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Summary

Quantitative trait loci (QTLs) mapping often results in data on a number of traits that have
well-established causal relationships. Many multi-trait QTL mapping methods that account for
correlation among the multiple traits have been developed to improve the statistical power and
the precision of QTL parameter estimation. However, none of these methods are capable of
incorporating the causal structure among the traits. Consequently, genetic functions of the QTL
may not be fully understood. In this paper, we developed a Bayesian multiple QTL mapping method
for causally related traits using a mixture structural equation model (SEM), which allows
researchers to decompose QTL effects into direct, indirect and total effects. Parameters are estimated
based on their marginal posterior distribution. The posterior distributions of parameters are
estimated using Markov Chain Monte Carlo methods such as the Gibbs sampler and the
Metropolis–Hasting algorithm. The number of QTLs affecting traits is determined by the Bayes
factor. The performance of the proposed method is evaluated by simulation study and applied to
data from a wheat experiment. Compared with single trait Bayesian analysis, our proposed method
not only improved the statistical power of QTL detection, accuracy and precision of parameter
estimates but also provided important insight into how genes regulate traits directly and indirectly
by fitting a more biologically sensible model.

1. Introduction

Research on quantitative trait loci (QTLs) often
provides information on multiple complex traits that
have well-established causal relationships. For ex-
ample, in wheat genetics, it is common to collect data
on grain yield (GRYL) and yield components such as
thousand kernel weight (TKW), spikes per square
metre (SPSM) and kernels per spike (KPS), where
the causal relationships among these traits are well-
established (Fig. 1), because yield components de-
velop sequentially with later-developing components
under the control of earlier-developing ones (Dofing

& Knight, 1992). The primary goal of QTL mapping
is to locate regions or genes that are associated with
quantitative traits. The commonly used procedures
capture only total QTL effects while providing no
understanding of direct and indirect effects. However,
these direct and indirect effects can help answer im-
portant questions that are not addressed by examin-
ing the total effect alone. For instance, a pleiotropic
QTL can have a positive direct effect on GRYL, but
a negative effect on a yield component. Without
knowing the full pathway of the causal relationship, a
breeder might select against the yield component QTL
thinking it only affects the yield component detri-
mentally, not knowing that it is actually beneficial to
the important trait of GRYL. Thus, the total effect
can provide a misleading impression. To understand
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the genetic effects of a QTL thoroughly, it is necessary
to understand not only the total QTL effect but also
the direct and indirect effects of a QTL through other
traits by incorporating the causal structure among the
traits. Such a strategy of QTL mapping can provide
additional insight into how QTLs regulate traits
directly and indirectly through other traits. It should
also improve the power of the QTL detection and the
precision of the parameter estimate.

QTL-mapping studies are usually conducted for
each trait separately using single trait analyses (Lander
& Botstein, 1989; Haley & Knott, 1992; Jansen &
Stam, 1994; Zeng, 1994). However, such a single trait
analysis may result in biased estimates and lower
statistical power of QTL detection when data ob-
servations are collected on multiple causally related
or genetically correlated traits. To combat these
problems, several multiple trait QTL analysis (joint
analysis) methods have been developed to take into
account the correlation among multiple traits. These
methods may be classified into multi-trait maximum-
likelihood (ML) (Jiang & Zeng, 1995; Williams et al.,
1999; Xu et al., 2005), multi-trait least squares (LS)
(Calinski et al., 2000; Knott & Haley, 2000; Hackett
et al., 2001), principal component analysis (PCA)
(Weller et al., 1996; Mangin et al., 1998) and dis-
criminant analysis (DA) (Gilbert & Le Rol, 2003).
Multi-trait ML, implemented with the expectation
conditional maximization (ECM) algorithm, provides
a powerful tool to multi-trait QTL mapping. How-
ever, there are problems with this method when the
number of QTLs and traits increase. The likelihood is
a finite mixture of densities and becomes very difficult
to evaluate (Satagopan et al., 1996). The gains in
power from joint analysis may compensate for the
critical value for the test, due to the increase in the
number of unknown parameters to be estimated
(Mangin et al., 1998). Multi-trait LS, which regresses
the quantitative trait value on the conditional ex-
pected genotypic value, produces results very similar
to ML and simplifies computation (Haley & Knott,
1992). The PCA and DA dimension reduction tech-
niques, decompose the traits into a number of linear
combinations that can be analysed separately. How-
ever, the approaches of PCA and DA may cause

spurious linkages and difficulties in the biological
interpretation of study results (Mähler et al., 2002;
Gilbert & Le Roy, 2003).

