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Abstract

The powerful starter-adder theorems for constructing Howell Designs are improved and
consequently many types of Howell Designs that previously could only be constructed by
multiplicative techniques are shown amenable to a modified starter-adder method. The existence
question for Howell Designs of many new types H(s, 2n) is settled affirmatively. For prime
powers p", p = 7, we reduce the entire existence question for designs of type H*(p",2r),
p" + 1 s 2r § 2p", to the corresponding question for designs of type H*(p,2m),p + 1S 2m S 2p.
If these designs exist, s has no prime divisors < 7 and ( odd is "close" to 1, a design H*(s, s + t) is
shown to exist.

1. Introduction

Suppose X is a set such that |X | = 2n. A Howell Design on X of type
H(s,2n) consists of a square array of side s such that (1) each cell is either
empty or contains an unordered pair of elements taken from X, (2) each
element of X. appears exactly once in each row and each column of the array
and (3) every unordered pair appears at most once in a cell of the array. It is
easy to see that n S s § 2 n - l , When we wish to draw attention to the set X
we will use the notation H(X, s,2n). If Y CX such that \ Y \ = 2n — s and no
pair of elements of Y occupy a cell of H(X,s,2n), we will denote this fact
notationally by either HY(X,s,2n) or H*(s,2n).

Howell Designs of type H(2n - l,2n) are often called Room Squares.
Room squares are known to exist for all n except n = 2,3. In a recent paper,
Hung and Mendelsohn (1974), constructions were given for many classes of
Howell Designs. These constructions were generalizations of those known for
Room Squares and included both starter-adder and multiplicative methods.
However, the question of existence for many types H(s, 2n) was left unsettled
and starter-adder techniques for s "close" to 2« were not found. Mullin and
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Wallis (1975) give a condensed proof for the general existence of Room
Squares. The argument is in basically two steps and proceeds roughly in the
following manner. First show that if 2n - 1 a 7 is a prime power, an
H(2n - l,2n) can be constructed by the starter-adder method. Then appeal
to certain multiplication theorems to complete the proof. It is clearly the
premise of the above mentioned paper by Hung and Mendelsohn that the
same idea might work for Howell Designs in general.

In this paper we are concerned primarily with the first step in the
proposed general argument. We are able to modify the starter-adder method
to show that if p s 7 is prime and all possible H*(p, 2m) exist, then for every
positive integer n, all possible H*(p",2r) exist. Thus, one could repeat the
first step of the Mullin-Wallis paper for the more general Howell Design
situation if it could be shown that for prime p = 7, all possible H*(p,2m)
exist. For p prime, 7Sp S23, only the H*(p,2p -2) existence question is
still in doubt and a design of type H{1,12) is known.

Intuitively, our modified starter-adder construction is as follows. We
omit a subgroup from the starter and fill in the holes of the resulting design
with a Howell Design of side the order of the subgroup.

To avoid confusion, we note that a design very similar to the ones
described above is called a Howell rotation in the papers of Parker and Mood
(1955), Berlekamp and Hwang (1972) and Schellenberg (1973). In those
papers the array is not always required to be square, and the cells of the array
are filled with ordered pairs. One also requires some other things of the
design which the reader who wishes to investigate will find described therein.

A method of construction of Howell Designs that is different from those
described here and also settles the existence question for some new types
H(s,2n) is found in Anderson (to appear).

2. Generalized starters and Howell Designs

We first establish some notational conventions. G will always denote a
finite Abelian group written additively. If G is given and A = {F,: 1 § i S n} is
a family of subgroups of G, we will use the notation G\A for
G \ U {F, : 1 S j- g n). If 1 § j < / g n implies that F, D F, = {0}, we will say
that A is a pairwise almost disjoint (PAD) family of subgroups.

