H. Yokoi Nagoya Math. J. Vol. 134 (1994), 137–149

SOLVABILITY OF THE DIOPHANTINE EQUATION $x^2 - Dy^2 = \pm 2$ AND NEW INVARIANTS FOR REAL QUADRATIC FIELDS

HIDEO YOKOI

In our recent papers [3, 4, 5], we defined some new *D*-invariants for any square-free positive integer *D* and considered their properties and interrelations among them. Especially, as an application of it, we discussed in [5] the characterization of real quadratic field $\mathbf{Q}(\sqrt{D})$ of so-called *Richaud-Degert* type in terms of these new *D*-invariants.

Main purpose of this paper is to investigate the Diophantine equation $x^2 - Dy^2 = \pm 2$ and to discuss characterization of the solvability in terms of these new *D*-invariants. Namely, we consider the equation $x^2 - Dy^2 = \pm 2$ and first provide necessary conditions for the solvability by using an additive property and the multiplicative structure of *D* (Proposition 2). Next, we provide necessary and sufficient conditions for the solvability in terms of an unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ (Theorems 1,2). Finally, we provide sufficient conditions for the solvability in terms of new *D*-invariants (Theorems 3,4). It is conjectured with a great expectation for these conditions to be also necessary conditions.

Throughout this paper, for any square-free positive integer D we denote by $\varepsilon_D = (t_D + u_D \sqrt{D})/2$ (> 1) the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{D})$ and by N the norm mapping from $\mathbf{Q}(\sqrt{D})$ to the rational number field \mathbf{Q} . Moreover, we denote (/) the Legendre's symbol and by [x] the greatest integer less than or equal to x.

On Pell's equation, we know already the following result by Perron (cf. [1], p. 106-109):

PROPOSITION 1 (O. Perron). For any positive square-free integer $D \neq 2$, at most only one of the following three equations is solvable in integers:

Received April 19, 1993.

HIDEO YOKOI

$$x^{2} - Dy^{2} = -1$$
, $x^{2} - Dy^{2} = 2$, $x^{2} - Dy^{2} = -2$.

We may first provide the following necessary condition for solvability of the equation $x^2 - Dy^2 = \pm 2$:

PROPOSITION 2. For any positive square-free integer D, if the Diophantine equation $x^2 - Dy^2 = \pm 2$ has an integral solution, then

$$D \equiv 2 \text{ or } 3 \pmod{4}$$
 and $N\varepsilon_p = 1$

hold.

Moreover, if the equation $x^2 - Dy^2 = 2$ is solvable, then

 $p \equiv \pm 1 \pmod{8}$

holds for any odd prime factor p of D, and if the equation $x^2 - Dy^2 = -2$ is solvable, then

$$q \equiv 1 \text{ or } 3 \pmod{8}$$

holds for any odd prime factor q of D.

Proof. When $x^2 - Dy^2 = \pm 2$ has an integral solution (x, y) = (a, b), if we assume $D \equiv 1 \pmod{4}$, then we get

$$a^2 - Db^2 \equiv a^2 - b^2 \equiv 0 \text{ or } \pm 1 \pmod{4},$$

which contradicts with $a^2 - Db^2 = \pm 2$. Hence $D \equiv 2$ or 3 (mod 4) holds.

On the other hand, if we assume $N\varepsilon_D = -1$, then the equation $x^2 - Dy^2 = -1$ is solvable, which contradicts with solvability of $x^2 - Dy^2 = \pm 2$ by Proposition 1. Hence $N\varepsilon_D = 1$ holds.

Moreover, if the equation $x^2 - Dy^2 = 2$ is solvable, then for any odd prime factor p of D, we get (2/p) = 1, and so $p \equiv \pm 1 \pmod{8}$ holds.

If the equation $x^2 - Dy^2 = -2$ is solvable, then for any odd prime factor q of D, we get (-2/q) = 1, and so $q \equiv 1$ or (mod 8) holds.

Now we may provide the following necessary and sufficient conditions through an unit of the associated real quadratic field $\mathbf{Q}(\sqrt{D})$ with the equation $x^2 - Dy^2 = \pm 2$:

THEOREM 1. For any positive square-free integer D, it is necessary and sufficient

138

for the equation $x^2 - Dy^2 = 2$ to be solvable that there exists an unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

$$N\varepsilon = 1$$
 and $t = Dm + 2$

for a positive integer m satisfying $m \equiv 2 \pmod{8}$.

