𝑝 |2.
Proceeding as in (21), we obtain

∑
𝑝≠0

|𝑉̂𝑁 (𝑝) |
|𝑝 |2

� 1 ,

and hence we only have to bound ‖|𝑝 |−2 (𝑉̂𝑁 ∗ 𝜑)‖1. Iterating equation (14) and using the regularising
estimate ‖|𝑝 |−2𝑉̂𝑁 ∗ 𝑔‖6𝑝/(6+𝑝)+𝜀 ≤ 𝐶𝜀 ‖𝑉̂𝑁 ‖2‖𝑔‖𝑝 for all 𝜀 > 0, 𝑝 ≥ 6/5, 𝑔 ∈ ℓ𝑝 (Λ∗) and some
𝐶𝜀 > 0, we obtain that ‖𝜑‖1 < ∞. Separating high and low momenta, we obtain for 𝐴 ≥ 1 and 𝜀 > 0

‖𝜑‖1 � 1 + ‖𝜒 |𝑝 |>𝐴𝑁 |𝑝 |−2‖2‖𝑉𝑁 𝜑̌‖2 + ‖𝜒 |𝑝 | ≤𝐴𝑁 |𝑝 |−2‖1‖𝑉̂𝑁 ∗ 𝜑‖∞

� 1 + 𝐴−
1
2 ‖𝜑‖1 + 𝐴 ,

where we used that ‖𝜑̌‖∞ ≤ ‖𝜑‖1 and the Hölder inequality as in (22) to estimate ‖𝑉̂𝑁 ∗ 𝜑‖∞. Taking A
sufficiently large but fixed, we obtain ‖𝜑‖1 � 1.

The estimate (19) follows by noticing that, from the definition given in equation (16),���8𝜋𝔞𝑁 − 𝑉̂ (0) − 𝑁
∑
𝑝

𝑉𝑁 (𝑝)𝜑̃𝑝
��� ≤ 𝑁 ∑

|𝑝 | ≤𝑁 𝛼

|𝑉̂𝑁 (0) | |𝜑𝑝 | �
1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

1
|𝑝 |2
� 𝑁−1+𝛼,

where we use equation (18) and ‖𝑉̂𝑁 ‖∞ � 𝑁−1. �

Using the bounds in Lemma 2, we can control the growth of the number of excitations w.r.t. the
action of B2; the proof of the next lemma can be found, for example, in [12, Lemma 3.1].

Lemma 3. For every 𝑛 ∈ N and |𝑠 | ≤ 1, we have

±(𝑒−𝑠B2N+𝑒
𝑠B2 −N+) � 𝐶𝑁−𝛼/2(N+ + 1),

𝑒−𝑠B2 (N+ + 1)𝑛𝑒𝑠B2 � (N+ + 1)𝑛.
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In the next proposition, we describe the action of the operator B2, defined as in equation (13), on the
Hamilton operator in equation (9).

Proposition 4. We have

𝑒−B2𝐻𝑁 𝑒
B2 = 4𝜋𝔞𝑁 (𝑁 − 1) +

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 + 𝐻1 + 𝐻̃2 + 𝑄̃2 +𝑄3 +𝑄4 + EB2 , (23)

with

𝐻̃2 = (2𝑉̂ (0) − 8𝜋𝔞𝑁 )N+, (24)

𝑄̃2 =
∑

|𝑝 | ≤𝑁 𝛼

4𝜋𝔞𝑁
[
𝑎†𝑝𝑎

†
−𝑝
𝑎0𝑎0
𝑁

+ h.c.
]
, (25)

and

±EB2 � 𝑁
−𝛼/2𝑄4 +

[
𝑁−𝛼/2 + 𝑁−1+5𝛼/2] (N+ + 1) + 𝑁−1+𝛼N 2

+ + 𝑁−2𝐻1.

To show Proposition 4, we define

Γ2 := [𝐻1 +𝑄4,B2] +𝑄2 − 𝑄̃ ′
2 (26)

with

𝑄̃ ′
2 =

∑
𝑝

𝑊̂ (𝑝)𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c., (27)

and

𝑊̂ (𝑝) = 1
2
𝜒 |𝑝 | ≤𝑁 𝛼

[∑
𝑞

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 + 𝑉̂𝑁 (𝑝)
]
− 1

2

∑
|𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 .

We observe that

𝑒−B2𝐻𝑁 𝑒
B2

= 𝐻0 + 𝐻1 +𝑄4 +
∫ 1

0
𝑒−𝑡B2 [𝐻1 +𝑄4,B2]𝑒𝑡B2 d𝑡 + 𝑒−B2𝑄2𝑒

B2 + 𝑒−B2 (𝐻2 +𝑄3)𝑒B2

= 𝐻0 + 𝐻1 +𝑄4 +
∫ 1

0
𝑒−𝑡B2 (−𝑄2 + 𝑄̃ ′

2 + Γ2)𝑒𝑡B2 d𝑡 + 𝑒−B2𝑄2𝑒
B2 + 𝑒−B2 (𝐻2 +𝑄3)𝑒B2

= 𝐻0 + 𝐻1 + 𝑄̃ ′
2 +𝑄4 +

∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2 [𝑄2,B2]𝑒𝑡B2 d𝑡d𝑠 +

∫ 1

0

∫ 𝑠

0
𝑒−𝑡B2𝑄̃ ′

2𝑒
𝑡B2 d𝑡d𝑠

+
∫ 1

0
𝑒−𝑡B2Γ2𝑒

𝑡B2 d𝑡 + 𝑒−B2 (𝐻2 +𝑄3)𝑒B2 ,

(28)

where, in the last step, we use∫ 1

0
𝑒−𝑡B2𝑄̃ ′

2𝑒
𝑡B2 d𝑡 = 𝑄̃ ′

2 +
∫ 1

0

∫ 𝑠

0
𝑒−𝑡B2 [𝑄̃ ′

2,B2]𝑒𝑡B2 d𝑡d𝑠

𝑒−B2𝑄2𝑒
B2 −

∫ 1

0
𝑒−𝑡B2𝑄2𝑒

𝑡B2 d𝑡 =
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2 [𝑄2,B2]𝑒𝑡B2 d𝑡d𝑠.
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The proof of Proposition 4 now follows by controlling the terms on the right-hand side of equation
(28). This is accomplished through a series of lemmas. We start by controlling the contribution arising
from 𝐻2.

Lemma 5. On {N = 𝑁}, we have

𝑒−B2𝐻2𝑒
B2 = 𝑉̂ (0)N+ + E𝐻2 , (29)

with

±E𝐻2 � 𝑁
−𝛼/2(N+ + 1) +N 2

+ /𝑁 + 𝑁−2𝐻1.

Proof. We have

𝑒−B2𝐻2𝑒
B2 = 𝑁

∑
𝑝

𝑉̂𝑁 (𝑝)
(
𝑎†𝑝𝑎𝑝 +

∫ 1

0
𝑒−𝑠B2 [𝑎†𝑝𝑎𝑝 ,B2]𝑒𝑠B2 d𝑠

)

− 𝑒−B2

(∑
𝑝

𝑉̂𝑁 (𝑝)𝑎†𝑝𝑎𝑝N+ +
𝑉̂𝑁 (0)

2
N+(N+ − 1)

)
𝑒B2 . (30)

The term on the second line is controlled using Lemma 3 by 𝑁−1N 2
+ . For the second term in parenthesis

in the first line, we use Lemma 3 to estimate

±
∑
𝑝

𝑁𝑉̂𝑁 (𝑝) [𝑎†𝑝𝑎𝑝 ,B2] = ±
∑
𝑝

𝑁𝑉̂𝑁 (𝑝)𝜑̃𝑝𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.

≤ 𝐶‖𝜑̃‖2 (N0 + 1) (N+ + 1) ≤ 𝑁−𝛼/2(N+ + 1),

where we used that N0 � 𝑁 and Lemma 2. Finally, since 𝑉𝑁 is even, we obtain

𝑁 |𝑉̂𝑁 (𝑝) − 𝑉̂𝑁 (0) | ≤ ‖𝑥2𝑉 ‖1𝑁
−2𝑝2 ≤ 𝐶𝑁−2𝑝2,

which gives

±
(
𝑁

∑
𝑝

𝑉̂𝑁 (𝑝)𝑎†𝑝𝑎𝑝 − 𝑉̂ (0)N+

)
≤ 𝑁−2𝐻1. �

The estimate of the term involving 𝑄3 is obtained analogously to [7, 15]. We repeat the proof for the
sake of completeness.

Lemma 6. We have

𝑒−B2𝑄3𝑒
B2 = 𝑄3 + E𝑄3 ,

with

±E𝑄3 � 𝑁
−𝛼/2(𝑄4 +N+ + 1).

Proof. We can rewrite

𝑒−B2𝑄3𝑒
B2 =

∑
𝑞,𝑟

𝑉̂𝑁 (𝑟)
[
𝑒−B2𝑎†𝑞+𝑟𝑎

†
−𝑟 𝑒

B2𝑒−B2𝑎𝑞𝑎0𝑒
B2 + h.c.

]
. (31)
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Via Duhamel’s formula, we have

𝑒−B2𝑎†𝑞+𝑟𝑎
†
−𝑟 𝑒

B2 = 𝑎†𝑞+𝑟𝑎
†
−𝑟 +

∫ 1

0
𝑒−𝑠B2 [𝑎†𝑞+𝑟𝑎†−𝑟 ,B2]𝑒𝑠B2 d𝑠 (32)

and

𝑒−B2𝑎𝑞𝑎0𝑒
B2 = 𝑎𝑞𝑎0 +

∫ 1

0
𝑒−𝑠B2 (𝜑̃𝑞𝑎†−𝑞𝑎0𝑎0𝑎0 − 𝑎𝑞

∑
𝑙

𝜑̃𝑙𝑎−𝑙𝑎𝑙𝑎
†
0)𝑒
𝑠B2 d𝑠.

The product of the first terms, combined with its hermitian conjugate, corresponds to𝑄3 in the statement
of the lemma. All other terms will be estimated in three steps.

Step 1. Passing to x-space, we find

���∑
𝑞,𝑟

𝜑̃𝑞𝑉̂𝑁 (𝑟)
∫ 1

0

〈
𝜉, 𝑎†𝑞+𝑟𝑎

†
−𝑟 𝑒

−𝑠B2𝑎†−𝑞𝑎0𝑎0𝑎0𝑒
𝑠B2𝜉〉 d𝑠

���
=

∫ 1

0

∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)
〈
𝜉, 𝑎̌†𝑥 𝑎̌

†
𝑦𝑒

−𝑠B2 𝑎̌†( ˇ̃𝜑𝑥)𝑎0𝑎0𝑎0𝑒
𝑠B2𝜉

〉
d𝑠

≤
( ∫

Λ2
d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)‖𝑎̌𝑥 𝑎̌𝑦𝜉‖2

)1/2

×
( ∫

Λ2
d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)

∫ 1

0
‖𝑎̌†( ˇ̃𝜑𝑥)𝑎0𝑎0𝑎0𝑒

𝑠B2𝜉‖2d𝑠
)1/2

≤ 𝐶𝑁3/2‖𝑉𝑁 ‖1/2
1 ‖𝜑̃‖2‖𝑄1/2

4 𝜉‖‖(N+ + 1)1/2𝜉‖
≤ 𝐶𝑁−𝛼/2〈𝜉, (𝑄4 +N+ + 1)𝜉〉,

(33)

where we used Lemma 2, Lemma 3 and the bound N0 ≤ 𝑁 .
Step 2. Similarly, we have

���∑
𝑞,𝑟

𝑉̂𝑁 (𝑟)
∑
𝑙

𝜑̃𝑙

∫ 1

0
d𝑠

〈
𝜉, 𝑎†𝑞+𝑟𝑎

†
−𝑟 𝑒

−𝑠B2𝑎𝑞𝑎−𝑙𝑎𝑙𝑎
†
0𝑒
𝑠B2𝜉

〉���
=

���∑
𝑙

𝜑̃𝑙

∫ 1

0
d𝑠

∫
Λ2

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦)〈𝜉, 𝑎†𝑥𝑎†𝑦𝑒−𝑠B2𝑎𝑥𝑎−𝑙𝑎𝑙𝑎
†
0𝑒
𝑠B2𝜉〉

���
≤ 𝐶‖𝜑̃‖2‖𝑉𝑁 ‖1/2

1 ‖𝑄1/2
4 𝜉‖‖(N+ + 1)2𝜉‖ ≤ 𝐶𝑁−𝛼/2〈𝜉, 𝑄4 +N+ + 1)𝜉〉.

(34)

Step 3. The remaining term has the form

∑
𝑞,𝑟

𝑉̂𝑁 (𝑟)
∫ 1

0
𝑒−𝑠B2 [𝑎†𝑞+𝑟𝑎†−𝑟 ,B2]𝑒 (𝑠−1)B2𝑎𝑞𝑎0𝑒

B2 d𝑠.

A straightforward computation gives

[𝑎†𝑞+𝑟𝑎†−𝑟 ,B2] = −
(
𝜑̃𝑟𝑎

†
𝑞+𝑟𝑎𝑟 + 𝜑̃−𝑟−𝑞𝑎†−𝑟𝑎−𝑞−𝑟

)
𝑎†0𝑎

†
0.

The contributions of the two terms in parenthesis can be handled similarly. Let us consider, for example,
the expectation
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���∑
𝑞,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑟
∫ 1

0
〈𝜉, 𝑒−𝑠B2𝑎†𝑞+𝑟𝑎𝑟𝑎

†
0𝑎

†
0𝑒

(𝑠−1)B2𝑎𝑞𝑎0𝑒
B2𝜉〉 d𝑠

���
�

1
𝑁

∑
𝑟 ,𝑞

|𝜑̃𝑟 |
∫ 1

0
‖𝑎𝑞+𝑟𝑎0𝑎0𝑒

(𝑠−1)B2𝜉‖‖𝑎𝑟 𝑒𝑠B2𝑎𝑞𝑎0𝑒
B2𝜉‖d𝑠

� ‖𝜑̃‖2‖N 1/2
+ 𝜉‖

∫ 1

0

(∑
𝑟 ,𝑞

‖𝑎𝑟 𝑒 (𝑠−1)B2𝑎𝑞𝑎0𝑒
B2𝜉‖2

)1/2
d𝑠

� ‖𝜑̃‖2‖N 1/2
+ 𝜉‖‖(N+ + 1)3/2𝜉‖ ≤ 𝑁−𝛼/2〈𝜉, (N+ + 1)𝜉〉,

(35)

where we used Lemma 2 and Lemma 3. �

Next, we recall the definition of Γ2 given in equation (26) and consider the term containing Γ2
appearing on the right-hand side of equation (28).