With new and powerful computational techniques
available, Bayesian QTL mapping provides an ex-
tremely flexible way to search for multiple QTLs
simultaneously. There are many practical advantages
of using a Bayesian approach over frequentist ap-
proaches, such as the ability to fit more complex and
biologically sensible models, the ability to incorporate
prior information into the specification of the model,
and the ability to obtain estimates of the posterior
distributions of any function of the model parameters
(Dunson, 2001; Yi & Shriner, 2008). The Bayesian
approach has been extensively applied to QTL
mapping for a single trait (Satagopan et al., 1996;
Sillanpaa & Arjas, 1998, 1999; Stephens & Fisch,
1998; Yi & Xu, 2002; Yi et al., 2003, 2005, 2007;
Narita & Sasaki, 2004; Yi, 2004; Wang et al., 2005).
Recently, several Bayesian methods implemented via
the Markov chain Monte Carlo (MCMC) algorithm
have been developed for mapping multiple trait QTLs
taking into account the correlation among traits.
Meuwissen & Goddard (2004) combined linkage and
linkage disequilibrium (LD) information to improve
the power and precision of QTL mapping. Liu et al.
(2007) developed a variance component method to
model multiple complex traits in outbred populations
using a Bayesian approach. In this approach, the
number of QTLs is determined by reversible-jump
MCMC (Green, 1995; Sillanpaa & Arjas, 1998). The
problem with the reversible-jump MCMC for model
selection is that it is usually subject to slow mixing of
the Markov Chains and high computational demand
associated with the algorithm (Wang et al., 2005).
Yang & Xu (2007) extended the Bayesian shrinkage
analysis (Wang et al., 2005) to dynamic complex traits
by fitting the growth trajectory using Legendre poly-
nomials. The advantage of this method is that it fits
any trend in time but parameters of polynomials
have no biological interpretation. Banerjee et al.
(2008) introduced the seemingly unrelated regression
(SUR) model, which allows different genetic models
for different traits. However, none are capable of
dealing with the causal relationships among traits,
resulting in the omission of the direct and indirect
QTL effects.

The structural equation model (SEM) is a general-
ization of simultaneous equation procedures orig-
inating from path analysis (Wright, 1921) and initially
popularized in econometics and genetics. It is a useful
method for estimating and evaluating simultaneous
causal relationships among variables which allows
variables to be both dependents and predictors. It is
best explained by considering a path diagram. In
particular, SEM allows researchers to decompose the
effects of one variable on another into direct, indirect

SPSM

TKWT

KPS GYLD

Fig. 1. The path diagram of the causal relationship among
GRYL and yield components.
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and total effects. The direct effect is the path co-
efficient between an independent variable and the de-
pendent variable that are not causally explained by
any other intermediary variable. The indirect effects
of a variable are mediated by at least one other inter-
vening variable. The indirect effects are calculated
by multiplying the path coefficients for each path of
the associated variable to the dependent variable.
The total effect is the sum of direct and all indirect
effects. By explicitly accounting for the complex multi-
component causal structure among traits, SEM can
provide a better understanding of multiple trait QTL
analysis by allowing researchers to decompose the
effects of one variable on another into direct, indirect
and total effects within a QTL framework.

Recently, SEM has been applied to functionally
related traits in genetic research with the goal of
characterizing genetic architecture precisely and in-
tuitively. Zhu & Zhang (2009) conducted simulation
studies to compare the performance of multiple trait
analysis and single trait analysis in family-based
association studies. They found that multiple trait
analysis improved the power of association tests
and precision of parameter estimates when there are
causal relations among the traits themselves. Nadeau
et al. (2003) used the Bayesian network analysis to
infer a functional/causal trait network of the cardio-
vascular system from a RIL population. Li et al.
(2006) analysed data from mouse inbred crosses to
identify the causal networks including subphenotypes
and QTL related to obesity and bone geometry.
However, their approaches were limited to testing and
quantifying the relationships among identified QTLs
and phenotypes without QTL detection.

In this paper, we propose SEM in the context of
QTL detection. The goal is to develop a Bayesian
SEM approach mapping multiple traits QTL using
recombinant inbred line (RIL) populations. The RIL
populations are commonly used in QTL mapping
experiments and are usually derived from a cross be-
tween two inbred parents followed by self-pollination
and single-seed descent to reach homozygosity. The
performance of the proposed method is evaluated by
a simulation study and applied to data from a wheat
experiment.

2. Statistical method

(i) Mixture SEM

Consider m QTLs located at positions l1, l2, …, lm in
m different marker intervals I1, I2, …, Im in a linkage
group on the same chromosome. Let the value of
each marker and putative QTL be coded as 2 for
one homozygous parent type and 0 with the other
homozygous parent type, since the RILs are homo-
zygous at every locus. Assume that p causally related

quantitative traits y1, y2, …, and yp are affected by
these m QTLs additively. The SEM in matrix form is

y1

y2

..

.

yp

2
66664

3
77775

|fflffl{zfflffl}
y

=

0 b12 � � � b1p

0 0 � � � b2p
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. ..
. . .

. ..
.
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2
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a11
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a21

a22

..

.
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2
66664

3
77775

|fflfflffl{zfflfflffl}
am

Qm+

e1

e2

..

.

ep

2
66664

3
77775

|fflffl{zfflffl}
f

, (1)

where yk is the phenotypic value for trait k (k=
1, 2, …, p), bkh is the regression coefficient of trait h on
trait k (h=1, 2, …, m), alk is the direct effect of the
lth putative QTL on trait k (l=1, 2, … , m), Ql is the
lth putative QTL genotype, taking the value of 2 for
genotype QQ and 0 for genotype qq and ek, the re-
sidual effect on trait k, is assumed to be multivariate
normal distributed with means zero and covariance
matrix

Y=

s2
1 0 � � � 0
0 s2

2 � � � 0

..

. ..
. . .

. ..
.