Proof. If the equation $x^2 - Dy^2 = 2$ has an integral positive solution

$$(x, y) = (n_1, n_2),$$

i.e. $n_1^2 - Dn_2^2 = 2$ holds, then

$$(t, u) = (2n_1^2 - 2, 2n_1n_2)$$

is an integral positive solution of the Diophantine equation $t^2 - Du^2 = 4$, and hence $\varepsilon = (t + u\sqrt{D})/2 > 1$ is an unit of $\mathbf{Q}(\sqrt{D})$ and satisfies $N\varepsilon = 1$.

Moreover, if we put $m = 2n_2^2$, then

$$t = 2n_1^2 - 2 = Dm + 2$$

holds, and from $n_2 \equiv 1 \pmod{4}$ we get immediately

$$m=2n_2^2\equiv 2 \pmod{8}.$$

Conversely, if there exists an unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ of $\mathbf{Q}(\sqrt{D})$ such that $N\varepsilon = 1$ and t = Dm + 2 for a positive integer *m* satisfying $m \equiv 2 \pmod{8}$, then from $N\varepsilon = 1$ we get

$$Du^2 = t^2 - 4 = D(Dm + 4)m$$
, and so $u^2 = (Dm + 4)m$.

On the other hand, $m \equiv 2 \pmod{8}$ implies (Dm + 4, m) = 2. Hence, there exist two positive integers n_1 , n_2 such that

$$Dm + 4 = 2n_1^2, m = 2n_2^2, ((n_1, n_2) = 1, u = 2n_1n_2),$$

and hence $n_1^2 - Dn_2^2 = 2$ holds.

Therefore, the equation $x^2 - Dy^2 = 2$ has an integral positive solution

$$(x, y) = (n_1, n_2).$$

For the equation $x^2 - Dy^2 = -2$, we can prove the following analogous theorem:

THEOREM 2. For any positive square-free integer D, it is necessary and sufficient for the equation $x^2 - Dy^2 = -2$ to be solvable that there exists an unit $\varepsilon = (t + t)^2$ $u\sqrt{D}$ /2 > 1 of the real quadratic field $\mathbf{Q}(\sqrt{D})$ such that

 $N\varepsilon = 1$ and t = Dm - 2

for a positive integer m satisfying $m \equiv 2 \pmod{8}$.

For any positive square-free integer D, we put

$$\mathbf{A}_{D} = \{a: 0 \leq a < D, a^{2} \equiv 4N\varepsilon_{D} \pmod{D}\},\$$

and

$$(A, B)_{D} = \{(a, b) : a \in \mathbf{A}_{D}, a^{2} - 4N\varepsilon_{D} = bD\}.$$

Then, we obtained in [5] the following result:

There are uniquely determined non-negative integer m_D and (a_D, b_D) in $(A, B)_D$ such that

$$\begin{cases} t_D = D \cdot m_D + a_D \\ u_D^2 = D \cdot m_D^2 + 2a_D \cdot m_D + b_D. \end{cases}$$

Now, we may prove first the following:

PROPOSITION 3. Under the assumption $D \neq 2,5$,

$$a_D = 2$$
 if and only if $b_D = 0$,

and

$$a_D = D - 2$$
 if and only if $b_D = D - 4$.

Proof. $a_D = 2$ implies $b_D D = a_D^2 - 4N\varepsilon_D = 4(1 - N\varepsilon_D)$, and hence from $D \neq 2$, we get $N\varepsilon_D = 1$ and $b_D = 0$.

Conversely, $b_p = 0$ implies

$$a_D^{\ \ z} = b_D D + 4N\varepsilon_D = 4N\varepsilon_D,$$

and so we get

$$N\varepsilon_D = 1$$
 and $a_D = 2$.

Moreover, $a_D = D - 2$ implies

$$b_D D = a_D^2 - 4N\varepsilon_D = (D-2)^2 - 4N\varepsilon_D = (D-4)D + 4(1 - N\varepsilon_D),$$

and hence from $D \neq 2$, we get

$$N\varepsilon_D = 1$$
 and $b_D = D - 4$.