DEFINITION 1. Suppose that G and A are given such that |G\A| is even.
A partition X of G\A into (unordered) 2-sets is said to be a partial starter for
G\A if and only if

{a-b: {a,b}EX}= G\A.
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If X is a partial starter for G\A and A : X -* G\\ is an injection satisfying the

condition

U {{a, b} + {a, b}A : {a, b}EX}= G\A

then A is said to be a partial adder for X. If

{a + b: {a,b}eX}
is a set of \X\ distinct elements of G\A, then X is said to be a strong partial
starter for G\A.

Sometimes it will be advantageous to use the notations pS(G\A),
pA(G\A) and SpS(G\A) for the concepts defined above. Note that even if
\G\A\ is even, there still may be no pS(G\A). This is certainly the case if G\A
has an element of order 2. As in the ordinary starter situation, if X is a
SpS(G\A), then the map M defined by {a,b}M = - (a + b) is a pA (G\A)
for X.

Before stating the first theorem we recall an idea from Hung and
Mendelsohn (1974). If U2CUl and H(V2, s2,2n2) = A2 is a subsquare of
H(U,,s,,2n,) = Ax, we will denote by Ai\A2 the design obtained by deleting
A2 from Ai, that is, AX\A2 is the collection of cells and entries of A, that are
not in A2.

If T = {t,: IS i = n} is a family of non-negative integers, let H r =
{ D , : l S / S n } be a family of sets such that D, = £ , U H l S i < / g n
implies that E, D E,• = 0 and | Ei | = f,-. (We will say that ilT is a PAD family of
sets with common element s°). Let D = U f A : 1 S / g n}.

THEOREM 1. Suppose A = {Ff: l S i S n } is a PAD family of subgroups
ofG, G\A has a pS(G\A) called S and S has a pA(G\A) called A. Suppose T
and (lT are as above and that for 1 g i g n, there is an

HD,(F, U D,, \F,\,\F,\ + t, + 1) = H,.

We may assume without loss of generality that the rows and columns of Hi are
labelled by the elements of F, and that for each f in F,, {/, °°j occupies the cell in
row f and column f, where *> is the common element of (lT- Then there is an

HD(G U D, j G |, | G | + 1 + J /,) =K

containing each Ht as a subsquare and such that for l ^ i g n , K\Ht contains
no cell with a pair {u, v}, where u, v G

PROOF. Label the group elements 0 = gt,g2, • • •, giO\ and label the rows
and columns of a \G\x\G\ array with the group elements. Let c(gi,g,)
denote the cell in row g> and column g,. There are two parts to the
construction.
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First, S and A are used as in the starter-adder construction for Room
Squares.
(1) For ( I E G , {a + h,b + h}G.c{h,h ~({a,b}A)) if and only if {a, b}GS.
The cells filled by (1) are cells whose coordinates differ by elements of G\\. It
is clear that every pair that has been used to fill a cell differs by elements of
G\A and it is easy to see that every pair that differs by elements of G\A has
been used exactly once. It also follows easily that the elements of G that don't
appear in row g; and column g, are exactly the elements (UF,) + gr

Second, each H, is placed in the Fi~x.Fi subarray and translated by cosets.
This is done as follows. For each i, 1 S i g n, let R, be a set of representatives
of the cosets of F, such that 0 G JRf. If s G R,, let Cs., ={c(f+s,g + s): f, g G F,}
and let C, = U {Csj: s E R,}. For each i, if r, s G R, and r/ s, then Cs., ("I G., =
0 and for i/ j , the fact that A is a PAD family insures that

C,nC,C{c(g,g): g G G } .

For each i, extend the group operation to D, by defining d+g=g+d=d
for all g G G and d G D,.

Fill in Co., with H, and translate H, as follows.

(2) For s G R,,

{a + s,b + s } G c ( / + s,g +s)if a n d o n l y if {a, b}Ec(f, g);f, g G F,.