0 0 . . . s2
p

0
BBB@

1
CCCA:

More compactly, the model (1) for ith individual
(i=1, 2, …, n) can be rewritten as

yi=Byi+ g
m

l=1

alQil+fi (2)

and the reduced model

yi=(IxB)x1 g
m

l=1

alQil+fi

� �
, (3)

where yi is a pr1 vector of yk for the ith individual,
B is the prp coefficient matrix (contains bs) that
describes causal relationship among p traits, where
(IxB)x1 exists ; al is a pr1 vector of alk, Qil is the
putative QTL genotype for the lth QTL and ith indi-
vidual ; fi, a pr1 vector of errors in the equation, is
assumed to be multivariate and normally distributed
with mean zero and diagonal covariance matrix Y.
Elements in B, a=(a1, a2, …, am) and Y are par-
ameters that need to be estimated.

In practice, we observe the marker genotypes and
trait values, but not the putative QTL genotypes.
However, given the lth QTL positions ll and observed
flanking marker genotypes, the distribution of the lth
QTL genotype Ql in interval Il can be inferred in terms
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of the recombination frequency between them. We
assume that there is no crossing-over interference.
The conditional distributions of the individual puta-
tive QTL genotypes are independent given the flank-
ing marker genotypes (Kao et al., 1999). The joint
conditional probability of the genotype of the m
putative QTL for individual i can be expressed as

f(Qijl, Ii)=f(Qi1,Qi2, . . . ,Qimjl, Ii)=
Ym
l=1

f(Qiljll, Iil),

i=1, 2, . . . , n, (4)

where Qi is the joint QTL genotype for individual i ;
l=(l1, l2, …, lm) are the locations of m QTLs;
Ii=(Ii1, Ii2, …, Iim) are the intervals of flanking mar-
kers for individual i ; Qil is the putative QTL genotype
of the lth QTL for the ith individual. The joint con-
ditional probability of the m QTL is the product of
the marginal conditional probabilities of individual
QTL. There are 2m possible different QTL genotypes
in the population. We denote qij ( j=1, 2, …, 2m) as
the 2m possible QTL genotypes with the conditional
probabilities of pij respectively for the ith individual,
where pij containing information on QTL positions is
non-negative and g2m

j=1pij=1. That is, f(Qi=qij)=pij.
Given eqn (4), model (3) is defined as a finite

mixture SEM. We assume the multivariate normal
distribution of residual errors, the likelihood con-
ditional on all unknowns l=(l1, l2, …, lm), h=(b ’s,
a1, a2, …, am) and d=(s1

2, s2
2, …,sp

2) is defined as

f(yjl, h, d)=
Yn
i=1

g
2m

j=1
f(Qi=qijjl)fj(yijQi=qij, h, d)

=
Yn
i=1

g
2m

j=1
pijfj(yijuj,S), (5)

this is a 2m component mixture SEM, fj (yi|uj, S) is a
multivariate normal density for the jth QTL genotype
( j=1, 2, …, 2m) with probability pij, mean vector uj
and a covariance matrix S=(IxB)x1Y(IxB)x1k , as-
suming the same covariance matrix across all com-
ponents. The mean vector ujs are derived from eqn (3)
corresponding to the genotypic values of the 2m

different QTL genotypes. For instance, in the two
QTLs model, there are four multivariate normal
densities with mean vectors m1=(IxB)x1g2

j=12aj,
m2=(IxB)x12a1, m3=(IxB)x12a2 and m4=0, re-
spectively.

The mean vectors and covariance matrix are func-
tions of unknown parameters, which make the likeli-
hood very difficult to evaluate by applying maximum
likelihood procedures when the number of QTLs and
traits increase. In response to this problem, we apply
a Bayesian approach using an MCMC algorithm,
which provides a powerful tool for solving complex
mixtures. Inferences are based on the joint posterior

distribution of all unknowns given the prior distri-
bution of all unknowns and the observed data. We
can also make use of posterior probability to obtain
estimates of the posterior distributions of any func-
tion of the parameters, such as indirect and total QTL
effects based on our proposed multi-trait SEM. The
number of QTLs affecting traits is determined by the
Bayes factor (BF).

Joint posterior distribution: in the Bayesian
framework, the joint posterior distribution of all un-
knowns l=(l1, l2, …, lm), h=(b’s, a1, a2, …, am) and
d=(s1

2, s2
2, …, sp

2), given the trait values y, the marker
genotypes (M) and prior information, can be ex-
pressed as

f (l, h,d,Qjy,M) / f (yjQ, h, d) f (Qjl) f (l, h, d)

=
Yn
i=1

f (yijQi, h, d) f (Qijl) f (l, h, d):

(6)

The terms f(y|Q, h, d)f(Q|l) on the right-side of eqn (6)
is the likelihood conditional on all unknowns, which
is defined in eqn (5). The last term f(l, h, d) is the joint
prior distribution of all parameters (l, h, d). We as-
sume independence of prior distributions

f(l, h, d)=
Ym
l=1

f(ll)f(h)
Yp
k=1

f(s2
k): (7)

The prior distribution of the QTL location l is as-
sumed to be uniform on a predefined interval. When
no information regarding the locations is available, a
prior uniform distribution with an interval equivalent
to the length of the chromosome can be used.
For convenience in elicitation and computation, we
chose conjugate priors for the remaining parameters.
The prior distribution of h is assumed to be multi-
variate normal. The prior distributions of the variance
component parameters are assumed to be indepen-
dent inverse-gamma distributions.

Full conditional posterior distributions: from
eqn (6) we can derive the full conditional posterior
distributions.