Conversely, $b_D = D - 4$ implies

$$a_D^2 = b_D D + 4N\varepsilon_D = (D-4)D + 4N\varepsilon_D = (D-2)^2 - 4(1-N\varepsilon_D),$$

and hence from $D \neq 5$, we get

$$N\varepsilon_p = 1$$
 and $a_p = D - 2$.

We can now provide the following sufficient conditions of the equation $x^2 - Dy^2 = \pm 2$ in terms of such invariants a_D , b_D and m_D :

THEOREM 3. If $(a_D, b_D) = (2,0)$ holds, then we have the following:

(1) $N\varepsilon_D = 1$, (2) $m_D \equiv 2 \pmod{8}$, (3) $x^2 - Dy^2 = 2$ is solvable in integers.

Proof. We assume $(a_D, b_D) = (2,0)$, i.e.

$$t_D = Dm_D + 2$$
 and $u_D^2 = Dm_D^2 + 4m_D$.

Then, we can first get

$$4N\varepsilon_D = t_D^2 - Du_D^2 = 4,$$

and hence $N\varepsilon_D = 1$.

Next, we assert $(Dm_D + 4, m_D) = 2$.

If we assume $(Dm_D + 4, m_D) = 1$, then it follows from $u_D^2 = (Dm_D + 4)m_D$ that there exist two positive integers n_1 , n_2 such that

$$Dm_D + 4 = n_1^2, m_D = n_2^2$$
 with $(n_1, n_2) = 1, u_D = n_1 n_2,$

and hence $n_1^2 - Dn_2^2 = 4$ holds.

However, since $n_1 > 1$, $u_D = n_1 n_2$ is greater than n_2 , which contradicts with minimum property of u_D .

If we assume $(Dm_D + 4, m_D) = 4$, then similarly there exist two positive integers n_1 , n_2 such that

$$Dm_D + 4 = 4n_1^2$$
, $m_D = 4n_2^2$ with $(n_1, n_2) = 1$, $u_D = 4n_1n_2$,

and hence $n_1^2 - Dn_2^2 = 1$ holds. However, $u_D = 4n_1n_2$ is greater than n_2 , which contradicts with minimum property of u_D . Therefore, we get

$$(Dm_{\rm D}+4,\ m_{\rm D})=2,$$

and moreover it follows from $u_D^2 = (Dm_D + 4)m_D$ that there exist two positive integers n_1, n_2 such that

$$Dm_D + 4 = 2n_1^2$$
, $m_D = 2n_2^2$ with $(n_1, n_2) = 1$, $u_D = 2n_1n_2$,

and hence we get $n_1^2 - Dn_2^2 = 2$.

Furthermore, since $n_2 \equiv 1 \pmod{2}$, we get finally

$$m_D = 2n_2^2 \equiv 2 \pmod{8}.$$

THEOREM 4. If $(a_D, b_D) = (D - 2, D - 4)$ holds, then we have the following:

(1) $N\varepsilon_D = 1$, (2) $m_D \equiv 1 \pmod{8}$, (3) $x^2 - Dy^2 = -2$ is solvable in integers.

Proof. We assume $(a_D, b_D) = (D - 2, D - 4)$, i.e.

$$t_D = Dm_D + D - 2$$
 and $u_D^2 = Dm_D^2 + 2(D-2)m_D + D - 4$

Then, we can first get

$$4N\varepsilon_D=t_D^2-Du_D^2=4,$$

and hence we get $N\varepsilon_p = 1$. Moreover, we get immediately

$$u_D^2 = (Dm_D + D - 4)(m_D + 1).$$

Next, we assert $(Dm_{D} + D - 4, m_{D} + 1) = 2$.

If we assume $(Dm_D + D - 4, m_D + 1) = 1$, then it follows

from $u_D^2 = (Dm_D + D - 4)(m_D + 1)$ that there exist two positive integers n_1, n_2 such that

$$Dm_D + D - 4 = n_1^2$$
, $m_D + 1 = n_2^2$ with $(n_1, n_2) = 1$, $u_D = n_1 n_2$,

and hence $n_1^2 - Dn_2^2 = -4$ holds, which contradicts with $N\varepsilon_D = 1$.