Lemma 7. We have

Γ2 =
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑟)𝜑̃𝑝 [𝑎†𝑝+𝑟𝑎†𝑞𝑎†−𝑝𝑎𝑞+𝑟𝑎0𝑎0 + h.c.] (36)

and ∫ 1

0
𝑒−𝑡B2Γ2𝑒

𝑡B2 d𝑡 � 𝑁−𝛼/2(𝑄4 +N+ + 1). (37)

Proof. Straightforward calculations yield

[𝐻1,B2] =
∑
𝑝

𝑝2𝜑̃𝑝 [𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.]

and

[𝑄4,B2] =
1
2

∑
𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑞)𝜑̃𝑞𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 +
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑟)𝜑̃𝑝𝑎†𝑝+𝑟𝑎†𝑞𝑎†−𝑝𝑎𝑞+𝑟𝑎0𝑎0 + h.c. (38)

Hence,

[𝐻1 +𝑄4,B2] +𝑄2 =
∑

|𝑝 |>𝑁 𝛼

(
𝑝2𝜑𝑝 +

1
2

∑
𝑞

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 +
1
2
𝑉̂𝑁 (𝑝)

)
(𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.)

− 1
2

∑
|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 (𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.)

+ 1
2

∑
|𝑝 | ≤𝑁 𝛼

( ∑
|𝑞 |>𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 + 𝑉̂𝑁 (𝑝)
)
(𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.)

+
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑟)𝜑̃𝑝𝑎†𝑝+𝑟𝑎†𝑞𝑎†−𝑝𝑎𝑞+𝑟𝑎0𝑎0

= 𝑄̃ ′
2 +

∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑟)𝜑̃𝑝𝑎†𝑝+𝑟𝑎†𝑞𝑎†−𝑝𝑎𝑞+𝑟𝑎0𝑎0,

where we used the scattering equation (14) and the definition of 𝑄̃ ′
2 given in equation (27). Comparing

with equation (26), we find equation (36).
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12 Christian Hainzl, Benjamin Schlein and Arnaud Triay

To prove the estimate (37), we write∫ 1

0
𝑒−𝑡B2Γ2𝑒

𝑡B2 d𝑡 =
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑝
∫ 1

0
𝑒−𝑡B2𝑎†𝑝+𝑟𝑎

†
𝑞𝑒
𝑡B2𝑒−𝑡B2𝑎†−𝑝𝑎𝑞+𝑟𝑎0𝑎0𝑒

𝑡B2 d𝑡,

and we proceed similarly as in Lemma 6. We omit further details. �

Next, we focus on the contribution with the commutator [𝑄2,B2] on the right-hand side of equa-
tion (28).

Lemma 8. On {N = 𝑁}, we have∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2 [𝑄2,B2]𝑒𝑡B2 d𝑡d𝑠

= − (𝑁 − 1)
2

(𝑉̂ (0) − 8𝜋𝔞𝑁 ) −
𝑁 (𝑁 − 1)

2

∑
|𝑝 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝)𝜑𝑝 +N+(𝑉̂ (0) − 8𝜋𝔞𝑁 ) + E[𝑄2 ,B2 ] ,

(39)

and

±E[𝑄2 ,B2 ] � (𝑁−𝛼/2 + 𝑁𝛼−1)N+ + 𝑁−1 (N+ + 1)2 + 𝑁−𝛼/2𝑄4. (40)

Proof. First, we claim that∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2 [𝑄2,B2]𝑒𝑡B2 d𝑡d𝑠 =

𝑁 (𝑁 − 1)
2

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝 − 𝑁N+
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝 + E ′
[𝑄2 ,B2 ] (41)

with

E ′
[𝑄2 ,B2 ] = −2𝑁

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠

[
𝑒−𝑡B2N+𝑒

𝑡B2 −N+
]
d𝑡d𝑠

+
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2N+(N+ + 1)𝑒𝑡B2 d𝑡d𝑠

+ 2
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2N0 (N0 − 1)𝑎†𝑝𝑎𝑝𝑒𝑡B2 d𝑡d𝑠

−
∑
𝑝,𝑞

𝑉̂𝑁 (𝑝)𝜑̃𝑞
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2𝑎†𝑝𝑎

†
−𝑝𝑎−𝑞𝑎𝑞 (2N0 + 1)𝑒𝑡B2 d𝑡d𝑠. (42)

To prove equation (42), we calculate

[𝑄2,B2] =
1
4

∑
𝑝,𝑞

𝑉̂𝑁 (𝑝)𝜑̃𝑞 [𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + 𝑎−𝑝𝑎𝑝𝑎†0𝑎
†
0, 𝑎

†
𝑞𝑎

†
−𝑞𝑎0𝑎0 − 𝑎−𝑞𝑎𝑞𝑎†0𝑎

†
0]

=
1
4

∑
𝑝,𝑞

𝑉̂𝑁 (𝑝)𝜑̃𝑞
(
[𝑎−𝑝𝑎𝑝𝑎†0𝑎

†
0, 𝑎

†
𝑞𝑎

†
−𝑞𝑎0𝑎0] − [𝑎†𝑝𝑎†−𝑝𝑎0𝑎0, 𝑎−𝑞𝑎𝑞𝑎

†
0𝑎

†
0]
)
. (43)

The two terms in brackets are hermitian conjugates. Hence, it suffices to compute the second one

−[𝑎†𝑝𝑎†−𝑝𝑎0𝑎0, 𝑎−𝑞𝑎𝑞𝑎
†
0𝑎

†
0] = [𝑎−𝑞𝑎𝑞 , 𝑎†𝑝𝑎†−𝑝]𝑎

†
0𝑎

†
0𝑎0𝑎0 − 𝑎†𝑝𝑎†−𝑝𝑎−𝑞𝑎𝑞 [𝑎0𝑎0, 𝑎

†
0𝑎

†
0],
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where

[𝑎−𝑝𝑎𝑝 , 𝑎†𝑞𝑎†−𝑞] = (𝛿𝑝,𝑞 + 𝛿𝑝,−𝑞) (1 + 𝑎†𝑝𝑎𝑝 + 𝑎†−𝑝𝑎−𝑝), (44)

and

𝑎†0𝑎
†
0𝑎0𝑎0 = N0(N0 − 1) = 𝑁 (𝑁 − 1) − 2𝑁N+ +N+(N+ + 1),

[𝑎0𝑎0, 𝑎
†
0𝑎

†
0] = 2(2N0 + 1).

(45)

Inserting these identities on the right-hand side of equation (43), conjugating with 𝑒𝑡B2 and integrating
over 𝑡 and 𝑠, we obtain equation (42).

With the definition given in equation (16), we write

𝑁 (𝑁 − 1)
2

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝 =
(𝑁 − 1)

2
(𝑉̂ (0) − 8𝜋𝔞𝑁 ) −

𝑁 (𝑁 − 1)
2

∑
|𝑝 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝)𝜑𝑝 ,

and we use the bound (19) to estimate

±
[
− 𝑁N+

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝 + (8𝜋𝔞𝑁 − 𝑉̂ (0))N+
]
� 𝑁𝛼−1N+.

Thus, Lemma 8 follows from equation (41), if we can prove that E ′
[𝑄2 ,B2 ] satisfies the estimate given

in (40).
Using the bound ���∑

𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
��� � 𝑁−1

and Lemma 3, we can bound the first term on the right-hand side of equation (42) by

±2𝑁
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠

[
𝑒−𝑡B2N+𝑒

𝑡B2 −N+
]
d𝑡d𝑠 � 𝑁−𝛼/2(N+ + 1).

Also, the second term on the right-hand side of equation (42) can be bounded with Lemma 3; we find

±
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2N+(N+ + 1)𝑒𝑡B2 d𝑡d𝑠 � 𝑁−1 (N+ + 1)2.

For the third term, we use ‖𝑉̂𝑁 ‖∞ � 𝑁−1, ‖𝜑̃‖∞ � 𝑁−1−2𝛼 together with N0(N0 − 1) ≤ 𝑁2 and
Lemma 3 again to conclude that

±2
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2N0 (N0 + 1)𝑒𝑡B2 d𝑡d𝑠 � 𝑁−2𝛼N+.

To control the last term on the right-hand side of equation (42), we write∑
𝑝,𝑞

𝑉̂𝑁 (𝑝)𝜑̃𝑞
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2𝑎†𝑝𝑎

†
−𝑝𝑎−𝑞𝑎𝑞 (2N0 + 1)𝑒𝑡B2 d𝑡d𝑠

=
∑
𝑝

𝑉̂𝑁 (𝑝)
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B2𝑎†𝑝𝑎

†
−𝑝𝑒

𝑡B2𝑒−𝑡B2Φ(2N0 + 1)𝑒𝑡B2 d𝑡d𝑠,

(46)
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where we define Φ =
∑
𝑞 𝜑̃𝑞𝑎−𝑞𝑎𝑞 so that, by Lemma 2,

‖Φ𝜉‖ � ‖𝜑̃‖2‖N+𝜉‖ � 𝑁−1−𝛼/2‖N+𝜉‖. (47)

Next, we expand

𝑒−𝑡B2𝑎†𝑝𝑎
†
−𝑝𝑒

𝑡B2 = 𝑎†𝑝𝑎
†
−𝑝 +

∫ 𝑡

0
𝑒−𝜏B2 [𝑎†𝑝𝑎†−𝑝 ,B2]𝑒𝜏B2𝑑𝜏. (48)

Inserting this identity into equation (46), we obtain two contributions. The first contribution can be
controlled by passing to position space. We find

±
∑
𝑝

𝑉̂𝑁 (𝑝)
∫ 1

0

∫ 1

𝑠
𝑎†𝑝𝑎

†
−𝑝𝑒

−𝑡B2Φ(2N0 + 1)𝑒𝑡B2 d𝑡d𝑠

= ±
∫ 1

0

∫ 1

𝑠

∫
Λ2

d𝑥d𝑦𝜅𝑉𝑁 (𝑥 − 𝑦)𝑎̌†𝑥 𝑎̌†𝑦𝑒−𝑡BΦ(2N0 + 1)𝑒𝑡Bd𝑡d𝑠 + h.c.

� 𝛿𝑄4 + 𝛿−1𝑁2‖𝜑‖2
𝐿2 ‖𝑉𝑁 ‖1 (N+ + 1)2 � 𝑁−𝛼/2𝑄4 + 𝑁−1−𝛼/2(N+ + 1)2.

On the other hand, the contribution arising from the second term on the right-hand side of equation (48)
can be controlled by

±
∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∫ 1

0

∫ 1

𝑠

∫ 𝑡

0
𝑒−𝜏B2𝑎†0𝑎

†
0 (2𝑎

†
𝑝𝑎𝑝 + 1)𝑒𝜏B2𝑒−𝑡BΦ(2N0 + 1)𝑒𝑡Bd𝑡d𝑠 + h.c.

� 𝑁−1−𝛼/2(N+ + 1)2. (49)

This concludes the proof of (39) and (40). �

Finally, we control the contribution with the commutator [𝑄̃2,B2] in equation (28).

Lemma 9. We have∫ 1

0

∫ 𝑠

0
𝑒−𝑡B2 [𝑄̃2,B2]𝑒𝑡B2 d𝑡d𝑠 = −𝑁 (𝑁 − 1)

2

∑
|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞 + E[𝑄̃2 ,B2 ] , (50)

with

±E[𝑄̃2 ,B2 ] � 𝑁
−𝛼/2𝑄4 + 𝑁−1+𝛼 (N+ + 1)2.

Proof. Using that 𝜒 |𝑝 | ≤𝑁 𝛼 𝜑̃𝑝 = 0, similar computations as in the proof of Lemma 41 yield

[𝑄̃2,B2]

=
1
4

∑
|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼 ,𝑟

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 𝜑̃𝑟

× (𝑎†𝑝𝑎†−𝑝𝑎𝑟𝑎−𝑟 [𝑎0𝑎0, 𝑎
†
0𝑎

†
0] + [𝑎†𝑝𝑎†−𝑝 , 𝑎𝑟𝑎−𝑟 ]𝑎

†
0𝑎

†
0𝑎0𝑎0) + h.c.

=
∑

|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

1
4
𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞

×
(
(2𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1) + h.c.) − 4𝜑̃𝑝 (𝑎†𝑝𝑎𝑝 + 𝑎†−𝑝𝑎−𝑝)N0(N0 − 1) − 4𝜑̃𝑝N0(N0 − 1)

)
,

(51)
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with the notation Φ =
∑
𝑟 𝜑̃𝑟𝑎𝑟𝑎−𝑟 . To bound the contribution arising from the first term in parentheses,

we decompose

1
2

∑
|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1)

=
1
2

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1) − 1
2

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1).
(52)

The first term can be controlled by switching to position space. With the notation 𝜑̌< for the Fourier
series of 𝜒 |𝑞 | ≤𝑁 𝛼𝜑𝑞 , we find

±1
2

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1)

= ±
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)𝜑̌< (𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦Φ(2N0 + 1) + h.c.

� 𝛿𝑄4 + 𝛿−1𝑁−𝛼‖𝑉1/2
𝑁 𝜑̌<‖2

2 (N+ + 1)2,

where we used the bound (47) for Φ and N0 ≤ 𝑁 . With

‖𝑉1/2
𝑁 𝜑̌<‖2

2 =
∑

|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞 �
1
𝑁3

[ ∑
|𝑝 | ≤𝑁 𝛼

1
|𝑝 |2

]2
� 𝑁2𝛼−3 (53)

and choosing 𝛿 = 𝑁−𝛼/2, we conclude (since 𝛼 < 1) that

±1
2

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1) � 𝑁−𝛼/2𝑄4 + 𝑁−1−𝛼/2(N+ + 1)2.

For the second term on the right-hand side of equation (52), we estimate

±1
2

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1) + h.c. � 𝑁−𝛼/2‖𝜒 |𝑝 | ≤𝑁 𝛼𝑉̂𝑁 ∗ 𝜑<‖2‖(N+ + 1)2,

where, again, we used the bound (47) and N0 ≤ 𝑁 . With

‖𝜒 |𝑝 | ≤𝑁 𝛼𝑉̂𝑁 ∗ 𝜑<‖2 ≤ ‖𝜒 |𝑝 | ≤𝑁 𝛼 ‖𝐿2 ‖𝑉𝑁 𝜑̌<‖1 � 𝑁3𝛼/2‖𝑉1/2
𝑁 ‖2‖𝑉1/2

𝑁 𝜑̌<‖2 � 𝑁−2+5𝛼/2

we conclude that

±1
2

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝Φ(2N0 + 1) + h.c. � 𝑁−2−2𝛼 (N+ + 1)2.

The contribution arising from the second term in parentheses on the right-hand side of equation (51)
can be bounded by

±
∑

|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞 𝜑̃𝑝𝑎†𝑝𝑎𝑝N0 (N0 − 1) � 𝑁−1−𝛼N+,

using that ‖𝜑̃(𝑉̂𝑁 ∗ 𝜑<)‖𝐿∞ � ‖𝜑̃‖∞‖𝑉𝑁 𝜑̌<‖1 � 𝑁−3−𝛼. For the contribution arising from the last term
on the right-hand side of equation (51), we write N0 (N0 − 1) = 𝑁 (𝑁 − 1) − 2𝑁N+ + N+(N+ + 1).
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The contribution proportional to 𝑁 (𝑁 − 1) produces the main term on the right-hand side of equation
(50). The other contributions can be bounded, noticing that��� ∑

|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞
��� ≤ ‖ ˇ̃𝜑𝑉𝑁 𝜑̌<‖1 ≤ ‖ ˇ̃𝜑‖∞‖𝑉𝑁 𝜑̌<‖1 � 𝑁−2+𝛼,

where we used ‖ ˇ̃𝜑‖∞ � ‖𝜑̃‖1 � 1, by Lemma 2. �

We can now finish the proof of Proposition 4.