The conditional distribution of a QTL genotype is

f (Qi=qijjyi,m,S, l)=
f (Qi=qijjl) fj(yijmj,S)

g2m

j=1 f (Qi=qijjl) fj(yijmj,S)

=
pij fj(yijmj,S)

g2m

j=1pij fj(yijmj,S)
, (8)

where fj (yi|uj, S) is a multivariate normal density
function for the jth QTL genotype ( j=1, 2, …, 2m)
with mean vector uj and a covariance matrix
S=(IxB)x1Y(IxB)x1k. Let h be a vector of the path
coefficients (elements in a and B). The model (2) yi=
Byi+gm

l=1alQil+fi can be rewritten as yi=Aih+fi,
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V(fi)=Y, where yi is a pr1 vector of trait values
for observation i (i=1, 2, …, n) with a known prq
matrix Ai containing yi and Qi ; h is a qr1 vector of
coefficients to be estimated; fi is a pr1 vector of
random residuals, residual fik is assumed to be un-
correlated and have variance

V(fik)=s2
k; k=1, . . . , p

h and s2
k are assumed to follow the conjugate priors

h � N(c*,Vc),

s2
k � InvGamma(e, f ):

The expected value c*, covariance matrixVc, e and
f are chosen by the researcher. Arminger & Muthén
(1998) suggested that one may set c* to vector
{1, …, 1},Vc

x1 to a diagonal matrix with small values,
such as 0.01, set e to 1

2, and set fx1 to a small value, for
instance 0.01. The posterior distribution of h and s2

k is
given as the following (Arminger & Muthén, 1998) :

hjy,Q,Y � MVN g
n

i=1
AikY

x1
Ai

� �
+Vx1

c

� �x1�

r g
n

i=1
AikY

x1
yi

� �
+Vx1

c c*

� �
,

g
n

i=1
AikY

x1
Ai

� �
+Vx1

c

� �x1�
, (9)

s2
kjy,Q, h �InvGamma

n

2
+e,

�
1

2
g
n

i=1
(yikxAih)k(yikxAih)+fx1

� �x1�
:

(10)

Based on fitting of the multi-trait SEM and posterior
distribution of the path coefficients h, we can obtain
estimates of the posterior distributions of the indirect
and total QTL effects, which are functions of h.
Unlike the above parameters h and s2

k, there is no
explicit expression for the full conditional posterior
distributions of the parameters l. The Metropolis–
Hastings sampler can be used to draw the samples
from the joint posterior distribution (see detailed de-
scription in the following section).

(ii) Parameter estimate

Once all the full conditional posteriors are specified,
the following MCMC algorithm can implemented.

Step 1. Initialization : Set the initial values of (l(0),
h(0) and d(0)) in the space of each parameter.

Step 2. Update the QTL position (l) : There is
no closed form for the conditional posterior prob-
ability density of a QTL position. Therefore, we take
the Metropolis–Hastings (Metropolis et al., 1953;
Hastings, 1970) approach for sampling the position
of a QTL. Elements of l are updated one at a time

sequentially. Specifically, for the lth QTL, a proposal
position ll* is sampled from a uniform distribution
with symmetric interval (max (llx1, llxd), min(ll+d,
ll+1)) around the previous position ll, where d is the
predefined tuning parameter, usually taking a value
of 2 cM. The proposed position ll* is accepted with
probability.

a(ll, ll*)=min 1,
f(ll*jlxl, h, d, y)

f(lljlxl, h, d, y)

� �
, (11)

where lxl represents all elements of l except ll. If the
new position is accepted, the joint conditional prob-
abilities (pij=f(Qi=qij|l)) of the m QTL genotypes
(see eqn (4)) is also updated simultaneously. Other-
wise, the state remains unchanged, and the algorithm
proceeds to update the next QTL position. The
QTL position can be updated more than once be-
tween updates of other parameters if there is evidence
that the chain is mixing slowly (Satagopan et al.,
1996).

Step 3. Update QTL genotype (Q) : The genotype of
joint m putative QTLs (Qi) is updated one individual
at a time. It is sampled from its full conditional
probability distribution (8)

f(Qi=qijjyi,m,S, l)=
pijfj(yijmj,S)

g2m

j=1pijfj(yijmj,S)
: (12)

Step 4. Update the path coefficients (h) : Elements of
h are simultaneously sampled from their full con-
ditional distribution p(h|l, d, Q, y) given in eqn (9),
which is a multivariate normal distribution.

Step 5. Update the residual variances (d) : Elements
in d are updated individually based on their full
conditional distribution f(s2

k|l, h, sxk
2 , Q, y) given in

eqn (10), which is an inverted-gamma distribution.
Step 6. Update the indirect and total QTL effects :

The indirect and total QTL effects are functions of the
path coefficients h. They are updated based on the
current values of h. The indirect QTL effect for a
particular indirect path from the QTL to the trait is
calculated by multiplying all the coefficients in the
path. The total indirect QTL effect on the trait is
the sum of all the indirect effects from all indirect
paths.