If we assume $(Dm_D + D - 4, m_D + 1) = 4$, then similarly there exist two positive integers n_1 , n_2 such that

$$Dm_D + D - 4 = 4n_1^2$$
, $m_D + 1 = 4n_2^2$ with $(n_1, n_2) = 1$, $u_D = 4n_1n_2$,

and hence $n_1^2 - Dn_2^2 = -1$ holds, which also contradicts with $N\varepsilon_D = 1$. Therefore, we get

$$(Dm_D + D - 4, m_D + 1) = 2.$$

Moreover, it follows from $u_D^2 = (Dm_D + D - 4)(m_D + 1)$ that there exist two positive integers n_1 , n_2 such that

$$Dm_D + D - 4 = 2n_1^2$$
, $m_D + 1 = 2n_2^2$ with $(n_1, n_2) = 1$, $u_D = 2n_1n_2$,

and hence $n_1^2 - Dn_2^2 = -2$ holds.

Furthermore, since $n_2 \equiv 1 \pmod{2}$, we get finally

$$m_D = 2n_2^2 - 1 \equiv 1 \pmod{8}$$

COROLLARY 1. In the case $(a_D, b_D) = (2,0)$ (resp. (D-2, D-4)), the integral solution $(x, y) = (n_1, n_2)$ of the equation $x^2 - Dy^2 = 2$ (resp. $x^2 - Dy^2 = -2$) induced from the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$ in the proof of Theorem 3 (resp. 4) is the minimal positive solution.

Proof. In the case $(a_D, b_D) = (2,0)$, let $(x, y) = (n_1, n_2)$ be the integral solution induced from the fundamental unit ε_D of $\mathbf{Q}(\sqrt{D})$, and $(x, y) = (m_1, m_2)$ be the minimal positive integral solution of the equation $x^2 - Dy^2 = 2$. Then,

$$n_1 \ge m_1, n_2 \ge m_2$$
 and $u_D = 2n_1n_2$

hold, and hence we get immediately

$$u_D \geq 2m_1m_2.$$

On the other hand, from the proof of Theorem 1

$$(x, y) = (2m_1^2 - 2, 2m_1m_2)$$

is a positive integral solution of the equation $x^2 - Dy^2 = 4$, and hence we get $u_D \le 2m_1m_2$, by the minimum property of u_D . Therefore, we obtain $u_D = 2m_1m_2$, which implies $n_1 = m_1$, $n_2 = m_2$.

In the case $(a_D, b_D) = (D - 2, D - 4)$, we can also prove Corollary 1 in analogous way to the case $(a_D, b_D) = (2,0)$.

COROLLARY 2. If D = q or 2q for a prime number q congruent to $3 \pmod{4}$, then $N\varepsilon_p = 1$ holds.

Moreover, if $q \equiv -1 \pmod{8}$, then $a_D = 2$ holds and $x^2 - Dy^2 = 2$ is solvable in integers.

If $q \equiv 3 \pmod{8}$, then $a_D = D - 2$ holds and $x^2 - Dy^2 = -2$ is solvable in integers.

HIDEO YOKOI

Proof. If we assume $N\varepsilon_D = -1$, then Pell's equation $x^2 - Dy^2 = -4$ is solvable in integers, and so $q \equiv 1 \pmod{4}$ holds for any prime factor q of D which contradicts with $q \equiv 3 \pmod{4}$. Hence $N\varepsilon_D = 1$ holds.

Next, since $t_D = Dm_D + a_D$, $N\varepsilon_D = 1$ implies

$$Du^{2} = t_{D}^{2} - 4 = m_{D}(Dm_{D} + 2a_{D})D + (a_{D}^{2} - 4)$$

and hence

$$(a_D - 2)(a_D + 2) = a_D^2 - 4 \equiv 0 \pmod{D}$$

Therefore, in the case D = q,

$$a_D \equiv 2 \text{ or } -2 \pmod{D}$$
,

and hence

$$a_{D} = 2 \text{ or } D - 2.$$

In the case D = 2q, $t_p \equiv 0 \pmod{2}$ implies $a_p \equiv 0 \pmod{2}$, and so

 $a_D - 2 \equiv a_D + 2 \equiv 0$, i.e. $a_D \equiv \pm 2 \pmod{2}$.