Proof of Proposition 4. Combining equation (28) with the bounds proven in Lemma 5, Lemma 6,
Lemma 7, Lemma 8 and Lemma 9, we conclude that

𝑒−B2𝐻𝑁 𝑒
B2 = 4𝜋𝔞𝑁 (𝑁 − 1) + 𝐴𝛼 + 𝐻1 + 𝐻̃2 + 𝑄̃ ′

2 +𝑄3 +𝑄4 + E , (54)

where

±E � 𝑁−𝛼/2𝑄4 +
[
𝑁−𝛼/2 + 𝑁𝛼−1] (N+ + 1) + 𝑁−1+𝛼N 2

+ + 𝑁−2𝐻1 (55)

and where we defined

𝐴𝛼 = −𝑁 (𝑁 − 1)
2

[ ∑
|𝑝 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝)𝜑𝑝 +
∑

|𝑝 |>𝑁 𝛼 , |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞
]

= −𝑁 (𝑁 − 1)
2

[ ∑
|𝑝 | ≤𝑁 𝛼

(𝑉̂𝑁 (𝑝) + 𝑉̂𝑁 ∗ 𝜑)𝜑𝑝 −
∑

|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑝𝜑𝑞
]
.

The second term in parentheses can be estimated as in (53). Setting, in position space, 𝑓 = 1+ 𝜑̌, we find

𝐴𝛼 = −𝑁 (𝑁 − 1)
2

∑
|𝑝 | ≤𝑁 𝛼

(𝑉̂𝑁 ∗ 𝑓 ) (𝑝)𝜑𝑝 +O(𝑁2𝛼−1). (56)

From equation (16), we have �𝑉𝑁 𝑓 (0) = 8𝜋𝔞𝑁 . Hence

| (𝑉̂𝑁 ∗ 𝑓 ) (𝑝) − 8𝜋𝔞𝑁 /𝑁 | ≤
∫
Λ
𝑉𝑁 (𝑥) 𝑓 (𝑥) |𝑒−𝑖 𝑝 ·𝑥 − 1|d𝑥 ≤ 𝐶 |𝑝 |/𝑁2. (57)

Moreover, from the scattering equation (14), we find

𝜑𝑝 = − 1
2𝑝2 (𝑉̂𝑁 ∗ 𝑓 ) (𝑝),

which implies, by the bound (57),���𝜑𝑝 + 4𝜋𝔞𝑁
𝑁𝑝2

��� ≤ 1
2𝑝2

��(𝑉̂𝑁 ∗ 𝑓 ) (𝑝) − 8𝜋𝔞𝑁
�� ≤ 𝐶

|𝑝 |𝑁2 .

Inserting in equation (56), we obtain

𝐴𝛼 =
∑

|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 +O(𝑁2𝛼−1).
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To conclude the proof of Proposition 4, we still have to compare the operator 𝑄̃ ′
2 appearing on the right-

hand side of equation (54) with the operator 𝑄̃2 defined in equation (25). From equation (27), we can
write, using again the notation 𝑓 = 1 + 𝜑̌,

𝑄̃ ′
2 − 𝑄̃2 =

1
2

∑
|𝑝 | ≤𝑁 𝛼

[
(𝑉̂𝑁 ∗ 𝑓 ) (𝑝) − 8𝜋𝔞𝑁

𝑁

]
𝑎†𝑝𝑎

†
−𝑝𝑎0𝑎0 −

1
2

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝑉̂𝑁 (𝑝 − 𝑞)𝜑𝑞𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.

(58)

The first term on the right-hand side of equation (58) can be bounded using the bound (57) by

±
∑

|𝑝 | ≤𝑁 𝛼

[
(𝑉̂𝑁 ∗ 𝑓 ) (𝑝) − 8𝜋𝔞𝑁

𝑁

] (
𝑎†𝑝𝑎

†
−𝑝𝑎0𝑎0 + h.c.

)
�

1
𝑁
‖|𝑝 |𝜒 |𝑝 | ≤𝑁 𝛼 ‖2(N+ + 1) � 𝑁−1+5𝛼/2(N+ + 1).

For the second term on the right-hand side of equation (58), we set 𝜑<𝑝 = 𝜑𝑝𝜒 |𝑝 | ≤𝑁 𝛼 and estimate,
switching to position space,

±
∑
𝑝

(𝑉̂𝑁 ∗ 𝜑<) (𝑝) 𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.

= ±
∫
Λ2

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦)𝜑̌< (𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦𝑎0𝑎0 + h.c.

� 𝛿𝑄4 + 𝛿−1𝑁2‖𝑉𝑁 ‖1‖𝜑̌<‖2
∞ � 𝛿𝑄4 + 𝛿−1𝑁−1+2𝛼 ≤ 𝑁−𝛼/2𝑄4 + 𝑁−1+5𝛼/2,

since ‖𝜑̌<‖∞ � ‖𝜑<‖1 � 𝑁𝛼, from Lemma 2 (in the last step, we chose 𝛿 = 𝑁−𝛼/2). The last two
estimates show that the difference 𝑄̃ ′

2 − 𝑄̃2 can be added to the error (55) and therefore conclude the
proof of Proposition 4. �

4. Cubic renormalisation

While conjugation with 𝑒B2 allowed us to renormalise the quadratic part of the Hamiltonian 𝐻𝑁 , regu-
larising the off-diagonal term 𝑄2, it did not significantly change the cubic operator 𝑄3. To renormalise
𝑄3, we proceed with a second conjugation, with a unitary operator 𝑒B3 , where

B3 =
∑
𝑝,𝑞

𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 − h.c., (59)

with the same 0 < 𝛼 < 1 used in the definition given in equation (17) of 𝜑̃. Similarly to what we did in
Lemma 3 for the action of B2, it is important to notice that conjugation with 𝑒B3 does not substantially
change the number of excitations.

Lemma 10. For all 𝑠 ∈ [−1; 1] and all 𝑘 ∈ N, we have

±
[
𝑒−𝑠B3N+𝑒

𝑠B3 −N+
]
� 𝑁−𝛼/2(N+ + 1) , (60)

𝑒−𝑠B3 (N+ + 1)𝑘𝑒𝑠B3 � (N+ + 1)𝑘 . (61)

Proof. We proceed similarly as in the proof of [7, Prop. 5.1]. For 𝜉 ∈ F , we set 𝑓 (𝑠) = 〈𝜉, 𝑒−𝑠B3 (N+ +
1)𝑒𝑠B3𝜉〉. For 𝑠 ∈ (0; 1), we find
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𝑓 ′(𝑠) = 〈𝜉, 𝑒−𝑠B3 [(N+ + 1),B3]𝑒𝑠B3𝜉〉

=
∑
𝑝,𝑞

𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼 〈𝜉, 𝑒−𝑠B3𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0𝑒

𝑠B3𝜉〉 + h.c.

� 𝛿
∑
𝑝,𝑞

〈𝜉, 𝑒−𝑠B3𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎−𝑝𝑎𝑝+𝑞𝑒

𝑠B3𝜉〉 + 𝛿−1
∑
𝑝,𝑞

|𝜑̃𝑝 |2 〈𝜉, 𝑒−𝑠B3𝑎†𝑞𝑎𝑞𝑎
†
0𝑎0𝑒

𝑠B3𝜉〉

� 𝛿〈𝑒−𝑠B3N 2
+ 𝑒
𝑠B3𝜉〉 + 𝐶𝛿−1𝑁 ‖𝜑̃‖2

2 〈𝜉, 𝑒
−𝑠B3N+𝑒

𝑠B3𝜉〉 � 𝑁−𝛼/2 𝑓 (𝑠),

(62)

where we put 𝛿 = 𝑁−1−𝛼/2 and used that N+,N0 ≤ 𝑁 , ‖𝜑‖2 � 𝑁−1−𝛼/2, by Lemma 2. With Gronwall’s
lemma [26, Theorem 1.2.2], we obtain 𝑓 (𝑠) � 〈𝜉, (N+ + 1)𝜉〉 for all 𝑠 ∈ [−1; 1], proving the bound
(61). Inserting this estimate on the right-hand side of (62) and integrating over s, we obtain the desired
bound (60). For 𝑘 > 1, the bound given in (61) can be shown similarly. �

The operator B3 is chosen (similarly as we did with B2 in Section 3) so that the commutator
[𝐻1 + 𝑄4,B3] arising from conjugation with 𝑒B3 cancels the main part of 𝑄3. The goal of this section
is to use this cancellation to prove the following proposition.

Proposition 11. We have

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3

= 4𝜋𝔞𝑁 (𝑁 − 1) + 1
4

∑
|𝑝 | ≤𝑁 𝛼

(8𝜋𝔞𝑁 )2

𝑝2

+
∑
𝑝

(𝑝2 + 8𝜋𝔞𝑁 𝜒 |𝑝 | ≤𝑁 𝛼 )𝑎†𝑝𝑎𝑝 +
1
2

∑
|𝑝 | ≤𝑁 𝛼

8𝜋𝔞𝑁 [𝑎†𝑝𝑎†−𝑝
𝑎0𝑎0
𝑁

+ h.c.] +𝑄4 + EB3 ,

(63)

with

±EB3 � 𝑁
−3𝛼/2𝐻1 + 𝑁−𝛼/2𝑄4 + 𝑁−𝛼/2(N+ + 1)

+ 𝑁 (3𝛼−1)/2(N+ + 1)3/2 + 𝑁−1+5𝛼/2(N+ + 1)2.
(64)

To prove Proposition 11, we define

Γ3 :=
[
𝐻1 +𝑄4,B3

]
+𝑄3. (65)

Starting from equation (23), we compute

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3 − 4𝜋𝔞𝑁 (𝑁 − 1) −

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 − 𝑒−B3 (𝐻̃2 + 𝑄̃2 + EB2)𝑒B3

= 𝐻1 +𝑄4 +
∫ 1

0
𝑒−𝑡B3 [𝐻1 +𝑄4,B3]𝑒𝑡B2 d𝑡 + 𝑒−B3𝑄3𝑒

B3

= 𝐻1 +𝑄4 +
∫ 1

0
𝑒−𝑡B3 (−𝑄3 + Γ3)𝑒𝑡B3 d𝑡 + 𝑒−B3𝑄3𝑒

B3 ,

which leads to

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3 = 4𝜋𝔞𝑁 (𝑁 − 1) +

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 + 𝐻1 +𝑄4 + 𝑒−B3 (𝐻̃2 + 𝑄̃2 + EB2)𝑒B3

+
∫ 1

0
𝑒−𝑡B3Γ3𝑒

𝑡B3 d𝑡 +
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B3 [𝑄3,B3]𝑒𝑡B3 d𝑡d𝑠.

(66)
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To show Proposition 11, we are going to control all terms on the right-hand side of equation (66). We
start by computing and estimating the commutator in equation (65), defining the error term Γ3.
Lemma 12. We have

[𝐻1,B3] =
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝 − 𝑟) (𝛿0,𝑟 + 𝜑𝑟 )𝜒 |𝑝 |>𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c. + E[𝐻1 ,B3 ] , (67)

[𝑄4,B3] =
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑟)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 (𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + h.c.) + E[𝑄4 ,B3 ] , (68)

where

±E[𝐻1 ,B3 ] � 𝑁
−3𝛼/2𝐻1 + 𝑁−1+5𝛼/2(N+ + 1)2,

±E[𝑄4 ,B3 ] � 𝑁
−𝛼/2𝑄4 + 𝑁−1+5𝛼/2(N+ + 1)2.

(69)

Proof. A simple computation shows that

[𝐻1,B3] =
∑
𝑝,𝑞

[
(𝑝 + 𝑞)2 + 𝑝2 − 𝑞2] 𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎

†
−𝑝𝑎𝑞𝑎0 + h.c.,

= 2
∑
𝑝,𝑞

𝑝2𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c. + E[𝐻1 ,B3 ] ,

with

E[𝐻1 ,B3 ] = 2
∑
𝑝,𝑞

𝑝 · 𝑞𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c.

Using the scattering equation (14) yields (67). We now estimate E[𝐻1 ,B3 ] . Using |𝑞 | ≤ 𝑁𝛼, we find, for
any 𝛿 > 0,

±E[𝐻1 ,B3 ] = ±2
∑
𝑝,𝑞

𝑝 · 𝑞𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝 (N+ + 1)−1/2(N+ + 1)1/2𝑎𝑞𝑎0 + h.c.

� 𝛿
∑
𝑝,𝑞

𝑝2𝑎†𝑝+𝑞𝑎
†
−𝑝 (N+ + 1)−1𝑎−𝑝𝑎𝑝+𝑞 + 𝛿−1

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝑞2 |𝜑̃𝑝 |2 𝑎†𝑞 (N+ + 1)𝑎𝑞 (𝑎†0𝑎0)

� 𝛿𝐻1 + 𝛿−1𝑁1+2𝛼‖𝜑̃‖2
2 (N+ + 1)2.

Choosing 𝛿 = 𝑁−3𝛼/2, we conclude that

±E[𝐻1 ,B3 ] � 𝑁
−3𝛼/2𝐻1 + 𝑁−1+5𝛼/2(N+ + 1)2.

Let us now turn to (68). Recalling (10) and (59), we find

[𝑄4,B3] =
1
2

∑
𝑟 , 𝑝,𝑞

∑
𝑚,𝑛

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑛 | ≤𝑁 𝛼

[
𝑎†𝑝+𝑟𝑎

†
𝑞𝑎𝑝𝑎𝑞+𝑟 , 𝑎

†
𝑚+𝑛𝑎

†
−𝑚𝑎𝑛𝑎0

]
+ h.c.

=
1
2

∑
𝑟 , 𝑝,𝑞

∑
𝑚,𝑛

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑛 | ≤𝑁 𝛼

×
{
𝑎†𝑝+𝑟𝑎

†
𝑞

[
𝑎𝑝𝑎𝑞+𝑟 , 𝑎

†
𝑚+𝑛𝑎

†
−𝑚

]
𝑎𝑛𝑎0 + 𝑎†𝑚+𝑛𝑎†−𝑚

[
𝑎†𝑝+𝑟𝑎

†
𝑞 , 𝑎𝑛𝑎0

]
𝑎𝑝𝑎𝑞+𝑟

}
.