Continued sampling by repeating steps 2–6 is
known as the MCMC method, because the previous
sample values are used as parameters to sample the
next values, generating a Markov chain. When the
chain is long enough, it converges to the stationary
distribution; the sampled parameters actually follow
the joint posterior distribution. Likewise, a sample
of any single parameter is drawn from its marginal
posterior density. Parameters can be estimated based
on the samples from the corresponding posterior
distributions. Here, we use the posterior mean as the
Bayesian estimate.
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(iii) Number of QTLs

We use the BF criterion (Jeffreys, 1961; Kass &
Raftery, 1995) as a test statistic to detect QTLs.
Specifically, this is the comparison of two different
models with different number of QTLs affecting
the traits using BFs. Let model1 and model0 be two
competing models for a given data set. From Bayes
theorem, the BF is defined as

B1x0=
f(yjmodel1)

f(yjmodel0)
: (13)

The marginal probability of the data under modelj
f(y|modelj) can be estimated using its harmonic mean
estimator (Newton & Raftery, 1994).

f
_

(yjmodelj)=
N

gN

t=1
1

f(yjlt , ht, dt,Qt)

, j=0, 1, (14)

where N is the number of total iterations in the
MCMC process ; lt, ht, dt, Qt are samples of all un-
knowns drawn from the tth iteration. Unlike the sig-
nificance test approach that is based on P-values, this
comparison does not depend on the assumption that
either model is ‘ true ’, and can be applied to non-
nested models. It is useful to consider the natural
logarithm of the BF and interpret the resulting stat-
istic based on the following criterion given by Kass
& Raftery (1995) : a negative log B1x0 is taken as
support for model0, while a value between 1 and 3
indicates support for model1 and a value in excess of
3 points to strong support for model1 ; a value between
0 and 1 does not allow any conclusion to be drawn.

3. A simulation study

The Bayesian analysis for multi-trait QTL mapping
described above was investigated using simulation
experiments. The data were simulated for 100 rep-
licates of 250 lines from an RIL population. On
a single chromosome segment of length 100 cM,
11 evenly spaced markers were simulated. Two QTLs
(Q1 and Q2) were placed at 42 and 78 cM to affect
three traits, which are causally related as in Fig. 2. The

phenotypic values for each individual are determined
by eqn (15), the causal relationship among the traits,
the effects of two QTLs sampled (where QTL takes
values of 2 and 0 for genotype QQ and qq, respect-
ively) and the random residual effects were sampled
from the multivariate normal distribution with mean
zero and covariance matrix (16).

y1

y2

y3

2
64

3
75=

0 0�5 0�25
0 0 x0�5
0 0 0

0
B@

1
CA

y1

y2

y3

2
64

3
75+

x0�125
0�5
0�25

2
64

3
75Q1

+

0�25
x0�5
x0�125

2
64

3
75Q2+

e1

e2

e3

2
64

3
75, (15)

Y=
1�6 0 0
0 1�8 0
0 0 2�5

0
@

1
A: (16)

A total of 100 replicates were analysed to study the
variation across different generated samples and to
estimate the power of QTL detection. Rather than
using subsampling which is inefficient in comparison
with full sampling (MacEachern & Berliner, 1994), we
used the full Gibbs sample. For each of the MCMC
analyses, the first 500 samples (burn-in) were dis-
carded and an additional 2000 Gibbs samples from
which parameters of the posterior distribution were
estimated. There was evidence that the M-H chain
for QTL position chain was mixing slowly. We tried
a different number of M-H cycles to check the con-
vergence (Arminger & Muthén, 1998), and 25 cycles
yielded satisfactory results in all simulations per-
formed.

Single trait Bayesian analysis was also applied to the
simulated data to compare the precision and efficiency
with our proposed method. However, the single-trait
method only estimates the total QTL effect on each
trait, which is the sum of direct and indirect QTL
effects. With the multi-trait SEM, the estimates of
direct, indirect and total QTL effects are provided.

Models with different numbers of QTLs are com-
pared, and the best one is selected based on the com-
monly used selection criterion BF. We compared the
following models : (1) there is no QTL (model0) versus
there is one QTL (model1), (2) there is one QTL
(model1) versus there are two QTLs (model2) and
(3) there are two QTLs (model2) versus there are three
QTLs (model3). For all MCMC analyses, the same
initial values and priors were used. The initial values
for the QTL locations were set as 50 cM for model1, as
49 and 74 cM for model2, as 45, 74 and 89 cM for
model3. The prior distribution for QTL locations was
uniform over the chromosome. The tuning parameter
of the proposal distribution for QTL locations was
chosen to be 2.0 cM. The starting values were set as

Y1

Y3

Y2

0·5

0·25

–0·5

Fig. 2. Causal relationships among three traits in the
simulation. Numbers by the arrow lines represent the true
path coefficients.
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0.1 for all regression parameters. The priors for the
regression parameters were normally distributed with
mean 1 and variance 100. The priors for the residual
variances were inverse gamma (InvGamma(0.5,100)).
All of the QTL models were fit for each of the
100 simulated data using the same chain length
and burn-in.

4. Results

The estimated natural logarithm of the BFs
(log(BF)s) for comparing different QTL models,
averaged over 100 replicates, are given in Table 1. The
average log(BF) comparing model0 versus model1
was x5.79 (against no QTL model 97 times out of
100 simulated datasets). The average log(BF) com-
paring model1 versus model2 was x23.56 with evi-
dence in favour of two QTL model 99% of the times.
An average log(BF) of 4.37 comparing model2 versus
model3 favoured two QTL model 87% of the times.
Therefore, it is concluded that the two QTL model
was selected as the best fitting model. This conclusion
is consistent with the simulated number of QTLs.