On the other hand, $a_p \equiv 2 \text{ or } -2 \pmod{q}$ holds, and so we get

 $a_D \equiv 2 \text{ or } -2 \pmod{D}$,

which implies directly

 $a_{D} = 2$ or D - 2.

Consequently, Corollary 2 is follows from Propositions 2,3 and Theorems 3.4. With regard to insolubility of $x^2 - Dy^2 = \pm 2$, we obtain easily the following:

COROLLARY 3. If we assume

D = p for a prime p congruent to $1 \mod 4$,

or

D = 2p for a prime p congruent to $5 \mod 8$,

then

 $N\varepsilon_n = -1$

holds and

$$x^2 - Dy^2 = \pm 2$$

is insoluble.

Proof. If D = p $(p \equiv 1 \mod 4)$, or D = 2p $(p \equiv 5 \mod 8)$, then we get $N\varepsilon_p = -1$ (cf. for instance [2]). Hence by Proposition 2 $x^2 - Dy^2 = \pm 2$ is insoluble.

 $(a_{D}, b_{D}) = (2,0)$

$t_D = Dm_D + a_D$	$n_1 = \sqrt{D \cdot m_D / 2 + 2}$
$u_D^{2} = Dm_D^{2} + 2a_Dm_D + b_D$	$n_2 = \sqrt{m_D/2}$
$a_D^{2} - 4 = b_D D$	$t_D = Dm_D + 2$
	$u_D=2n_1\cdot n_2$
$m = [t / D] = 2m^2 = 2$	$(mod \theta)$ $m^2 - Dm$

	m_D		$\Box n_2 \Box$	(11000) n_1	Dn_2	
D	type	h_D	r	m_D	n_1	n_2
7	q	1	- 2	2	3	1
14	2q	1	- 2	2	4	1
23	q	1	- 2	2	5	1
31	q	1		98	39	7
34	2 p	2	- 2	2	6	1
46	2q	1		1058	156	23
47	q	1	- 2	2	7	1
62	2q	1	- 2	2	8	1
71	q	1		98	59	7
79	q	3	-2	2	9	1
94	2q	1		45602	1464	151
103	q	1		4418	477	47
119	þq	2	- 2	2	11	1
127	q	1		74498	2175	193
142	2q	3	- 2	2	12	1
151	q	1		22889378	41571	3383
158	2q	1		98	88	7
167	q	1	- 2	2	13	1

m_D	$= [t_D / t_D]$	D] = 2i	$i_2^2 \equiv 2$	(mod 8)	$n_1^2 - L$	$Dn_2^2 \equiv 2$
-------	-----------------	---------	------------------	---------	-------------	-------------------

HIDEO YOKOI

D	type	$h_{\scriptscriptstyle D}$	r	m_D	n_1	<i>n</i> ₂
191	q	1		94178	2999	217
194	2 p	2	- 2	2	14	1
199	q	1		163479362	127539	9041
206	2 q	1		578	244	17
223	q	3	-2	2	15	1
238	2 pq	2		98	108	7
239	q	1		51842	2489	161
254	2 q	3	-2	2	16	1
263	q	1		1058	373	23
287	þq	2	-2	2	17	1
302	2 q	1		28322	2068	119
311	q	1		108578	4109	233
322	$2q_1q_2$	4	- 2	2	18	1
359	q	3	-2	2	19	1
383	q	1		98	137	7
386	2 p	2		578	334	17
391	þq	2		37538	2709	137
398	2q	1	-2	2	20	1
431	q	1		703298	12311	593
439	q	5	- 2	2	21	1
446	2 q	1		494018	10496	497
479	q	1		12482	1729	79
482	2 p	2	- 2	2	22	1

Prime p is congruent to $1 \mod 8$; $p \equiv 1 \pmod{8}$.

Prime q is congruent to $-1 \mod 8$; $q \equiv -1 \pmod{8}$.