Using equation (6) and rearranging all terms in normal order, we arrive at

[𝑄4,B3] =
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑟)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 (𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + h.c.) + E[𝑄4 ,B3 ] ,
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where

2E[𝑄4 ,B3 ] = −
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑝+𝑟 | ≤𝑁 𝛼 𝑎†𝑚+𝑝+𝑟𝑎
†
−𝑚𝑎

†
𝑞𝑎𝑞+𝑟𝑎𝑝𝑎0

−
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑚+𝑞𝑎
†
−𝑚𝑎

†
𝑝+𝑟𝑎𝑞+𝑟𝑎𝑝𝑎0

+
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑞+𝑟−𝑚 | ≤𝑁 𝛼 𝑎†𝑝+𝑟𝑎
†
−𝑚𝑎

†
𝑞𝑎𝑞+𝑟−𝑚𝑎𝑝𝑎0

+
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃𝑚𝜒 |𝑝−𝑚 | ≤𝑁 𝛼 𝑎†𝑝+𝑟𝑎
†
−𝑚𝑎

†
𝑞𝑎𝑞+𝑟𝑎𝑝−𝑚𝑎0

+
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃−𝑞−𝑟 𝜒 |𝑚 | ≤𝑁 𝛼 𝑎†𝑝+𝑟𝑎
†
𝑞𝑎

†
−𝑞−𝑟+𝑚𝑎𝑝𝑎𝑚𝑎0

+
∑
𝑝,𝑞,𝑚,𝑟

𝑉̂𝑁 (𝑟)𝜑̃−𝑝𝜒 |𝑝−𝑚 | ≤𝑁 𝛼 𝑎†𝑝+𝑟𝑎
†
𝑞𝑎

†
−𝑚𝑎𝑞+𝑟𝑎𝑝−𝑚𝑎0 + h.c. =:

6∑
𝑖=1

E𝑖 .

For a parameter 𝛿 > 0, we find

±E1 � 𝛿‖𝑉̂𝑁 ‖2
∞‖𝜒 | · | ≤𝑁 𝛼 ‖1N 3

+ + 𝛿−1‖𝜑̃‖2
2 ‖𝜒 | · | ≤𝑁 𝛼 ‖1N 2

+N0 ,

� 𝑁−1+5𝛼/2N 2
+ ,

where, in the last step, we chose 𝛿 = 𝑁−𝛼/2 and used N0 ≤ 𝑁 (and Lemma 2). To estimate E2, . . . , E6,
we switch to position space. For arbitrary 𝛿 > 0, we find

±E2 = ±
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦) 𝜒̌ | · | ≤𝑁 𝛼 (𝑧 − 𝑦)𝑎†𝑧𝑎†( ˇ̃𝜑𝑧)𝑎†𝑥𝑎𝑥𝑎𝑦𝑎0 + h.c.

≤ 𝛿‖𝜒 | · | ≤𝑁 𝛼 ‖2
2 𝑄4𝑎

†
0𝑎0 + 𝛿−1

∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)𝑎†𝑧𝑎†( ˇ̃𝜑𝑧)𝑎†𝑥𝑎𝑥𝑎( ˇ̃𝜑𝑧)𝑎𝑧

� 𝛿𝑁1+3𝛼𝑄4 + 𝛿−1𝑁−3−𝛼N 3
+

� 𝑁−𝛼/2𝑄4 + 𝑁−2+5𝛼/2N 3
+ ,

where, in the last line, we fixed 𝛿 = 𝑁−1−7𝛼/2. Similarly, we find

±E3 = ±
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦𝑎†( ˇ̃𝜑𝑧)𝑎( 𝜒̌𝑦| · | ≤𝑁 𝛼 )𝑎𝑥𝑎0 + h.c.

� 𝛿𝑄4 + 𝛿−1𝑁 ‖𝑉𝑁 ‖1‖ 𝜒̌ | · | ≤𝑁 𝛼 ‖2
2 ‖𝜑̃‖

2
2 (N+ + 1)3

� 𝑁−𝛼/2𝑄4 + 𝑁−2+5𝛼/2(N+ + 1)3,
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taking 𝛿 = 𝑁−𝛼/2. Furthermore, for an arbitrary 𝜉 ∈ F , we have

|〈𝜉, E4𝜉〉| =
��� ∫

Λ2
d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦) 𝜒̌ | · | ≤𝑁 𝛼 (𝑥 − 𝑧)〈𝜉, 𝑎†𝑥𝑎†𝑧𝑎†( ˇ̃𝜑𝑥)𝑎𝑦𝑎𝑧𝑎0𝜉〉

���
≤ ‖ 𝜒̌ |. | ≤𝑁 𝛼 ‖∞

∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)‖𝑎𝑥𝑎𝑧𝑎( ˇ̃𝜑𝑥)𝜉‖‖𝑎𝑦𝑎𝑧𝑎0𝜉‖

� ‖𝜒 |. | ≤𝑁 𝛼 ‖1‖𝜑̃‖2‖𝑉𝑁 ‖1
[
〈𝜉,N 3

+ 𝜉〉 + 〈𝜉,N 2
+N0𝜉〉

]
� 𝑁−1+5𝛼/2〈𝜉,N 2

+ 𝜉〉.

For E5, we estimate

±E5 = ±
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦) ˇ̃𝜑(𝑦 − 𝑧)𝑎†𝑥𝑎†𝑦𝑎†𝑧 (N+ + 1)−1/2(N+ + 1)1/2𝑎𝑥𝑎( 𝜒̌𝑧| · | ≤𝑁 𝛼 )𝑎0 + h.c.

≤ 𝛿𝑄4 + 𝛿−1
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦) | ˇ̃𝜑(𝑧 − 𝑦) |2𝑎†𝑥𝑎†( 𝜒̌𝑧|. | ≤𝑁 𝛼 )𝑎†0(N+ + 1)𝑎0𝑎( 𝜒̌𝑧|. | ≤𝑁 𝛼 )𝑎𝑥

� 𝛿𝑄4 + 𝛿−1𝑁 ‖𝑉𝑁 ‖1‖ 𝜒̌ | · | ≤𝑁 𝛼 ‖2
2 ‖𝜑̃‖

2
2 (N+ + 1)3

� 𝑁−𝛼/2𝑄4 + 𝑁−2+5𝛼/2N 3
+ ,

again choosing 𝛿 = 𝑁−𝛼/2. By a simple change of variable, it is easy to check that E6 = E5. This
concludes the proof of the lemma. �

With the bounds from the last lemma, we can estimate the operator Γ3 defined in equation (65).

Lemma 13. We have

±Γ3 � 𝑁−3𝛼/2𝐻1 + 𝑁−𝛼/2𝑄4 + 𝑁3𝛼/2−1/2(N+ + 1)3/2 + 𝑁−1+5𝛼/2(N+ + 1)2. (70)

Proof. With Lemma 12, we find, using the scattering equation (14),

Γ3 =
[
𝐻1 +𝑄4,B3

]
+𝑄3 = 𝑄̃3,1 + 𝑄̃3,2 +𝑄>3 + E[𝐻1 ,B3 ] + E[𝑄4 ,B3 ]

with

𝑄̃3,1 = −
∑
𝑝,𝑞

𝑝2𝜑𝑝𝜒 |𝑝 | ≤𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c., (71)

𝑄̃3,2 = −
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝 − 𝑟)𝜑𝑟 𝜒 |𝑟 | ≤𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c., (72)

𝑄>3 =
∑
𝑝,𝑞

𝑉̂𝑁 (𝑝)𝜒 |𝑞 |>𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c. (73)

It follows easily from Lemma 2 that ‖𝜒 |𝑝 | ≤𝑁 𝛼 𝑝2𝜑𝑝 ‖2 � 𝑁−1+3𝛼/2; thus

±𝑄̃3,1 � 𝑁−1/2+3𝛼/2(N+ + 1)3/2.

Denoting 𝜑<𝑝 = 𝜑𝑝𝜒 |𝑝 | ≤𝑁 𝛼 , we write 𝑄̃3,2 in position space as

±𝑄̃3,2 = ±
∫
Λ3

d𝑥d𝑦d𝑧 𝑉𝑁 (𝑥 − 𝑦)𝜑̌< (𝑥 − 𝑦) 𝜒̌ | · | ≤𝑁 𝛼 (𝑥 − 𝑧)𝑎†𝑥𝑎†𝑦𝑎𝑧𝑎0 + h.c.

≤ 𝛿𝑄4 + 𝛿−1𝑁 ‖𝑉1/2
𝑁 𝜑̌<‖2

2 ‖𝜒 | · | ≤𝑁 𝛼 ‖2
∞(N+ + 1)

� 𝑁−𝛼/2𝑄4 + 𝑁−2+5𝛼/2(N+ + 1) ,
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where we chose 𝛿 = 𝑁−𝛼/2 and used the estimate∫
Λ
𝑎†( 𝜒̌𝑥|. | ≤𝑁 𝛼 ) 𝑎( 𝜒̌𝑥|. | ≤𝑁 𝛼 ) d𝑥 = 𝑑Γ(𝜒2

|𝑝 | ≤𝑁 𝛼 ) ≤ ‖𝜒 |. | ≤𝑁 𝛼 ‖2
∞ N+ ≤ N+. (74)

Proceeding similarly, we find

±𝑄>3 = ±
∫
Λ3

d𝑥d𝑦d𝑧 𝑉𝑁 (𝑥 − 𝑦) 𝜒̌ | · |>𝑁 𝛼 (𝑥 − 𝑧)𝑎†𝑥𝑎†𝑦𝑎𝑧𝑎0 + h.c.

� 𝛿𝑄4 + 𝛿−1𝑁1−2𝛼‖𝑉𝑁 ‖1𝐻1 � 𝑁−𝛼/2𝑄4 + 𝑁−3𝛼/2𝐻1,

where we took 𝛿 = 𝑁−𝛼/2 and used that∫
Λ
𝑎†( 𝜒̌𝑥| · |>𝑁 𝛼 )𝑎( 𝜒̌𝑥| · |>𝑁 𝛼 )d𝑥 =

∑
|𝑝 |>𝑁 𝛼

𝑎†𝑝𝑎𝑝 ≤ 𝑁−2𝛼𝐻1.

Combining the bounds for 𝑄̃3,1, 𝑄̃3,2, 𝑄
>
3 with the estimates for E[𝐻1 ,B3 ] , E[𝑄4 ,B3 ] from Lemma 12, we

obtain the bound (70). �

To obtain similar bounds for the integral, we also need a priori control over the growth of 𝐻1, 𝑄4.

Lemma 14. We have

𝑒−𝑠B3𝑄4𝑒
𝑠B3 � 𝑄4 +N+ + 1 + 𝑁−1+5𝛼/2(N+ + 1)2, (75)

𝑒−𝑠B3𝐻1𝑒
𝑠B3 � 𝐻1 +𝑄4 +N+ + 1 + 𝑁−1+3𝛼 (N+ + 1)2. (76)

Proof. For arbitrary 𝜉 ∈ F , we define 𝑓 (𝑠) = 〈𝜉, 𝑒−𝑠B3𝑄4𝑒
𝑠B3𝜉〉 so that

𝑓 ′(𝑠) = 〈𝜉, 𝑒−𝑠B3 [𝑄4,B3]𝑒𝑠B3𝜉〉.

From Lemma 12, we find

[𝑄4,B3] =
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑟)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 (𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + h.c.) + E[𝑄4 ,B3 ] ,

where

±E[𝑄4 ,B3 ] � 𝑁
−𝛼/2𝑄4 + 𝑁−1+5𝛼/2(N+ + 1)2.

Switching to position space, we have∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑟)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 (𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + h.c.)

=
∑
𝑟 , 𝑝,𝑞

𝑉̂𝑁 (𝑝 − 𝑟)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 (𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + h.c.)

=
∫
Λ2

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦) ˇ̃𝜑(𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦𝑎( 𝜒̌𝑥| · | ≤𝑁 𝛼 )𝑎0 + h.c.

� 𝑄4 +
∫

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦) | ˇ̃𝜑(𝑥 − 𝑦) |2𝑎†0𝑎
†( 𝜒̌𝑥|. | ≤𝑁 𝛼 )𝑎( 𝜒̌𝑥|. | ≤𝑁 𝛼 )𝑎0

� 𝑄4 + 𝑁 ‖𝑉𝑁 ‖1‖𝜑̃‖2
∞‖𝜒2

|. | ≤𝑁 𝛼 ‖∞ � 𝑄4 +N+,
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where we used Lemma 2 and argued as in (74). We conclude that

±
[
𝑄4,B3

]
� 𝑄4 +N+ + 𝑁−1+5𝛼/2(N+ + 1)2.

Therefore, using Lemma 3, we find

𝑓 ′(𝑠) � 𝑓 (𝑠) + 〈𝜉,N+𝜉〉 + 𝑁−1+5𝛼/2〈𝜉, (N+ + 1)2𝜉〉.

By the Gronwall lemma, we obtain the bound (75).
To prove the estimate (76), we proceed similarly. For 𝜉 ∈ F , we define 𝑔(𝑠) = 〈𝜉, 𝑒−𝑠B3𝐻1𝑒

𝑠B3𝜉〉
for any |𝑠 | ≤ 1, which leads to

𝑔′(𝑠) = 〈𝜉, 𝑒−B3𝐻1𝑒
𝑠B3𝜉〉.

From Lemma 12, we have[
𝐻1,B3

]
=

∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝 − 𝑟) (𝛿0,𝑟 + 𝜑𝑟 )𝜒 |𝑝 |>𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c. + E[𝐻1 ,B3 ] ,

where

±E[𝐻1 ,B3 ] ≤ 𝑁−3𝛼/2𝐻1 + 𝑁−1+5𝛼/2(N+ + 1)2.

Writing 𝜒 |𝑝 |>𝑁 𝛼 = 1 − 𝜒 |𝑝 | ≤𝑁 𝛼 , we decompose∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝 − 𝑟) (𝛿0,𝑟 + 𝜑𝑟 )𝜒 |𝑝 |>𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c. = E1 + E2,

where

E1 = ±
∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦) (1 + 𝜑̌) (𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦𝑎( 𝜒̌𝑥|. | ≤𝑁 𝛼 )𝑎0 + h.c.

� 𝑄4 + 𝑁 ‖𝑉𝑁 ‖1‖(1 + 𝜑̌)‖2
∞‖𝜒 | · | ≤𝑁 𝛼 ‖2

∞N+ � 𝑄4 +N+

and

±E2 = ±
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝 − 𝑟) (𝛿0,𝑟 + 𝜑𝑟 )𝜒 |𝑝 | ≤𝑁 𝛼 𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎𝑞𝑎0 + h.c.

� ‖𝑉𝑁 ‖1‖(1 + 𝜑̌)‖∞
[
𝛿N 2

+ + 𝛿−1𝑁 ‖𝜒 |. | ≤𝑁 𝛼 ‖2
2N+

]
� 𝑁−1

[
𝛿N 2

+ + 𝛿−1𝑁1+3𝛼N+
]
� N+ + 𝑁−1+3𝛼N 2

+ ,

choosing in the last step 𝛿 = 𝑁3𝛼. Thus, with Lemma 3, we find

𝑔′(𝑠) � 𝑓 (𝑠) + 𝑔(𝑠) + 〈𝜉,N+𝜉〉 + 𝑁−1+3𝛼〈𝜉, (N+ + 1)2𝜉〉.

With the estimate (75) and applying Gronwall’s lemma, we obtain the desired estimate (76). �

In the next lemma, we control the contribution on the right-hand side of equation (66) arising
from the commutator [𝑄3,B3].

Lemma 15. We have∫ 1

0

∫ 1

𝑠
𝑒−𝑡B3 [𝑄3, 𝐵3]𝑒𝑡B3 d𝑡d𝑠 = 2(8𝜋𝔞𝑁 − 𝑉̂ (0))N+ + E[𝑄3 ,B3 ] ,
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with

±E[𝑄3 ,B3 ] � 𝑁
−2𝛼𝐻1 + 𝑁−𝛼/2𝑄4 +

[
𝑁−𝛼/2 + 𝑁−1+𝛼] (N+ + 1) + 𝑁−1+5𝛼/2(N+ + 1)2.