Now we restrict our attention to the two QTL
model (model2). The approximate posterior distribu-
tions for the QTL locations are presented in Fig. 3.
The graphs are symmetric and concentrated around
the true simulated values.

The statistical power was determined by the pro-
portion of the number of replicates in which the QTL
was ‘detected’ over the total number of replicates. A
QTL was claimed as detected if there was an obvious
peak around the true simulated position. The overall
power of single-trait analysis was calculated as the
proportion of times the QTL was detected for at least
one of the three traits. The power of detecting both
simulated QTLs was calculated as the proportion of
the number of replicates in which both QTLs were
detected over the total number of replicates. The
estimated QTL detection powers over 100 replicates
are given in Table 2 by multi-trait SEM and single-
trait Bayesian mapping methods. The QTL detection
powers of the multi-trait SEM analysis were higher
than those of the single-trait analysis for both QTLs.
This result likely happened, because the single-trait
method only estimates the total QTL effects which

Table 1. BFs (using harmonic mean estimator)
for multi-trait QTL-mapping model selection

Models Log(BF)

Model0–Model1 x5.79
Model1–Model2 x23.56
Model2–Model3 4.37

Model0, Model1, Model2 and Model3 are the models with
zero, one, two and three QTLs, respectively. Estimates are
average over 100 replicates.

Table 2. Observed powers (%) of QTL detection of
two methods obtained from 100 replicates in the
simulation study

QTL
Multi-trait
SEM

Single-trait analysis

Y1 Y2 Y3 Overall

1 99 51 87 67 93
2 100 0 92 38 96
1 and 2 99 0 80 32 91
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Fig. 3. Approximate posterior distribution of the QTL position in the simulation. The true number of QTL is two, located
at position 42 and 78 cM.
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may be reduced, due to the compensating direct and
indirect QTL effects. For instance, the QTL1 had
a larger positive direct effect on Y2 but a negative
indirect effect, which in turn reduces the total QTL
effect on Y2. The relatively small total QTL effects
associated with Y1, Y2 and Y3 may not be detected
using single trait analysis. Based on the power analy-
sis, the multi-trait SEM improved power of detecting
individual QTL and both QTLs over the single trait
analysis. However, the power of QTL detection may
not necessarily always be higher for the multi-trait
SEM than that for the single-trait analysis. If the
direct and indirect QTL effects are in the same direc-
tion for all traits, the total QTL effect will be larger
than the direct effects tested with the multi-trait SEM
approach. In this case, the power of the multi-trait
analysis may be less than the overall power of single-
trait analysis since the single-trait method tests the
total QTL effect. However, SEM can estimate indirect
effects of any path which is not possible with the
single-trait approach.

Figure 4 shows the Bayesian estimates of path
coefficients with multi-trait SEM at the positions
where the QTLs were detected. The estimated path
coefficients are very close to the true simulated values.
Table 3 presents the summary results of Bayesian
parameter estimates in the simulation using our pro-
posed method and the single-trait analysis. The means
and standard deviations of the posterior distributions
of the individual parameters are the averages over the
100 Monte Carlo replications. The estimates of QTL
positions and effects by the multi-trait SEM method
are very close to the true simulated values with small
standard errors. However, the single-trait analysis
provided estimates that appear to be biased with
much higher standard deviations when compared
with multi-trait SEM. The differences between two
methods are especially large for QTLs with small total
effects. Thus, multi-trait SEM method is more accu-
rate and precise than single-trait analysis on the esti-
mates of QTL positions and effects. Another obvious
difference between our proposed method and the
single-trait analysis is that multi-trait SEM allows one

to fit a more complex and biologically sensible model,
which provides the estimation of direct and indirect
QTL effects, and therefore important insight giving a
richer understanding of the nature of QTLs affecting
traits compared with the single-trait analysis.

5. Application to recombinant inbred chromosome

line (RICL) wheat experiment

We illustrate our Bayesian multi-trait SEM approach
with an analysis of data from a RICLs wheat exper-
iment, which contains a population of 98 RICLs-3A
derived from a cross between ‘Cheyenne’ (CNN) and
CNN with a ‘Wichita’ 3A chromosome substitution
(CNN(WI3A)) and thus, the lines differed only in
the which portion of ‘Wichita ’ chromosome 3A was
contained in each line. This population was evaluated
in multi-environment field trials from 1999 to 2001 to
identify QTL and QTL-by-environment interactions
for GRYL and other agronomic traits in seven en-
vironments. Details of the experiment and results of
the data analysis performed by univariate QTL de-
tection techniques have been described by Campbell
et al. (2003). These data were also analysed for geno-
type-by-environment interaction using a least squares
SEM (Dhungana et al., 2007).

In this study, we focused on GYLD and yield
component traits (TKWT, SPSM and KPS), since
the causal relationships among these traits (Fig. 1)
are well established (Dofing & Knight, 1992). To
illustrate MCMC, we only considered 10 molecular
markers covering 71.7 cM of the chromosome 3A in
which two QTL regions were detected by Campbell
et al. (2003). Prior to the analysis, analysis of variance
(ANOVA) was performed for each trait to remove the
main effects of environments and blocks. Residuals of
the four traits were standardized to mean 0 and vari-
ance 1, and then were used as observed trait values.