We denote the array defined by (2) by Hsj. Clearly Hs, fills the collection Cs.,
of cells. Note that the cells filled by the //, 's and their translates were all open
after the first stage because these cells all have coordinates that differ by
elements of U F,. The assumptions made about the H('s in the statement of
the theorem imply that when a cell is in both C, and Ch it is filled with the
same pair by the proper translates of both H, and Hr Every pair of elements
of G used in connection with H, differs by elements of F,. Since cosets of the
same subgroup are pairwise disjoint and since {F, : 1 S I Sn} i s a PAD family,
no pair of elements of G that differ by elements of U Ft is used more than
once. Each element of D, is paired with every element of F, exactly once in Ht

and thus with every element of G exactly once in the translates of H,. No pairs
of elements of D, occur in H, and so none occur in the translates of H, either.

Consider row gr Given i, there is an s G R, such that g, G F, + s. Thus Csi

has cells in row g,. Hence every element of F,+s = F,+g, and every element of
D, = E< U {x} appears exactly once in row g, and <» appears in c(gh g,). Since
this argument holds for every i, it follows that row g, contains every element
of

[ (UF,)+g, ]UD
exactly once. The same result holds for column g,.
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Finally, suppose that for each i, no two elements of D< occupy a cell of Hi.
It is clear that no two elements of D occupy any cell of the entire array H and
it is easy to see that no pair of elements of Ft UD; occurs in any cell of H\Ht.

The designs resulting from this theorem can be used in connection with
Theorems 6 and 10 of the Hung and Mendelsohn paper. Note that the
subsquare hypotheses of Theorem 10 of their paper will not be satisfied with
respect to Ht unless 2,Vi/, =0. We remark that if A = {0}, the construction
reduces to the ordinary starter-adder method for Room Squares. The most
interesting application of Theorem 1 occurs when U F, = G.

THEOREM 2. Suppose p = 1 is a prime and if p + 1 § 2m = 2p, then
H*(p,2m) exists. It follows that if n is a positive integer and p" + 1 S= 2r = 2p",
then H*(p",2r) exists.

PROOF. Let Zp be the cyclic group of order p and let Gp,n = Zp x • • • x Zp

with n factors. Then Gpn is the union of a PAD family A of ST=i (")(p ~~ 1)' '
subgroups of order p. Now, by Mullin and Nemeth (1969) and Chong and
Chan (1974), Zp has a strong starter. We may use this strong starter on every
member of A. It is therefore clear that if F is any subset of A, there is a
SpS{G\T). Choose T such that each t, is an even non-negative integer,
li g p - 1 and X t, = 2r - (p" + 1). One may use the construction or the
Binomial Theorem to conclude that

and the result follows by Theorem 1.
It seems likely that given p g 7 , most of the H*(p,2m) exist. Note that if

all H*{p,2m) exist except possibly H*(p,2p -2 ) , p § 7, then the method of
Theorem 2 will show that all H*(p", 2r) exist except possibly H*(p", 2p" — 2).
Some of the currently available information on this question was mentioned
in the introduction. Note also tht the proof of Theorem 2 gives an easy way of
extending strong starters from Zp to Gpn.

The preceding results have all assumed the existence of a PAD family of
subgroups. We now show that in certain situations this requirement can be
relaxed.

DEFINITION 2. Suppose G is a finite Abelian group and X is a partition
of G into singletons Sx and doubletons Dx. We will say that X is an
HM-starter if and only if

1) {a, b) G Dx implies a - b/ b - a,

and

https://doi.org/10.1017/S1446788700020395 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020395


380 B. A. Anderson and K. B. Gross [6]

2) {a, b], {c, d} distinct elements of Dx implies a — b/ ±(c — d).
If A : X = Sx U Dx —> G is an injection satisfying the condition

( U {s + {s}A : {5} G Sx}) U (U {{a, b) + {a, b}A : {a, b} G Dx}) = G

then A is said to be an HM-adder for X.
It is easy to see that if X is an HAf-starter for G, then Sx/ 0 . Note that

this is true whether | G \ is odd or even. Thus by simple translation, we may
assume that {0} E Sx and that if A is an HM-adder for X, then {0}A = 0.