Proof. We compute

[𝑄3,B3] =
∑
𝑝,𝑞,𝑟 ,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑠 | ≤𝑁 𝛼 [𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 + 𝑎†0𝑎
†
𝑞𝑎−𝑝𝑎𝑝+𝑞 , 𝑎

†
𝑟+𝑠𝑎

†
−𝑟𝑎𝑠𝑎 : 0 − 𝑎†0𝑎

†
𝑠𝑎 : −𝑟𝑎𝑟+𝑠]

=
∑
𝑝,𝑞,𝑟 ,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑠 | ≤𝑁 𝛼 [𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0, 𝑎
†
𝑟+𝑠𝑎

†
−𝑟𝑎𝑠𝑎 : 0] + h.c.

+
∑
𝑝,𝑞,𝑟 ,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑠 | ≤𝑁 𝛼 [𝑎†0𝑎
†
𝑠𝑎 : −𝑟𝑎𝑟+𝑠 , 𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0] + h.c. =: (I) + (II).

(77)

We start by estimating term (I). With the canonical commutation relations, we obtain

(I) =
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝)
[
𝜑̃𝑟 𝜒 |𝑞−𝑟 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎

†
−𝑝𝑎

†
−𝑟𝑎𝑞−𝑟 + 𝜑̃𝑞𝜒 |𝑟 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎

†
−𝑝𝑎

†
−𝑞+𝑟𝑎𝑟

− 𝜑̃𝑟 𝜒 |𝑞+𝑝 | ≤𝑁 𝛼𝑎†𝑟+𝑝+𝑞𝑎
†
−𝑟𝑎

†
−𝑝𝑎𝑞 − 𝜑̃𝑟 𝜒 |𝑝 | ≤𝑁 𝛼𝑎†𝑟−𝑝𝑎

†
−𝑟𝑎

†
𝑝+𝑞𝑎𝑞

]
𝑎0𝑎0 + h.c.

=: (I)𝑎 + (I)𝑏 + (I)𝑐 + (I)𝑑 .

(78)

To estimate the first term, we rewrite it in position space. We find

±(I)𝑎 = ±
∫
Λ2

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦)𝑎†𝑥𝑎†𝑦𝑎†( ˇ̃𝜑𝑥)𝑎( 𝜒̌𝑥| · | ≤𝑁 𝛼 )𝑎0𝑎0 + h.c.

≤ 𝛿𝑄4 + 𝛿−1
∫
Λ2

d𝑥d𝑦 𝑉𝑁 (𝑥 − 𝑦)𝑎†( 𝜒̌𝑥| · | ≤𝑁 𝛼 )𝑎( ˇ̃𝜑𝑥)𝑎†( ˇ̃𝜑𝑥)𝑎( 𝜒̌𝑥| · | ≤𝑁 𝛼 )𝑎†0𝑎
†
0𝑎0𝑎0

� 𝛿𝑄4 + 𝛿−1𝑁2‖𝜑̃‖2
2 ‖𝑉𝑁 ‖1‖𝜒 | · | ≤𝑁 𝛼 ‖2

∞(N+ + 1)2

� 𝛿𝑄4 + 𝛿−1𝑁−𝛼−1(N+ + 1)2 ≤ 𝑁−𝛼/2𝑄4 + 𝑁−1−𝛼/2(N+ + 1)2,

where we used that N0 ≤ 𝑁 and the bound (74) and, in the last step, set 𝛿 = 𝑁−𝛼/2. The second term in
equation (78) is dealt with similarly. We obtain

±(I)𝑏 = ±
∫
Λ3

d𝑥d𝑦d𝑧 𝑉𝑁 (𝑥 − 𝑦) ˇ̃𝜑(𝑥 − 𝑧) 𝑎†𝑥𝑎†𝑦𝑎†𝑧𝑎( 𝜒̌𝑧| · | ≤𝑁 𝛼 )𝑎0𝑎0 + h.c.

≤ 𝛿𝑄4 + 𝛿−1
∫
Λ3

d𝑥d𝑦d𝑧 𝑉𝑁 (𝑥 − 𝑦) | ˇ̃𝜑(𝑥 − 𝑧) |2𝑎†( 𝜒̌𝑧| · | ≤𝑁 𝛼 ) (N+ + 1)𝑎( 𝜒̌𝑧| · | ≤𝑁 𝛼 )𝑎†0𝑎
†
0𝑎0𝑎0

� 𝛿𝑄4 + 𝛿−1𝑁2‖𝜑̃‖2
2 ‖𝑉𝑁 ‖1‖𝜒 | · | ≤𝑁 𝛼 ‖2

∞(N+ + 1)2

� 𝑁−𝛼/2𝑄4 + 𝑁−1−𝛼/2(N+ + 1)2,

choosing again 𝛿 = 𝑁−𝛼/2. For the third term in equation (78), we bound it, for an arbitrary 𝛿 > 0,
with Cauchy-Schwarz by
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±(I)𝑐 � 𝛿
∑
𝑝,𝑞,𝑟

|𝑉̂𝑁 (𝑝) |𝑎†𝑟+𝑝+𝑞𝑎†−𝑟𝑎†−𝑝 (N+ + 1)−1𝑎−𝑝𝑎−𝑟𝑎𝑟+𝑝+𝑞

+ 𝛿−1
∑
𝑝,𝑞,𝑟

|𝑉̂𝑁 (𝑝) | |𝜑̃𝑟 |2𝜒 |𝑞+𝑝 | ≤𝑁 𝛼𝑎†𝑞 (N+ + 1)𝑎𝑞𝑎†0𝑎
†
0𝑎0𝑎0

� (𝛿‖𝑉̂𝑁 ‖∞ + 𝛿−1𝑁2‖𝜑̃‖2
2 ‖𝑉̂𝑁 ∗ 𝜒 | · | ≤𝑁 𝛼 ‖∞)(N+ + 1)2

� 𝑁−1+5𝛼/2(N+ + 1)2,

where, at the end, we took 𝛿 = 𝑁−𝛼 and used ‖𝑉̂𝑁 ∗ 𝜒 | · | ≤𝑁 𝛼 ‖∞ ≤ ‖𝑉̂𝑁 ‖∞‖𝜒 | · | ≤𝑁 𝛼 ‖1 � 𝑁−1+3𝛼. The
last term in equation (78) can be bounded, again by Cauchy-Schwarz, by

±(I)𝑑 � 𝛿(N+ + 1)2 + 𝛿−1𝑁2‖𝑉̂𝑁 ‖2
∞‖𝜑̃‖2

2 ‖𝜒 |. | ≤𝑁 𝛼 ‖1(N+ + 1)2 � 𝑁−1+𝛼 (N+ + 1)2,

where we used 𝛿 = 𝑁𝛼.
Let us now consider term (II) in equation (77). We write

(II) =
∑
𝑝,𝑞,𝑟 ,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑠 | ≤𝑁 𝛼

×
{
𝑎†0𝑎

†
𝑠

[
𝑎−𝑟𝑎𝑟+𝑠 , 𝑎

†
𝑝+𝑞𝑎

†
−𝑝

]
𝑎𝑞𝑎0 + 𝑎†𝑝+𝑞𝑎†−𝑝

[
𝑎†0𝑎

†
𝑠 , 𝑎𝑞𝑎0

]
𝑎−𝑟𝑎𝑟+𝑠

}
+ h.c.

=: (II)𝑎 + (II)𝑏 .

(79)

With

𝑎†𝑝+𝑞𝑎
†
−𝑝

[
𝑎†0𝑎

†
𝑠 , 𝑎𝑞𝑎0

]
𝑎−𝑟𝑎𝑟+𝑠 = −𝛿𝑠𝑞 𝑎†𝑝+𝑞𝑎†−𝑝𝑎

†
0𝑎0𝑎−𝑟𝑎𝑟+𝑠 − 𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎†𝑠𝑎−𝑟𝑎𝑟+𝑠 ,

we obtain

(II)𝑏 = −
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎

†
0𝑎0𝑎−𝑟𝑎𝑟+𝑞

−
∑
𝑝,𝑞,𝑟 ,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑠 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎

†
𝑠𝑎𝑞𝑎−𝑟𝑎𝑟+𝑠

−
∑
𝑝,𝑟 ,𝑞

𝑉̂𝑁 (𝑝)𝜑̃𝑟 𝜒 |𝑞 | ≤𝑁 𝛼 𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎−𝑟𝑎𝑟+𝑞 =: (II)𝑏1 + (II)𝑏2 + (II)𝑏3.

We can bound (II)𝑏3 by switching to position space. We find

±(II)𝑏3 = ±
∫
Λ4

d𝑥d𝑦d𝑢d𝑣 𝑉𝑁 (𝑥 − 𝑦) 𝜒̌ |. | ≤𝑁 𝛼 (𝑥 − 𝑢) ˇ̃𝜑(𝑢 − 𝑣)𝑎†𝑥𝑎†𝑦𝑎𝑢𝑎𝑣 + h.c.

� 𝛿‖ ˇ̃𝜑‖2
2 𝑄4 + 𝛿−1‖ 𝜒̌ |. | ≤𝑁 𝛼 ‖2

2 (N+ + 1)2 � 𝑁−𝛼/2𝑄4 + 𝑁−3+5𝛼/2(N+ + 1)2.

Term (II)𝑏1 can be bounded analogously, but it contains an additional factor N0 = 𝑎†0𝑎0 ≤ 𝑁 . Thus

±(II)𝑏1 ≤ 𝑁−𝛼/2𝑄4 + 𝑁−1+5𝛼/2(N+ + 1)2.

Term (II)𝑏1 can also be bounded in position space. We obtain

±(II)𝑏2 = ±
∫
Λ3

d𝑥d𝑦d𝑢𝑉𝑁 (𝑥 − 𝑦) 𝑎†𝑥𝑎†𝑦𝑎†( 𝜒̌𝑢|. | ≤𝑁 𝛼 )𝑎𝑥𝑎( ˇ̃𝜑𝑢)𝑎𝑢 + h.c.

≤ 𝛿‖ 𝜒̌ |. | ≤𝑁 𝛼 ‖2
2 𝑄4N+ + 𝛿−1‖𝑉𝑁 ‖1‖ ˇ̃𝜑‖2

2 (N+ + 1)3 � 𝑁−𝛼/2𝑄4 + 𝑁−1+5𝛼/2(N+ + 1)2,

where we chose 𝛿 = 𝑁−1−7𝛼/2.
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Let us now consider term (II)𝑎, defined on the right-hand side of equation (79). With

𝑎†0𝑎
†
𝑠

[
𝑎−𝑟𝑎𝑟+𝑠 , 𝑎

†
𝑝+𝑞𝑎

†
−𝑝

]
𝑎𝑞𝑎0

= 𝑎†0𝑎
†
𝑠

{
𝛿−𝑟 , 𝑝+𝑞𝑎

†
−𝑝𝑎𝑟+𝑠 + 𝛿𝑟 , 𝑝𝑎

†
𝑝+𝑞𝑎𝑟+𝑠 + 𝛿𝑟+𝑠, 𝑝+𝑞𝑎−𝑟𝑎†−𝑝 + 𝛿𝑟+𝑠,−𝑝𝑎−𝑟𝑎

†
𝑝+𝑞

}
𝑎𝑞𝑎0,

we obtain, rearranging the terms in normal order (with appropriate changes of variables),

(II)𝑎 =
∑
𝑝,𝑞

(
𝑉̂𝑁 (𝑝) + 𝑉̂𝑁 (𝑝 − 𝑞)

)
𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†0𝑎

†
𝑞𝑎𝑞𝑎0

+ 4
∑
𝑝,𝑞,𝑠

𝑉̂𝑁 (𝑝)𝜑̃𝑝+𝑞𝜒 |𝑠 | ≤𝑁 𝛼 𝑎†0𝑎
†
𝑠𝑎

†
−𝑝𝑎−𝑝−𝑞+𝑠𝑎𝑞𝑎0 + h.c.

=: 2
∑
𝑝,𝑞

(
𝑉̂𝑁 (𝑝) + 𝑉̂𝑁 (𝑝 − 𝑞)

)
𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†0𝑎

†
𝑞𝑎𝑞𝑎0 + (II)𝑎1,

(80)

where we can bound, with N0 = 𝑎†0𝑎0 ≤ 𝑁 ,

±(II)𝑎1 � 𝑁 ‖𝑉̂𝑁 ‖∞
[
𝛿‖𝜑̃‖2

2 + 𝛿−1‖𝜒 |. | ≤𝑁 𝛼 ‖2
2

]
N 2

+ � 𝑁
−1+𝛼 (N+ + 1)2,

choosing 𝛿 = 𝑁1−𝛼. Collecting all the estimates we have proved so far, we conclude from equation (77)
that [

𝑄3,B3
]
= 2

∑
𝑝,𝑞

(
𝑉̂𝑁 (𝑝) + 𝑉̂𝑁 (𝑝 − 𝑞)

)
𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†0𝑎

†
𝑞𝑎𝑞𝑎0 + E1,

where

±E1 � 𝑁−𝛼/2𝑄4 + 𝑁−1+5𝛼/2(N+ + 1)2. (81)

At the expense of adding an additional small error to the right-hand side of the estimate (81), in the
main term, we can replace 𝑎†0𝑎0 = 𝑁 −N+ by a factor of N, since

±
∑
𝑝,𝑞

(𝑉̂𝑁 (𝑝) + 𝑉̂𝑁 (𝑝 − 𝑞))𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑞N+𝑎𝑞 � 𝑁−1‖𝜑̃‖1 (N+ + 1)2 � 𝑁−1(N+ + 1)2.

Moreover, from

±𝑁
∑
𝑝,𝑞

(
𝑉̂𝑁 (𝑝 − 𝑞) − 𝑉̂𝑁 (𝑝)

)
𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑞𝑎𝑞

�
∑
𝑝,𝑞

|𝑞/𝑁 |‖∇𝑉̂ ‖∞|𝜑̃𝑝 |𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑞𝑎𝑞 � ‖𝜑̃‖1𝑁
−1+𝛼N+ � 𝑁−1+𝛼N+, (82)

we arrive at [
𝑄3,B3

]
= 4𝑁

∑
𝑝

𝑉̂𝑁 (𝑝)𝜑̃𝑝
∑

|𝑞 | ≤𝑁 𝛼

𝑎†𝑞𝑎𝑞 + E2,

where

±E2 � 𝑁−𝛼/2𝑄4 + 𝑁−1+𝛼N+ + 𝑁−1+5𝛼/2(N+ + 1)2.