 $h_D = -n$ means that $N\varepsilon_D = -1$ and $h_D = n$.

r represents the integer such that $D = k^2 + r$, $-k < r \le k$ and $4k \equiv 0 \pmod{r}$ for real quadratic field $\mathbf{Q}(\sqrt{D})$ of **R-D** type.

146

 $(a_D, b_D) = (D - 2, D - 4)$

$t_D = Dm_D + a_D$	
$u_{D}^{2} = Dm_{D}^{2} + 2a_{D}m_{D} +$	b_D
$a_D^2 - 4 = b_D D$	

$$n_{1} = \sqrt{D(m_{D} + 1)/2 - 2}$$

$$n_{2} = \sqrt{(m_{D} + 1)/2}$$

$$t_{D} = D(m_{D} + 1) - 2$$

$$u_{D} = 2n_{1} \cdot n_{2}$$

$m_D - [l_D / D] - 2n_2$ $1 = 1 \pmod{3}$ n_1 $Dn_2 - 2$						_
D	type	h_D	r	m_D	n_1	n_2
2	2	- 1	-2	1		1
3	q	1	-2	1	1	1
6	2q	1	2	1	2	1
11	q	1	2	1	3	1
19	q	1		17	13	3
22	2 q	1		17	14	3
38	2 q	1	2	1	6	1
43	q	1		161	59	9
51	þq	2	2	1	7	1
59	q	1		17	23	3
66	$2q_1q_2$	2	2	1	8	1
67	q	1		1457	221	27
83	2 q	1	2	1	9	1
86	2q	1		241	102	11
102	2 p q	2	2	1	10	1
107	q	1		17	31	3
114	$2q_1q_2$	2		17	32	3
118	2q	1		5201	554	51
123	þq	1		1	11	1
131	q	1		161	103	9
134	2q	1		2177	382	33
139	q	1		1116017	8807	747
146	2 p	2	2	1	12	1
163	q	1		786257	8005	627
178	2 p	2		17	40	3
179	q	1		46817	2047	153
187	þq	2		17	41	3
211	q	1				

$$m_D = [t_D/D] = 2n_2^2 - 1 \equiv 1 \pmod{8}$$
 $n_1^2 - Dn_2^2 = -2$

HIDEO YOKOI

D	type	h_D	r	m _D	<i>n</i> ₁	<i>n</i> ₂
214	2 q	1				
227	q	1	2	1	15	1
246	2 pq	2		721	298	19
251	q	1		29281	1917	121
258	2 pq	2		1	16	1
262	2 q	1		801377	10246	633
267	þq	2		17	49	3
278	2 q	1		17	50	3
283	q	1		977201	11759	699
291	þq	4	2	1	17	1
307	q	1		576737	9409	537
326	2 q	3		1	18	1
339	þq	2		577	313	17
347	q	1		3697	801	43
354	$2q_1q_2$	2		1457	508	27
358	2 q	1				
374	2 pq	2		17	58	3
402	$2q_1q_2$	2		1	20	1
411	þq	2		241	223	11
418	$2q_1q_2$	2		161	184	9
419	q	1		1289617	16437	803
422	2 q	1		33281	2650	129
443	q	3	2	1	21	1
451	þq	2		206081	6817	321
454	2 q	1				
467	q	1		6961	1275	59
498	$2q_1q_2$	2		721	424	19
499	q	5		17	67	3

Prime p is congruent to $1 \mod 8$; $p \equiv 1 \pmod{8}$ Prime q is congruent to $3 \mod 8$; $q \equiv 3 \pmod{8}$.

REFERENCES

- [1] O. Perron, Die Lehre von den Kettenbruchen, Chelsea Publ. Comp., 1929.
- [2] T. Takagi, Syoto-sesuron-kogi (Japanese), Kyoritu Publ. Comp., 1953.
- [3] H. Yokoi, Some relations among new invariants of prime number p congruent to 1 mod 4, Advances in Pure Math., 13 (1988), 493-501.

- [4] —, The fundamental unit and bounds for class numbers of real quadratic fields, Nagoya Math. J., 124 (1991), 181-197.
- [5] -----, New invariants and class number problem in quadratic fields, Nagoya Math. J., 132 (1993), 175-197.

Graduate School of Human Informatics Nagoya University Chikusa-ku, Nagoya 464-01 Japan