The next result was mentioned in Hung and Mendelsohn (1974) for cyclic
groups only, but is true in the more general setting.

THEOREM 3. Suppose G is an Abelian group with HM-starter X and
HM-adder A for X. If D is a set of \SX\ ideal elements, then there is an
H D ( G U D , | G | , | G | + |Sx|).

DEFINITION 3. Suppose G is a finite Abelian group, A = {F,: 1 S i S n} is
a family of subgroups of G, X is a partition of U F into singletons and
doubletons and A: X—* U F is an injection. We will say that (X, A) is an
HM-partition of A if and only if

1) each F-, is a union of partition elements of X, and
2) for each i, l g i § n , X\ F, is an //M-starter and A | [X | F,] is an

HM-adder for X | Ft.
The next result is immediate.

THEOREM 4. Suppose G is an Abelian group and A = {F: 1 § i S n} is a
family of subgroups of G. Suppose S is a partial starter for G\A and B is a
partial adder for S. If (X,A) is an HM-partition of A. then X U S is an
HM-starter for G and the function C such that C \ A = A and C \ G\A = B is an
HM-adder for XUS.

The existence of f/M-partitions may be an interesting question for
consideration. For now, we content ourselves with the following observation.

THEOREM 5. Suppose G is an Abelian group and A = {F,: l ^ j g n } is a

family of subgroups all of odd order. If X is a partial starter for G\A, A is a

partial adder for X and D is a family of ideal elements such that \D\ = ] U F,|,

then there is an

HD(GUD,\G\,\G\ + \ UF, | ) .

PROOF. An obvious extension of Theorem 2 of Hung and Mendelsohn
(1974) allows one to conclude that for each 1, S, - {{g}: g G F,} is an
HM-starter for F, and the map {g}—*g is an HM-adder A, for 5,. In this way
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we construct an HM-partition of A and the result follows from Theorems 3
and 4.

3. Existence of strong partial starters

The utility of Theorem 1 is clearly affected by the availability of partial
starters and partial adders. In this section, it will be shown that they can often
be constructed. Even though most of these results could be stated in terms of
partial starters and partial adders, we will avoid the additional complexity this
sometimes introduces and consider only stong partial starters. We first state
the obvious

THEOREM 6. // G has subgroups L, T with L C Tand there is a SpS(G\T)
and a SpS(T\L), then there is a SpS(G\L).

DEFINITION 4. Suppose F is a finite Abelian group with identity permu-
tation /. A permutation V of F is said to be a strong orthomorphism of F if
and only if both Y + I and Y — I are permutations of F.

An important result for certain doubling constructions that we hope to
consider in a later paper is that if F = G2n, n>\, then F has a strong
orthomorphism, Paige (1947). It is also known that if G has a cyclic 2-Sylow
subgroup, then G does not have a strong orthomorphism, Hall and Paige
(1955), and if G has odd order divisible by 3 with a cyclic 3-Sylow subgroup, G
does not have a strong orthomorphism, Gross and Leonard (1975).

THEOREM 7. If there is a strong orthomorphism for H and a strong
orthomorphism for G/H, then there is a strong orthomorphism for G.

PROOF. Let C be a function that selects coset representatives for G/H.
Let YH and YG,H be strong orthomorphisms for H and G/H respectively.
Define a map Y by the rule

(aC+h)Y = (aYG/H)C + hYH; a GG/H and h G H.

It is straightforward to verify that Y has the required properties.
It turns out that strong orthomorphisms allow the construction of many

strong partial starters as in

THEOREM 8. If there is a SpS(GI'H\N/H) and a strong orthomorphism of
H, then there is a SpS(G\N).

PROOF. Let S be a SpS{G/H\N/H), let Y be a strong orthomorphism of
H and let C be a function that selects coset representatives of G/H. Then the
following partition is an SpS(G\N).

{{aC + h,bC + hY}: {a, b}eS, h<E H}.
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In many cases this result can be applied to build a strong partial starters
from strong starters.