Conjugating with 𝑒𝑡B3 and integrating over 𝑡 and 𝑠, we obtain, with the help of Lemma 10 and Lemma
14 (and the observation that the first estimate in Lemma 10 also holds, if we replace N+ on the left-hand
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side by
∑

|𝑝 | ≤𝑁 𝛼 𝑎†𝑝𝑎𝑝),∫ 1

0

∫ 1

𝑠
𝑒−𝑡B3 [𝑄3,B3]𝑒𝑡B3 d𝑡d𝑠 = 2𝑁

∑
𝑞

𝑉̂𝑁 (𝑞)𝜑̃𝑞
∑

|𝑝 | ≤𝑁 𝛼

𝑎†𝑝𝑎𝑝 + E3,

where

±E3 � 𝑁−𝛼/2(𝑄4 +N+ + 1) + 𝑁−1+𝛼N+ + 𝑁−1+5𝛼/2(N+ + 1)2.

The claim now follows from equation (19) and the observation that

N+ −
∑

|𝑝 | ≤𝑁 𝛼

𝑎†𝑝𝑎𝑝 =
∑

|𝑝 | ≥𝑁 𝛼

𝑎†𝑝𝑎𝑝 ≤ 𝑁−2𝛼𝐻1. �

Finally, we consider the conjugation of the operator 𝑄̃2, defined in equation (25).

Lemma 16. We have

𝑒−B3𝑄̃2𝑒
B3 = 𝑄̃2 + E𝑄̃2

(83)

with

±E𝑄̃2
� 𝑁−1/2+𝛼 (N+ + 1)3/2 + 𝑁−3/2+𝛼 (N+ + 1)5/2.

Proof. We have

𝑒−B3𝑄̃2𝑒
B3 − 𝑄̃2 =

∫ 1

0
𝑒−𝑠B3 [𝑄̃2,B3]𝑒𝑠B3 d𝑠

=
4𝜋𝔞𝑁
𝑁

∑
|𝑟 | ≤𝑁 𝛼

∫ 1

0
𝑒−𝑠B3 [𝑎†𝑟𝑎†−𝑟𝑎0𝑎0 + h.c.,B3]𝑒𝑠B3 d𝑠.

We compute the commutator

[𝑎†𝑟𝑎†−𝑟𝑎0𝑎0 + h.c., 𝑎†𝑝+𝑞𝑎†−𝑝𝑎𝑞𝑎0 − h.c.] (84)

= [𝑎†𝑟𝑎†−𝑟𝑎0𝑎0, 𝑎
†
𝑝+𝑞𝑎

†
−𝑝𝑎𝑞𝑎0] + [𝑎†0𝑎

†
0𝑎𝑟𝑎−𝑟 , 𝑎

†
𝑝+𝑞𝑎

†
−𝑝𝑎𝑞𝑎0] + h.c.

= 2
{
𝑎†0𝑎

†
0
(
𝛿𝑝+𝑞,𝑟𝑎

†
−𝑝𝑎−𝑝−𝑞 + 𝛿𝑝,𝑟𝑎

†
𝑝+𝑞𝑎𝑝

)
𝑎𝑞𝑎0

− 𝛿𝑟 ,𝑞𝑎†𝑝+𝑞𝑎†−𝑝𝑎†−𝑞𝑎0𝑎0𝑎0 − 𝑎†𝑝+𝑞𝑎†−𝑝𝑎
†
0𝑎𝑞𝑎𝑟𝑎−𝑟

}
+ h.c. (85)

Hence, we obtain

4𝜋𝔞𝑁
𝑁

∑
|𝑟 | ≤𝑁 𝛼

[
𝑎†𝑟𝑎

†
−𝑟𝑎0𝑎0 + h.c.,B3

]
=

8𝜋𝔞𝑁
𝑁

∑
𝑝,𝑞: |𝑝+𝑞 | ≤𝑁 𝛼

𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†0𝑎
†
0𝑎

†
−𝑝𝑎−𝑝−𝑞𝑎𝑞𝑎0

− 4𝜋𝔞𝑁
𝑁

∑
𝑝, |𝑞 | ≤𝑁 𝛼

𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎

†
−𝑞𝑎0𝑎0𝑎0

− 4𝜋𝔞𝑁
𝑁

∑
𝑝,𝑞, |𝑟 | ≤𝑁 𝛼

𝜑̃𝑝𝜒 |𝑞 | ≤𝑁 𝛼𝑎†𝑝+𝑞𝑎
†
−𝑝𝑎

†
0𝑎𝑞𝑎𝑟𝑎−𝑟 =: (I) + (II) + (III).
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With Cauchy-Schwarz and using the bounds from Lemma 2, we can bound

±(I) � 𝑁−1/2−𝛼/2(N+ + 1)3/2,

±(II) � 𝑁−1/2+𝛼 (N+ + 1)3/2,

±(III) � 𝑁−3/2+𝛼 (N+ + 1)5/2.

The claim now follows with Lemma 10. �

We are now ready to conclude the proof of Proposition 11.

Proof of Proposition 11. Recall from equation (66) that

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3 = 4𝜋𝔞𝑁 (𝑁 − 1) +

∑
|𝑝 | ≤𝑁 𝛼

(4𝜋𝔞𝑁 )2

𝑝2 + 𝐻1 +𝑄4 + 𝑒−B3 (𝐻̃2 + 𝑄̃2 + EB2 )𝑒B3

+
∫ 1

0
𝑒−𝑡B3Γ3𝑒

𝑡B3 d𝑡 +
∫ 1

0

∫ 1

𝑠
𝑒−𝑡B3 [𝑄3,B3]𝑒𝑡B3 d𝑡d𝑠,

where

±EB2 ≤ 𝑁−𝛼/2𝑄4 +
[
𝑁−𝛼/2 + 𝑁−1+5𝛼/2] (N+ + 1) + 𝑁−1+𝛼N 2

+ + 𝑁−2𝐻1.

With Lemma 10 and Lemma 14, this also implies that

±𝑒−B3EB2𝑒
B3 � 𝑁−𝛼/2𝑄4 + 𝑁−2𝐻1 +

[
𝑁−𝛼/2 + 𝑁−1+5𝛼/2] (N+ + 1)

+ 𝑁−1+2𝛼 (N+ + 1)2.

Applying the first bound in Lemma 10 to the operator 𝐻̃2 = (2𝑉̂ (0) − 8𝜋𝔞𝑁 )N+, defined in equation
(24), we obtain

±
[
𝑒−B3 𝐻̃2𝑒

B3 − 𝐻̃2

]
� 𝑁−𝛼/2(N+ + 1).

Combining Lemma 13 with Lemma 14, we obtain

∫ 1

0
𝑒−𝑡B3Γ3𝑒

𝑡B3 d𝑡

� 𝑁−3𝛼/2𝐻1 + 𝑁−𝛼/2𝑄4 + 𝑁−𝛼/2(N+ + 1)
+ 𝑁3𝛼/2−1/2(N+ + 1)3/2 + 𝑁−1+5𝛼/2(N+ + 1)2.

Together with the bounds in Lemmas 15 and 16, and with the observation that

8𝜋𝔞𝑁
∑

|𝑝 |>𝑁 𝛼

𝑎†𝑝𝑎𝑝 ≤ 𝑁−2𝛼𝐻1,

we conclude the proof of Proposition 11. �
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5. Diagonalisation of a quadratic Hamiltonian

From Proposition 11, we find

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3

= 4𝜋𝔞𝑁 (𝑁 − 1) + 1
4

∑
|𝑝 | ≤𝑁 𝛼

(8𝜋𝔞𝑁 )2

𝑝2 +
∑

|𝑝 |>𝑁 𝛼

𝑝2𝑎†𝑝𝑎𝑝 +𝑄4

+
∑

|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝
𝑎0𝑎

†
0

𝑁
𝑎𝑝 +

1
2

∑
|𝑝 | ≤𝑁 𝛼

8𝜋𝔞𝑁 [𝑎†𝑝𝑎†−𝑝
𝑎0𝑎0
𝑁

+ h.c.] + E ,

(86)

with an error E satisfying the bound (64). Here we used the observation that, on the sector {N = 𝑁},
we can write

∑
|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝𝑎𝑝 =
∑

|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝
𝑎†0𝑎0 +N+ + 1

𝑁
𝑎𝑝

=
∑

|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝
𝑎0𝑎

†
0

𝑁
𝑎𝑝 +

1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝N+𝑎𝑝

where the term

1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝N+𝑎𝑝 � 𝑁2𝛼−1(N+ + 1)2

can be absorbed on the right-hand side of the estimate (64).
In this section, we will diagonalise the operator on the last line of equation (86). Inspired by

Bogoliubov theory (on states with 𝑎0, 𝑎
†
0 ∼

√
𝑁 , this operator is approximately quadratic), we define,

for |𝑝 | ≤ 𝑁𝛼, the coefficients

𝜏𝑝 = −1
4

log
[
1 + 16𝜋𝔞𝑁

𝑝2

]

so that

tanh(2𝜏𝑝) = − 8𝜋𝔞𝑁
𝑝2 + 8𝜋𝔞𝑁

.

We also introduce the notation 𝛾𝑝 = cosh 𝜏𝑝 and 𝜈𝑝 = sinh 𝜏𝑝 .

Lemma 17. We have the pointwise bound 𝛾𝑝 � 1 and 𝜏𝑝 , 𝜈𝑝 � 𝜒 |𝑝 | ≤𝑁 𝛼/𝑝2. Moreover,

‖𝜏‖∞ ≤ ‖𝜏‖2 � 1, ‖𝜈‖∞ ≤ ‖𝜈‖2 � 1, ‖𝛾 − 1‖∞ ≤ ‖𝛾 − 1‖2 � 1

and

‖𝜏‖∞ ≤ ‖𝜏‖1 � 𝑁𝛼, ‖ 𝜈̌‖∞ ≤ ‖𝜈‖1 � 𝑁𝛼 .
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With these coefficients, we can write

∑
|𝑝 | ≤𝑁 𝛼

(𝑝2 + 8𝜋𝔞𝑁 )𝑎†𝑝
𝑎0𝑎

†
0

𝑁
𝑎𝑝 +

1
2

∑
|𝑝 | ≤𝑁 𝛼

8𝜋𝔞𝑁 [𝑎†𝑝𝑎†−𝑝
𝑎0𝑎0
𝑁

+ h.c.]

=
∑

|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 (

𝛾𝑝𝑎
†
𝑝

𝑎0√
𝑁

+ 𝜈𝑝
𝑎†0√
𝑁
𝑎−𝑝

) (
𝛾𝑝
𝑎†0√
𝑁
𝑎𝑝 + 𝜈𝑝𝑎†−𝑝

𝑎0√
𝑁

)
− 1

2

∑
|𝑝 | ≤𝑁 𝛼

[
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

]
+ 𝛿

with an error 𝛿 satisfying

±𝛿 � 𝑁𝛼−1(N+ + 1).

Here, we used the relations

𝛾2
𝑝 + 𝜈2

𝑝 = cosh(2𝜏𝑝) =
1√

1 − tanh2 (2𝜏𝑝)
=

𝑝2 + 8𝜋𝔞𝑁√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

,

2𝛾𝑝𝜈𝑝 = sinh(2𝜏𝑝) =
tanh(2𝜏𝑝)√

1 − tanh2(2𝜏𝑝)
=

8𝜋𝔞𝑁√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

,

𝜈2
𝑝 =

1
2
[

cosh(2𝜏𝑝) − 1
]
=

1
2
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2√

|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

and the commutator

[ 𝑎†0√
𝑁
𝑎−𝑝 , 𝑎

†
−𝑝
𝑎0√
𝑁

]
=

1
𝑁
𝑎†0𝑎0 −

1
𝑁
𝑎†−𝑝𝑎−𝑝 = 1 − 1

𝑁
(N+ + 𝑎†−𝑝𝑎−𝑝).

The contribution proportional to 𝑁−1 on the right-hand side of the last equation produces (using
Lemma 17) the error 𝛿. Inserting in equation (86), we conclude that

𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3

= 4𝜋𝔞𝑁 (𝑁 − 1) − 1
2

∑
|𝑝 | ≤𝑁 𝛼

[
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − (8𝜋𝔞𝑁 )2

2𝑝2

]
+

∑
|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 (

𝛾𝑝𝑏
†
𝑝 + 𝜈𝑝𝑏−𝑝

) (
𝛾𝑝𝑏𝑝 + 𝜈𝑝𝑏†−𝑝

)
+

∑
|𝑝 |>𝑁 𝛼

𝑝2𝑎†𝑝𝑎𝑝 +𝑄4 + E ,

(87)

where E still satisfies the estimate (64) and where we introduced the modified creation and annihilation
operators

𝑏𝑝 =
𝑎†0√
𝑁
𝑎𝑝 , 𝑏†𝑝 = 𝑎

†
𝑝

𝑎0√
𝑁

(88)

satisfying the commutation relations

[
𝑏𝑝 , 𝑏𝑞

]
=

[
𝑏†𝑝 , 𝑏

†
𝑞

]
= 0,

[
𝑏𝑝 , 𝑏

†
𝑞

]
= 𝛿𝑝,𝑞

(
1 − N+

𝑁

)
− 1
𝑁
𝑎†𝑞𝑎𝑝 (89)
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and [𝑎†𝑝𝑎𝑟 , 𝑏†𝑞] = 𝛿𝑟 ,𝑞𝑏
†
𝑝 , [𝑎†𝑝𝑎𝑟 , 𝑏𝑞] = −𝛿𝑝,𝑞𝑏𝑟 . On states with few excitations 𝑎0, 𝑎

†
0 �

√
𝑁 , we

have 𝑏†𝑝 � 𝑎†𝑝 , 𝑏𝑝 � 𝑎𝑝 . According to Bogoliubov theory, we can therefore expect that the operators
(𝛾𝑝𝑏†𝑝 .+𝜈𝑝𝑏−𝑝) and (𝛾𝑝𝑏𝑝+𝜈𝑝𝑏†−𝑝) can be rotated back to 𝑏†𝑝 and, respectively, 𝑏𝑝 through conjugation
of the Hamiltonian with the unitary transformation generated by the antisymmetric operator

B4 =
1
2

∑
|𝑝 | ≤𝑁 𝛼

𝜏𝑝
(
𝑏†𝑝𝑏

†
−𝑝 − 𝑏𝑝𝑏−𝑝

)
=

1
2

∑
|𝑝 | ≤𝑁 𝛼

𝜏𝑝
(
𝑎†𝑝𝑎

†
−𝑝
𝑎0𝑎0
𝑁

− h.c.
)
.

Notice that B4 has the same form as the operator B2 defined in equation (13) (with a different choice
of the coefficients, of course; here it is more convenient to keep the factor 𝑁−1 out of 𝜏𝑝). To control
the action of B4, we will need rough a priori bounds on the growth of the number and the energy of the
excitations.

Lemma 18. For every 𝑘 ∈ N, we have1

𝑒−B4 (N+ + 1)𝑘𝑒B4 � (N+ + 1)𝑘 . (90)

Moreover,

𝑒−B4𝐻1𝑒
B4 � 𝐻1 + 𝑁𝛼, (91)

𝑒−B4𝑄4𝑒
B4 � 𝑄4 + 𝑁−1+2𝛼 + 𝑁−1(N+ + 1)2. (92)

Proof. The proof of the bound (90) is standard (based on Gronwall’s lemma and the bounds in Lemma
17). To prove equation (91), we define 𝑔(𝑠) = 𝑒−𝑠B4𝐻1𝑒

𝑠B4 and compute (using the commutation
relations after equation (89))

𝑔′(𝑠) = 𝑒−𝑠B4 [𝐻1,B4]𝑒𝑠B4 =
∑

|𝑝 | ≤𝑁 𝛼

𝑝2𝜏𝑝𝑒
−𝑠B4

[
𝑏†𝑝𝑏

†
−𝑝 + h.c.