We evaluated the one QTL model against the two
QTL model and the two QTL model against the three
QTL model using the BF. The prior distributions for
the locations and additive effects of QTL, and other
path coefficients were set to be the same as those in the
simulation. The length of the Markov chain was also
set to be the same as that in the simulation. The esti-
mate of log(BF) of comparing one versus two QTL
models was x39.15. Comparing the two versus three
QTL models gave a log(BF) of 11.44, providing de-
cisive evidence in favour of the two QTLmodel. Thus,
the two QTL model was selected as the best-fitting
model.

Figure 5 shows the marginal posterior probability
distributions of the QTL locations obtained from the
MCMC of the two QTL model. The first QTL is
estimated at 5.31 cM(betweenXbcd907 andXtam055),
affecting TKWT, KPS and SPSM directly. The
second one is estimated at 56.1 cM (between markers

Y3

Y2

QTL1

0·503

– 0·128

0·249

–0·502

0·259

0·500

Y1

QTL2

–0·120

0·251

– 0·505

Fig. 4. Path model of multi-trait SEM in the simulation.
Single arrows indicate causal relationships. Numbers by
the arrow lines represent the Bayesian estimates of the
path coefficients.
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XkusA6 and Xbcd366) affecting GYLD, KPS and
SPSM directly.

Figure 6 shows the standardized path coefficients
with multi-trait SEM located at two QTL locations.
Table 4 shows the estimated posterior means and
posterior standard deviations for the direct, indirect
and total QTL effects of the identified QTLs. The QTL
detected at position 5.3086 cM (close to Xbarc12) has
a small positive direct effect (not significant) and a
significant positive indirect effect on trait GYLD re-
sulting in a large significant total QTL effect on trait

GYLD. The direct and indirect QTL effects on
TKWT are both negative (P<0.001) resulting in a
large negative total effect (P<0.001), which signifi-
cantly decreases TKWT. The QTL has a large positive
direct effect on KPS (P<0.001) and a negative in-
direct effect (P<0.001) resulting in a smaller absolute
total effect. The second QTL detected at position
56.01 cM (close to Xbarc67) affects all traits directly
or indirectly. The direct and indirect QTL effects on
GYLD are both positive (P<0.001) leading to a large
total effect (P<0.001), which significantly increases

Table 3. Bayesian estimates of QTL positions and additive effects in the simulation by multi-trait SEM and
single-trait analysis

Methods QTL Trait
Position
(cM)

Putative QTL effect

Total Direct Indirect

Parameters 1 Y1 42 0.125 x0.125 0.25
Y2 0.375 0.5 x0.125
Y3 0.25 0.25 0

2 Y1 78 0 0.250 x0.250
Y2 x0.435 x0.50 0.065
Y3 x0.125 x0.125 0

Multi-trait SEM 1 Y1 42.09 (3.48) 0.122 (0.094) x0.128 (0.086) 0.250 (0.059)
Y2 0.369 (0.096) 0.500 (0.088) x0.131 (0.051)
Y3 0.259 (0.090) 0.259 (0.090) 0

2 Y1 78.03 (2.23) x0.003 (0.085) 0.251 (0.092) x0.254 (0.059)
Y2 x0.443 (0.101) x0.505 (0.088) 0.062 (0.052)
Y3 x0.120 (0.101) x0.120 (0.101) 0

Single-trait 1 Y1 35.40 (10.30) 0.072 (0.134)
Y2 42.25 (6.53) 0.354 (0.158)
Y3 35.39 (9.32) 0.129 (0.219)

2 Y1 59.11 (9.95) 0.046 (0.126)
Y2 77.59 (5.10) x0.432 (0.146)
Y3 61.36 (10.93) 0.070 (0.234)

Estimates are means over 100 replications with standard deviation in parentheses. Sample size=250, Gibbs: Cycles=2000,
Burn in=500 Metropolis : Cycles=25.
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Fig. 5. Two QTL model. Approximate posterior distribution of two QTL locations based on joint analysis (multi-trait
SEM) for GRYL and yield components on chromosome 3A of wheat.
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GYLD. The QTL has significant negative indirect
effects on both TKWT and KPS, but positive direct
effects leading to non-significant total effects, since the
direct and indirect effects are cancelled out. In con-
trast, in their combined analysis Campbell et al.
(2003) were not able to detect QTLs for SPSM in
either region using univariate QTL detection techni-
ques which only captured the total QTL effects.
In addition, they detected a minor QTL for GYLD
in region one, while the corresponding QTL that
we detected had a greater effect on GYLD. Thus,
by considering the GRYL and yield components
together in a multi-trait analysis, we not only im-
proved the ability to detect QTLs for GYLD and
SPSM but also gained insight into the processes of
how the QTLs on chromosome 3A affected agro-
nomic performance directly and indirectly. Under-
standing the genetic control of GRYL using a
biologically relevant yield component framework
provides useful information for plant breeders inter-
ested in breaking unfavourable indirect QTL effects
and for better understanding complex traits.

6. Discussion and conclusion

Research on QTL studies often provides information
on multiple complex traits that have well-established

causal relationships. However, there has been a lack
of a comprehensive multivariate multiple QTL-
mapping technique which is capable of incorporating
the causal structure among multiple traits. Conse-
quently the genetic functions may not be fully under-
stood. In this study, we have presented a Bayesian
approach to multiple traits QTL mapping using an
SEM, taking into account the causal relationships
among multiple traits. We have explored some aspects
of multiple traits QTL mapping that have not been
done in previous studies. In particular, it allows one to
fit a more complex and biologically sensible model ; it
provides the estimates of the total, direct and indirect
QTL effects and ultimately allows for important
insights into how QTLs regulate multiple complex
traits. Knowledge of the direct and indirect QTL
effects can be very important for plant breeders
interested in finding modifier genes to overcome the
pleiotropism.