THEOREM 9. If \G\ is not divisible by 2,3 or 5, and H is a subgroup of G,
then there is an SpS(G\H).

PROOF. There is a SpS(G/H\H/H) by the results of Gross and Leonard
(1975 and 1976) and since 3jf\H\, there is a strong orthomorphism of H, say
multiplication by 2. By Theorem 8, there is a SpS(G\H).

It is possible to generalize Theorem 9 to certain PAD families of
subgroups.

THEOREM 10. Suppose G is Abelian and A = {F,: l S i S n } is a PAD
family of subgroups of G such that the group (A) generated by the F's is
isomorphic to X {F,: 1 g i S «} . / / [ G | is not divisible by 2, 3 or 5, then there
is a SpS(G\A).

PROOF. First, G\(A) has a SpS by Theorem 9. We will let N =
{i: l g i S n } and say that if / = (/,,/?, • • - , /„ )£ X F, and f,/ 0 if and only if
iGMCJV, then / is of type M and basic type (Ml . Multiplication by 2 is a
strong orthomorphism Y of X f , that preserves type.

In order to prove the theorem, it will suffice to define a strong starter on
xK, that pairs points of the same type and has the property that every sum of a
pair of the starter is of the same type as the members of the pair.

Each F, has a strong starter S,. Suppose all points of basis type r have
been paired with points of the same type such that sums of pairs preserve
type. Let R' = R U {('} CN be a set of basic type (r + 1) such that R is of basic
type r. Let H = x {F,: j G R} and K = H x Ft. We know that Y\H = YH is a
strong orthomorphism of H. Let

SK = SHU{{{h +Sl,hYH + s2}: h G H}: {sus2}eS,}.

By Gross and Leonard (1975) or Anderson and Morse (1974), this is a strong
starter on K. Furthermore, it is clear that SK pairs points of type R* and such
pairs sum to an element of type R +. Add the pairs of SK that are both of type
R' to the pairs of basic type r that we already have. Since R * was an arbitrary
subset of N of basic type r + 1, we see that a strong starter with the required
properties can be defined on x F,.

•THEOREM 11. Suppose n=U"=1p)' is the factorization of n into prime
powers such that r < s implies p, < ps. Suppose further that 7 S p , and that for
all j , if P) + 1^2m =2ph then H*(p,,2m) exists. It follows that for t odd,

,(p';-V), there is an H%n,n + t).
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PROOF. For each y, let G, be the product of i, cyclic groups of order ps

and let G = x {G,: 1 £y S m). For each k,j, 1 S k,j S m, let 5k)Gy be {0} if
k/ j and G,- if k = j . Then for each j , let fj• = x {8kjG,: 1 g k S m}. Clearly
A = {F): l S / ' S r a } is a PAD family of subgroups of G that satisfies the
hypothesis of Theorem 10. Therefore, there is a SpS(G\A). The result now
follows by applying Theorems 1 and 2.

As in the case of Theorem 2, note that even if all the H*(ph2m) don't
exist, this result yields many Howell Designs. We conclude with a construc-
tion that can be useful if 2, 3 or 5 divide the order of G.

THEOREM 12. Let N, H, U and G be Abelian groups such that N CH C
UCG. Suppose that there is a SpS(G/H\U/H) and U/H ~ N. Suppose also
that (\H/N\, \N\) = 1, H/N has a strong orthomorphism and there is a
SpS(H\N). Then for V C U such that V/N = N, there is a SpS(G/N\V/N).

PROOF. Since G/H s(G/N)/(H/N) and U/H = (U/N)/(H/N), it fol-
lows from Theorem 8 that there exists a SpS(G/N\U/N). Now N =
(U/N)/(H/N) and (| H/N |, | N |) = 1 so that by some of the basic properties of
Abelian groups, U/N = H. An application of Theorem 6 completes the proof.

There are other methods of generating strong partial starters that
sometimes work when the techniques mentioned here are not available. It is
planned to discuss some of these methods at a later time.
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