]
𝑒𝑠B4 � 𝑒−𝑠B4𝐻1𝑒

𝑠B4 +
∑

|𝑝 | ≤𝑁 𝛼

𝑝2𝜏2
𝑝 .

From Lemma 17, we have
∑
𝑝 𝑝

2𝜏2
𝑝 � 𝑁

𝛼; with Gronwall’s lemma, we obtain the bound (91).
To show the bound (92), we set ℎ(𝑠) = 𝑒−𝑠B4𝑄4𝑒

𝑠B4 , and then

ℎ′(𝑠) = 𝑒−𝑠B4 [𝑄4,B4]𝑒𝑠B4 . (93)

Proceeding as in (38), we find (we use here the convention that 𝜏𝑞 = 0, for |𝑞 | > 𝑁𝛼)

[𝑄4,B4] =
1
2

∑
𝑞

(𝑉̂𝑁 ∗ 𝜏) (𝑞)𝑏†𝑞𝑏†−𝑞 +
∑
𝑝,𝑞,𝑠

𝑉̂𝑁 (𝑞 − 𝑝)𝜏𝑠𝑏†𝑝+𝑠−𝑞𝑏†𝑞𝑎†−𝑠𝑎𝑝 + h.c.

Switching to position space, we write

[𝑄4,B4] =
1
2

∫
Λ2

d𝑥d𝑦𝑉𝑁 (𝑥 − 𝑦)𝜏(𝑥 − 𝑦)𝑏†𝑥𝑏†𝑦 +
∫
Λ3

d𝑥d𝑦d𝑧𝑉𝑁 (𝑥 − 𝑦)𝜏(𝑥 − 𝑧)𝑏†𝑥𝑏†𝑦𝑎†𝑧𝑎𝑦 + h.c.

With the bounds from Lemma 17, we conclude

±[𝑄4,B4] � 𝑄4 + 𝑁−1+2𝛼 + 𝑁−1(N+ + 1)2.

Inserting this in equation (93), applying the bound (90) and then Gronwall’s lemma, we obtain the
desired bound (92). �

1The estimate for 𝑄4 will only be used in the next section to show upper bounds on the eigenvalues of 𝐻𝑁 ; for the lower
bounds, we will only use the fact that 𝑄4 ≥ 0.
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We are now ready to state the main result of this section, which shows that conjugation with 𝑒B4

diagonalises the quadratic part of the Hamilton operator.
Proposition 19. We have

𝑒−B4𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3𝑒B4

= 4𝜋𝔞𝑁 (𝑁 − 1) + 1
2

∑
𝑝

[√
𝑝4 + 16𝜋𝔞𝑁 𝑝2 − 𝑝2 − 8𝜋𝔞𝑁 + (8𝜋𝔞𝑁 )2

2𝑝2

]
+
∑
𝑝

√
𝑝4 + 16𝜋𝔞𝑁 𝑝2 𝑎†𝑝𝑎𝑝 + 𝑒−B4𝑄4𝑒

B4 + EB4 ,

(94)

where

±EB4 � 𝑁
−3𝛼/2(𝐻1 + 𝑁𝛼) + 𝑁−𝛼/2𝑒−B4𝑄4𝑒

B4 + 𝑁−𝛼/2(N+ + 1)
+ 𝑁 (3𝛼−1)/2(N+ + 1)3/2 + 𝑁−1+5𝛼/2(N+ + 1)2.

(95)

Proof. For 𝑠 ∈ [0; 1], we define

𝐸 (𝑠) =
∑

|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 (

𝛾𝑠𝑝𝑏
†
𝑝 + 𝜈𝑠𝑝𝑏−𝑝

) (
𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝

)
with the operators 𝑏𝑝 , 𝑏†𝑝 defined in equation (88) and with the notation 𝛾𝑠𝑝 = cosh(𝑠𝜏𝑝) and 𝜈𝑠𝑝 =
sinh(𝑠𝜏𝑝). In particular, for 𝑠 = 1, this is exactly the operator appearing on the third line in equation
(87). For 𝜓 in the sector {N = 𝑁}, we define 𝑓𝜓 : [0; 1] → R by

𝑓𝜓 (𝑠) = 〈𝜓, 𝑒−𝑠B4𝐸 (𝑠)𝑒𝑠B4𝜓〉.

The idea is that the generalised Bogoliubov transformation 𝑒𝑠B4 approximately cancels (on states with
few excitations) the symplectic rotations determined by the coefficients 𝛾𝑠𝑝 , 𝜈𝑠𝑝 (it would precisely
cancel them if the operators 𝑏†𝑝 , 𝑏𝑝 satisfied canonical commutation relations); hence, on states with
few excitations, we expect 𝑓𝜓 to be approximately constant in s. More precisely, we claim that�� 𝑓 ′𝜓 (𝑠)�� � 𝑁2𝛼−1〈𝜓, (N+ + 1)2𝜓〉. (96)

Assuming for a moment that the bound (96) holds true, we could conclude, integrating over 𝑠 ∈ [0; 1],
that

𝑒−B4𝐸 (1)𝑒B4 = 𝐸 (0) + 𝛿

with

±𝛿 � 𝑁2𝛼−1 (N+ + 1)2.

With the bounds from Lemma 18 (and noticing that the action of B4 on the high-momenta part of the
kinetic energy is trivial), this would imply that

𝑒−B4𝑒−B3𝑒−B2𝐻𝑁 𝑒
B2𝑒B3𝑒B4

= 4𝜋𝔞𝑁 (𝑁 − 1) − 1
2

∑
|𝑝 | ≤𝑁 𝛼

[
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − (8𝜋𝔞𝑁 )2

2𝑝2

]

+
∑

|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 𝑎†𝑝

𝑎0𝑎
†
0

𝑁
𝑎𝑝 +

∑
|𝑝 |>𝑁 𝛼

𝑝2𝑎†𝑝𝑎𝑝 + 𝑒−B4𝑄4𝑒
B4 + E ,

(97)
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where E satisfies the bound (95). Writing 𝑎0𝑎
†
0 = 𝑎†0𝑎0 + 1 = 𝑁 −N+ + 1, we could then replace

∑
|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 𝑎†𝑝

𝑎0𝑎
†
0

𝑁
𝑎𝑝 =

∑
|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 𝑎†𝑝𝑎𝑝 + 𝛿

with

±𝛿 ≤ 1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2𝑎†𝑝 (N+ + 1)𝑎𝑝 � 𝑁−1+2𝛼 (N+ + 1)2.

Furthermore, since

��� 𝑝2 + 8𝜋𝔞𝑁 −
√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − (8𝜋𝔞𝑁 )2

2𝑝2

��� � (1 + 𝑝2)−2,

we could write

∑
|𝑝 | ≤𝑁 𝛼

[
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − (8𝜋𝔞𝑁 )2

2𝑝2

]

=
∑
𝑝

[
𝑝2 + 8𝜋𝔞𝑁 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − (8𝜋𝔞𝑁 )2

2𝑝2

]
+O(𝑁−𝛼).

Similarly, from
��𝑝2 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

�� � 1, we could bound

±
∑

|𝑝 |>𝑁 𝛼

[
𝑝2 −

√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2

]
𝑎†𝑝𝑎𝑝 � 𝑁

−2𝛼𝐻1.

Inserting all these estimates in equation (97), we would end up with (94) and (95).
It remains to show the bound (96). To this end, we observe that

𝑓 ′𝜓 (𝑠) =
𝑑

𝑑𝑠

〈
𝜓, 𝑒𝑠B4𝐸 (𝑠)𝑒−𝑠B4𝜓

〉
=

〈
𝜓, 𝑒𝑠B4

{[
B4, 𝐸 (𝑠)

]
+ 𝜕𝐸 (𝑠)

𝜕𝑠

}
𝑒−𝑠B4𝜓

〉
. (98)

We have, denoting 𝜀𝑝 =
√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2,

[
B4, 𝐸 (𝑠)

]
=

1
2

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝
∑

|𝑞 | ≤𝑁 𝛼

𝜏𝑞
{[
𝑏†𝑞𝑏

†
−𝑞 , (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)

]
(𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

+ (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)
[
𝑏†𝑞𝑏

†
−𝑞 , (𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

]}
+ h.c.

A long but straightforward computation, based on the commutation relations (89), leads to
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[
B4, 𝐸 (𝑠)

]
= − 1

2

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝜈
𝑠
𝑝𝑏

†
𝑝

(
1 − N+

𝑁

)
(𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝) −

1
2

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝜈
𝑠
𝑝

(
1 − N+

𝑁

)
𝑏†𝑝 (𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

− 1
2

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝛾
𝑠
𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)𝑏†−𝑝

(
1 − N+

𝑁

)
− 1

2

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝛾
𝑠
𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)

(
1 − N+

𝑁

)
𝑏†−𝑝

+ 1
2𝑁

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑞𝜈
𝑠
𝑝

[
𝑏†𝑞𝑎

†
−𝑞𝑎−𝑝 + 𝑎†𝑞𝑎−𝑝𝑏†−𝑞

]
(𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

+ 1
2𝑁

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑞𝛾
𝑠
𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)

[
𝑏†𝑞𝑎

†
−𝑞𝑎𝑝 + 𝑎†𝑞𝑎𝑝𝑏†−𝑞

]
+ h.c.

(99)

To compute the explicit time derivative of the observable 𝐸 (𝑠), on the other hand, we notice that
𝑑𝛾𝑠𝑝/𝑑𝑠 = 𝜏𝑝𝜈𝑠𝑝 and 𝑑𝜈𝑠𝑝/𝑑𝑠 = 𝜏𝑝𝛾𝑠𝑝 . Thus, we obtain

𝜕𝐸 (𝑠)
𝜕𝑠

=
∑

|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝
(
𝜈𝑠𝑝𝑏

†
𝑝 + 𝛾𝑠𝑝𝑏−𝑝

) (
𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝

)
+

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝) (𝜈𝑠𝑝𝑏𝑝 + 𝛾𝑠𝑝𝑏†−𝑝).

Combining the last equation with equation (99), we observe that (as expected) all large contributions
cancel. We find[

B4, 𝐸 (𝑠)
]
+ 𝜕𝐸 (𝑠)

𝜕𝑠
=

1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝜈
𝑠
𝑝N+𝑏

†
𝑝 (𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

+ 1
𝑁

∑
|𝑝 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑝𝛾
𝑠
𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)N+𝑏

†
−𝑝

+ 1
𝑁

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑞𝜈
𝑠
𝑝 𝑏

†
𝑞𝑎

†
−𝑞𝑎−𝑝 (𝛾𝑠𝑝𝑏𝑝 + 𝜈𝑠𝑝𝑏†−𝑝)

+ 1
𝑁

∑
|𝑝 |, |𝑞 | ≤𝑁 𝛼

𝜀𝑝𝜏𝑞𝛾
𝑠
𝑝 (𝛾𝑠𝑝𝑏†𝑝 + 𝜈𝑠𝑝𝑏−𝑝)𝑏†𝑞𝑎†−𝑞𝑎𝑝 + h.c.

Using the bounds in Lemma 17, with the estimate 𝜀𝑝 � 𝑝2 and the restrictions |𝑝 |, |𝑞 | ≤ 𝑁𝛼, we arrive at

±
{[
B4, 𝐸 (𝑠)

]
+ 𝜕𝐸 (𝑠)

𝜕𝑠

}
� 𝑁2𝛼−1(N+ + 1)2.

From equation (98), this implies that

| 𝑓 ′𝜓 (𝑠) | � 𝑁2𝛼−1〈𝜓, 𝑒−𝑠B4 (N+ + 1)2𝑒𝑠B4𝜓〉.

Applying Lemma 18, we obtain the desired bound (96). �

6. Optimal BEC and proof of Theorem 1

Let us denote

𝐻𝑁 = 𝐻𝑁 − 4𝜋𝔞𝑁 (𝑁 − 1) + 1
2

∑
𝑝

[√
|𝑝 |4 + 16𝜋𝔞𝑁 𝑝2 − 𝑝2 − 8𝜋𝔞𝑁 + (8𝜋𝔞𝑁 )2

2𝑝2

]
, (100)
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and

𝐸∞ =
∑
𝑝

√
|𝑝 |4 + 𝑝216𝜋𝔞𝑁 𝑎†𝑝𝑎𝑝 . (101)

Moreover, let U = 𝑒B2𝑒B3𝑒B4 . Observe that U is a unitary operator. From Proposition 19, we have

U†𝐻𝑁U = 𝐸∞ + 𝑒−B4𝑄4𝑒
B4 + EB4 , (102)

where EB4 satisfies the bound (95). To prove that the error term EB4 is small, we show first that low-
energy states exhibit complete Bose-Einstein condensation.

Proposition 20 (Optimal BEC). On {N = 𝑁}, we have

𝐻𝑁 ≥ 4𝜋𝔞𝑁 𝑁 + 𝐶−1N+ − 𝐶, (103)

for some constant 𝐶 > 0 independent of N.

Proof. To take care of the terms on the second line of the bound (95), we use localisation in the number
of particles, a tool developed in [17] and, in the present setting, in [7]. Here, we make use of the results
of [18, 19, 24], which imply that, if 𝜓𝑁 ∈ 𝐿2

𝑠 (Λ𝑁 ) is a normalised sequence of approximate ground
states of the Hamilton operator 𝐻𝑁 satisfying��� 1

𝑁
〈𝜓𝑁 , 𝐻𝑁𝜓𝑁 〉 − 4𝜋𝔞𝑁

��� → 0

as 𝑁 → ∞, then 𝜓𝑁 exhibit condensation, in the sense that

lim
𝑁→∞

1
𝑁
〈𝜓𝑁 ,N+𝜓𝑁 〉 = 0. (104)

Now let 𝑓 , 𝑔 : R→ [0, 1] be smooth functions such that 𝑓 (𝑠)2+𝑔(𝑠)2 = 1 for all 𝑠 ∈ R, and 𝑓 (𝑠) = 1 for
𝑠 ≤ 1/2, 𝑓 (𝑠) = 0 for 𝑠 ≥ 1. For 𝑀0 ≥ 1, we define 𝑓𝑀0 (N+) = 𝑓 (N+/𝑀0) and 𝑔𝑀0 (N+) = 𝑔(N+/𝑀0).
Then we have

𝐻𝑁 = 𝑓𝑀0𝐻𝑁 𝑓𝑀0 + 𝑔𝑀0𝐻𝑁 𝑔𝑀0 + E𝑀0 , (105)

with

E𝑀0 =
1
2
(
[ 𝑓𝑀0 , [ 𝑓𝑀0 , 𝐻𝑁 ]] + [𝑔𝑀0 , [𝑔𝑀0 , 𝐻𝑁 ]]

)
. (106)

In view of equation (9), we can write (with ℎ = 𝑓 , 𝑔)

[ℎ𝑀0 , [ℎ𝑀0 , 𝐻𝑁 ]] =
[
ℎ(N+/𝑀0) − ℎ((N+ − 2)/𝑀0)

]2 ∑
𝑝≠0
𝑉̂𝑁 (𝑝)𝑎†𝑝𝑎†−𝑝𝑎0𝑎0 + h.c.,

+
[
ℎ(N+/𝑀0) − ℎ((N+ − 1)/𝑀0)

]2 ∑
𝑞,𝑟 ,𝑞+𝑟≠0

𝑉̂𝑁 (𝑟)𝑎†𝑞+𝑟𝑎†−𝑟𝑎𝑞𝑎0 + h.c.