Using our proposed multi-trait SEM, we were able
to improve the power of QTL detection and precision
of parameter estimates compared with the single-trait
analysis. However, the power of the QTL detection
may not necessarily always be higher for the multi-
trait SEM. It depends on the magnitude of QTL ef-
fects and the directions of causal relationship among
multiple traits. The power of the multi-trait SEM can

GYLDKPS

TKWT

SPSM

QTL1

0·6856***

0·473***

–0·472***

1·1761***

–0·079***

–0·632***

0·0475**

0·1121*** –0·159***

QTL2
0·1024***

0·07***
0·0526***

Fig. 6. Path estimates of multi-trait SEM at positions 5.3086 cM (QTL1, close to Xbarc12) and 56.005 cM (QTL2, close to
Xbarc67) on chromosome 3A of wheat. Single arrows indicate causal relationships. Numbers by the arrow lines represent
the estimated standardized coefficients with significance level : ***P<0.001, **P<0.01 and *P<0.05.

Table 4. Bayesian estimates of the chromosome 3A QTL locations and effects using multi-trait SEM

Trait
QTL at position
(cM)

Putative QTL effect

Total Direct Indirect

GYLD 5.31 (0.4481) 0.0715 (0.0195) 0.0135 (0.0101) 0.0580 (0.0170)
TKWT x0.1144 (0.0192) x0.0789 (0.0177) x0.0355 (0.0083)
KPS 0.0821 (0.0200) 0.1121 (0.0155) x0.0300 (0.0126)
SPSM 0.0475 (0.0199) 0.0475 (0.0199) 0.0000

GYLD 56.01 (0.5429) 0.1649 (0.0196) 0.0526 (0.0098) 0.1123 (0.0171)
TKWT x0.0247 (0.0202) 0.0245 (0.0187) x0.0492 (0.0082)
KPS 0.0052 (0.0200) 0.0700 (0.0157) x0.0648 (0.0127)
SPSM 0.1024 (0.0198) 0.1024 (0.0198) 0.0000

Values in parentheses are respective SD values.
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increase significantly if the direct and indirect QTL
effects on the trait are relatively large and in the op-
posite direction, which reduces the total QTL effect.
In this case, the reduced total QTL may not be de-
tected by the single-trait analysis since the single-trait
method tests only the total QTL effect. If QTL influ-
ences traits that are not causally explained by any
other intermediary trait, the power of multi-trait SEM
is very close to that of the single-trait analysis since
the direct and total QTL effects are the same. If the
direct and indirect QTL effects are in the same direc-
tion for the trait, the total QTL effect will be larger
than the direct effects tested with the multi-trait SEM
approach. In this case, the power of the multi-trait
SEM analysis may be less than the overall power of
single-trait analysis.

We also applied Bayesian multi-trait SEM to
the RICLs-3A wheat experiment data. As expected,
we detected QTLs for SPSM in either region which
have not been reported in Campbell et al. (2003),
where univariate QTL detection techniques were
used. In addition, they detected a minor QTL for
GYLD in region one, while the corresponding QTL
that we detected had a greater effect on GYLD.

A prerequisite of the proposed method is prior
biological knowledge of the causal relationships
among the multiple traits, since SEM is generally used
as a confirmatory rather than exploratory procedure.
Theoretical insight and judgment by the researcher is
very important in building a correct model. In prac-
tice, one can obtain some basic background about the
key structure of the model either from knowledge of
the related field or from preliminary data analyses.
Other applications likely may require more model
development based on procedures described elsewhere
(see Bollen, 1989).

The model considered in this paper was illustrated
using an RIL-simulated population to provide a gen-
eral idea of the nature of QTLs affecting the traits,
and did not include epistatic genetic effects. However,
the general approach can be easily applied to different
population structures (such as F2 and backcross),
and genetic models by setting up the corresponding
conditional QTL genotype probability given QTL
locations. Here, we assumed a pleiotropic QTL model
(each QTL affects all traits). It is important to separ-
ate pleiotropic effects against closely linked QTL.
We plan to use BF to test pleiotropic effects against
closely linked QTL in the future. In this study, we
assumed complete phenotypic data. However, we ac-
knowledged that a large amount of missing pheno-
typic data may reduce the power of QTL detection
and precision of QTL location and effect estimation in
joint analyses (Fridley & de Andrade, 2008; Guo &
Nelson, 2008). Our proposed method can be extended
to deal with missing phenotypic data by using mul-
tiple imputations. The proposed model here did

not account for the experimental design issue, thus
ignoring non-genetic sources of variation such as en-
vironments, blocks or gene–environment interactions.
Methods incorporating these innovations could result
in increased statistical power of QTL detection, pre-
cision in estimation of QTL effects and position and
an improved understanding of how QTL interact with
environmental factors. In addition, researchers may
collect data of different types for a sample set (e.g.
both binary and continuous traits). Methods that
are capable of dealing with a mixture of continuous
and binary traits could be valuable in a variety of
situations.

Programs were written in SAS PROC IML and are
available by sending email to xjmixu@yahoo.com
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