This easily implies that

±E𝑀0 � 𝑀
−2
0 (𝑄4 + 𝑁)1{𝑀0/3≤N+ ≤2𝑀0 } . (107)

We choose 𝑀0 = 𝜀𝑁 , for some 𝜀 > 0 independent of N, to be fixed later. We introduce the
notation N U

+ = U†N+U . We use equation (102) with the bound (95) for the error term E4; we pick
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𝛼 = − log ℓ/log 𝑁 so that 𝑁𝛼 = 1/ℓ, for some ℓ > 0 independent of N, to be specified below. For N
large enough, we obtain from Proposition 19

𝑓𝑀0 (N+)𝐻𝑁 𝑓𝑀0 (N+) = U 𝑓𝑀0 (N U
+ )U†𝐻𝑁U 𝑓𝑀0 (N U

+ )U†

≥ U 𝑓𝑀0 (N U
+ )

(
4𝜋𝔞𝑁 𝑁 + 𝐻1 − 𝐶 + 𝑒−B4𝑄4𝑒

B4 + E4

)
𝑓𝑀0 (N U

+ )U†

≥ U 𝑓𝑀0 (N U
+ )

(
4𝜋𝔞𝑁 𝑁 + (1 − 𝐶ℓ1/2 − 𝐶ℓ−5/2𝑁−1 − 𝐶ℓ−7/2𝜀) (𝐻1 + 1)

+ (1 − 𝐶ℓ1/2)𝑒−B4𝑄4𝑒
B4

)
𝑓𝑀0 (N U

+ )U†

≥ 𝑓𝑀0 (N+)2(4𝜋𝔞𝑁 𝑁 − 𝐶 + 𝐶−1N+), (108)

choosing first ℓ > 0 small enough and then 𝜀 > 0 sufficiently small. Here, we used (N++1) 𝑗 � (N U
+ +1) 𝑗

(as follows from Lemma 3, Lemma 10 and Lemma 18), to estimate the error terms on the second line
of (95). Moreover, we used the bounds N+,NU

+ � 𝐻1.
On the other hand, following an argument from [7, Prop. 6.1], we find

𝑔𝑀0 (N+)(𝐻𝑁 − 4𝜋𝔞𝑁 𝑁)𝑔𝑀0 (N+) ≥ 𝐶−1N+𝑔𝑀0 (N+)2. (109)

Indeed, otherwise, we could find a normalised sequence Ψ𝑁 , supported on {N+ > 𝜀𝑁}, satisfying��� 1
𝑁
〈𝜓𝑁 , 𝐻𝑁𝜓𝑁 〉Ψ𝑁 − 4𝜋𝔞𝑁

��� → 0

as 𝑁 → ∞, in contradiction with (104).
Finally, we deal with the error term E𝑀0=𝜀𝑁 . For 𝜓𝑁 with 〈𝜓𝑁 , 𝐻𝑁𝜓𝑁 〉 ≤ 𝐶𝑁 , we immediately

find, from the bound (107), that

〈𝜓𝑁 , E𝑀0=𝜀𝑁𝜓𝑁 〉 � 𝜀−2𝑁−1.

Since the bound (103) holds trivially on states with 〈𝜓𝑁 , 𝐻𝑁𝜓𝑁 〉 ≥ 𝐶𝑁 , this, together with the estimates
(108) and (109), concludes the proof of Proposition 20. �

With Proposition 19 and Proposition 20, we are now ready to show Theorem 1, determining the
low-energy spectrum of the operator Hamilton operator 𝐻𝑁 .

Proof of Theorem 1. We continue to use the notation 𝐻𝑁 and 𝐸∞ introduced in equations (100) and
(101). Moreover, we denote by 𝜆1(𝐻𝑁 ) ≤ 𝜆2(𝐻𝑁 ) ≤ . . . and 𝜆1(𝐸∞) ≤ 𝜆2(𝐸∞) ≤ . . . the ordered
eigenvalues of 𝐻𝑁 and, respectively, 𝐸∞. We now choose 𝐿 ∈ N, with 𝜆𝐿 (𝐻𝑁 ) ≤ Θ for some
1 ≤ Θ ≤ 𝑁1/17. Then we claim that

𝜆𝐿 (𝐻𝑁 ) = 𝜆𝐿 (𝐸∞) +O(Θ𝑁−1/17). (110)

Since 𝜆0(𝐸∞) = 0, the estimate (110) shows that the ground state energy 𝐸𝑁 of 𝐻𝑁 satisfies the
estimate (5). It is then easy to check, using (110), that the excitations of 𝐻𝑁 −𝐸𝑁 satisfy the claim in (4).

To prove equation (110), we show first a lower bound and then a matching upper bound. We again
use Proposition 19, but this time we choose the exponents 𝛼 = 2/17.

Lower bound on 𝜆𝐿 (𝐻𝑁 ). We again use the localisation identity given by equation (105), but this
time we take 𝑀0 = 𝑁1/2+1/34. Let Y denote the subspace generated by the first L eigenfunctions of 𝐻𝑁 ,
and let us denote 𝑍 = U†𝑌 , which is of dimension L. From the decomposition (105), we have

𝜆𝐿 (𝐻𝑁 ) ≥ 𝑃𝑌
(
𝑓𝑀0 (N+)𝐻𝑁 𝑓𝑀0 (N+) + 𝑔𝑀0 (N+)𝐻𝑁 𝑔𝑀0 (N+) + E𝑀0

)
𝑃𝑌 . (111)
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From Proposition 20, we have

𝑔𝑀0 (N+)𝐻𝑁 𝑔𝑀0 (N+) ≥ 𝐶𝑔2
𝑀0

(N+)(𝐶−1𝑀0 − 𝐶) ≥ 0

for N large enough (recall the choice 𝑀0 = 𝑁1/2+1/34). Here, we used that 𝑔𝑀0 is supported on
N+ > 𝑀0/3. Moreover, with the bound (107), we find

𝑃𝑌 E𝑀0𝑃𝑌 ≥ −𝐶𝑀−2
0 𝑃𝑌 (𝑄4 + 𝑁)𝑃𝑌 ≥ −𝐶𝑀−2

0 𝑃𝑌 (𝐻𝑁 + 𝑁)𝑃𝑌 ≥ −𝐶𝑀2
0𝑁 ≥ −𝐶𝑁−1/17

because (from the upper bound), we know that 𝐻𝑁 ≤ 𝐶𝑁 on Y. From the estimate (111), we obtain

𝜆𝐿 (𝐻𝑁 ) ≥ 𝑃𝑌 𝑓𝑀0 (N+)𝐻𝑁 𝑓𝑀0 (N+)𝑃𝑌 − 𝐶𝑁−1/17.

We now use Proposition 19 to estimate

𝑃𝑌 𝑓𝑀0 (N+) 𝐻𝑁 𝑓𝑀0 (N+)𝑃𝑌
≥ U𝑃𝑍 𝑓𝑀0 (NU

+ ) 1{N+ ≤𝑁 } (𝑒B4 (𝐸∞ + E4)𝑒−B4 +𝑄4
)
1{N+ ≤𝑁 } 𝑓𝑀0 (NU

+ )𝑃𝑍U†.

Using that N+ � 𝐻1 ≤ 𝐸∞ and the choices 𝑀0 = 𝑁1/2+1/34, 𝛼 = 2/17, we find

𝑃𝑌 𝑓𝑀0 (N+) 𝐻𝑁 𝑓𝑀0 (N+)𝑃𝑌

≥
(
1 − 𝐶𝑁−1/17

)
U𝑃𝑍 𝑓𝑀0 (NU

+ )𝑒B4 𝐸∞ 𝑒
−B4 𝑓𝑀0 (NU

+ )𝑃𝑍U†.

Now it turns out that for N large enough, dim 𝑓𝑀0 (NU
+ )𝑃𝑍 = 𝐿 because

max
𝜉 ∈𝑃𝑍

$$$$√1 − 𝑓𝑀0 (NU
+ )2𝜉

$$$$2

‖𝜉‖2 ≤ 𝐶𝑀−1
0 max
𝜉 ∈𝑃𝑌

‖N 1/2
+ 𝜉‖2

‖𝜉‖2 ≤ 𝐶𝜆𝐿 (𝐻𝑁 )𝑀−1
0 −→
𝑁→∞

0;

see, for instance, [17, Prop. 6.1 ii)]. Thus

𝜆𝐿 (𝐻𝑁 ) ≥ max
𝜉 ∈𝑌

〈𝑒−B4 𝑓𝑀0 (NU
+ )𝑃𝑍U†𝜉, 𝐸∞𝑒

−B4 𝑓𝑀0 (NU
+ )𝑃𝑍U†𝜉〉

‖𝜉‖2 − 𝐶Θ𝑁−1/17

≥ max
𝜉 ∈𝑒−B4 𝑓𝑀0 (N

U
+ )𝑍

〈𝜉, 𝐸∞𝜉〉
‖𝜉‖2 (1 − 𝐶𝜆𝐿 (𝐻𝑁 )𝑀−1

0 ) − 𝐶Θ𝑁−1/17

≥ min
dim𝑋=𝐿

max
𝜉 ∈𝑋

〈𝜉, 𝐸∞𝜉〉
‖𝜉‖2 (1 − 𝐶𝜆𝐿 (𝐻𝑁 )𝑀−1

0 ) − 𝐶Θ𝑁−1/17

≥ 𝜆𝐿 (𝐸∞)(1 − 𝐶Θ𝑁−1/2) − 𝐶Θ𝑁−1/17,

which implies 𝜆𝐿 (𝐻𝑁 ) ≥ 𝜆𝐿 (𝐸∞) +O(Θ𝑁−1/17).
Upper bound on 𝜆𝐿 (𝐻𝑁 ). Let Z denote the subspace generated by the first L eigenfunctions of 𝐸∞

and 𝑃𝑍 be the orthogonal projection onto Z. The normalised eigenfunctions of 𝐸∞ have the form

𝜉 =
𝑘∏
𝑗=1

𝑎†(𝑝 𝑗 )𝑛 𝑗√
𝑛 𝑗 !

Ω (112)

for some 𝑘 ≥ 1, 𝑝 𝑗 ∈ Λ∗
+, 𝑛 𝑗 ≥ 1 and where Ω is the vacuum. Note that

𝑃𝑍N+𝑃𝑍 � 𝑃𝑍𝐻1𝑃𝑍 ≤ 𝑃𝑍𝐸∞𝑃𝑍 ≤ 𝜆𝐿 (𝐸∞) ≤ 𝐶Θ ≤ 𝐶𝑁1/17,
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where we used the lower bound that we proved above. Since [𝑃𝑍 ,N+] = 0, this bound can also be
applied to powers of N+. Note also that 𝑒B4𝐸∞𝑒

−B4 almost commutes with N+ in the sense that

1{N+ ≤𝑁 }𝑒B4𝐸∞𝑒
−B41{N+≤𝑁 } − 𝑒B4𝐸∞𝑒

−B4 ≤ 1
2

∑
𝑝

8𝜋𝔞𝑁 𝜒 |𝑝 | ≤𝑁 𝛼

[
1{N+>𝑁 }𝑎†𝑝𝑎

†
−𝑝 + 𝑎𝑝𝑎−𝑝1{N+>𝑁 }]

≤ 𝐶𝑁3𝛼/2−1 (N+ + 1)2.

Hence, we have

𝑃𝑍 𝑒
−B41{N+ ≤𝑁 }𝑒B4𝐸∞𝑒

−B41{N+ ≤𝑁 }𝑒B4𝑃𝑍 ≤ 𝑃𝑍
(
𝐸∞ + 𝐶𝑁3𝛼/2−1(N+ + 1)2

)
𝑃𝑍

≤ 𝜆𝐿 (𝐸∞) + 𝐶Θ𝑁−1/17.

Together with Proposition 19, we find

𝜆𝐿 (𝐸∞) + 𝐶Θ𝑁−1/17 ≥ 𝑃𝑍 𝑒−B41{N+ ≤𝑁 }
(
U†𝐻𝑁U − 𝑒B4E4𝑒

−B4 −𝑄4

)
1{N+ ≤𝑁 }𝑒B4𝑃𝑍 . (113)

Again because

max
𝜉 ∈𝑒B4𝑃𝑍

$$1{N+>𝑁 }𝜉
$$2

‖𝜉‖2 ≤ 𝐶𝑁−1 max
𝜉 ∈𝑃𝑍

$$𝑒−B4N 1/2
+ 𝜉

$$2

‖𝜉‖2 ≤ 𝐶Θ0𝑁
−1 −→
𝑁→∞

0,

we have dim1{N+≤𝑁 }𝑒B4𝑃𝑍 = 𝐿 for N large enough. With Lemma 18, we obtain

𝑃𝑍 𝑒
−B41{N+ ≤𝑁 }

(
𝑒B4E4𝑒

−B4 +𝑄4

)
1{N+ ≤𝑁 }𝑒B4𝑃𝑍 � 𝑁−1/17Θ + 𝑃𝑍𝑄4𝑃𝑍 .

To estimate 𝑃𝑍𝑄4𝑃𝑍 , we use an argument from [6, Lemma 6.1]: from 𝑃𝑍𝐸∞𝑃𝑍 ≤ Θ, we must have
𝑎𝑝𝜉 = 0 for all |𝑝 | > Θ1/2 and 𝜉 ∈ 𝑍 . This implies that

〈𝜉, 𝑄4𝜉〉 ≤
∑
𝑝,𝑞,𝑟

𝑉̂𝑁 (𝑟)𝜒 |𝑟 | ≤Θ1/2 ‖𝑎𝑝+𝑟𝑎𝑞𝜉‖‖𝑎𝑝𝑎𝑞+𝑟 𝜉‖

≤ 𝐶Θ3/2𝑁−1‖(N+ + 1)𝜉‖2 ≤ 𝐶Θ7/2𝑁−1‖𝜉‖2 ≤ 𝐶𝑁−1/17‖𝜉‖2,

for all 𝜉 ∈ 𝑍 . Applying the min-max principle, we conclude from the estimate (113) that

𝜆𝐿 (𝐸∞) ≥ max
𝜉 ∈U1{N+≤𝑁 }𝑒B4𝑍

〈𝜉, 𝐻𝑁 𝜉〉
‖𝜉‖2 − 𝐶Θ𝑁−1/17

≥ min
dim𝑋=𝐿

max
𝜉 ∈𝑋

〈𝜉, 𝐻̃𝑁 𝜉〉
‖𝜉‖2 − 𝐶Θ𝑁−1/17

≥ 𝜆𝐿 (𝐻𝑁 ) − 𝐶Θ𝑁−1/17. �
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