

Modules with Unique Closure Relative to a Torsion Theory

S. Doğruöz, A. Harmanci, and P. F. Smith

Abstract. We consider when a single submodule and also when every submodule of a module *M* over a general ring *R* has a unique closure with respect to a hereditary torsion theory on Mod-*R*.

1 Introduction

In this note all rings are associative with identity and all modules are unitary right modules. Let R be a ring. A submodule K of an R-module M is called *closed in* M provided K has no proper essential extension in M. By a *closure of a submodule* N of M we mean a closed submodule K of M such that N is an essential submodule of K. Note that K is a closure of N in M if and only if K is a maximal essential extension of N in M, and such a K always exists by Zorn's Lemma. This is (i) of the following well-known result.

Lemma 1.1 *Let* K, L, N *be submodules of a module* M *with* $K \subseteq L$.

- (i) There exists a closed submodule H of M such that N is an essential submodule of H.
- (ii) The submodule L is closed in M if and only if N/L is an essential submodule of the module M/L for every essential submodule N of M containing L.
- (iii) If L is a closed submodule of M, then L/K is a closed submodule of M/K.
- (iv) If K is a closed submodule of L and L is a closed submodule of M, then K is a closed submodule of M.

Proof See [2, p. 6].

In [3], the module M is called a UC-module provided every submodule of M has a unique closure in M and necessary and sufficient conditions are given for M to be a UC-module. Further conditions for M to be a UC-module are given in [5].

Let *R* be a ring and let τ be a hereditary torsion theory on Mod-*R*. (For basic information concerning hereditary torsion theories see [4].) Let *M* be an *R*-module. For any submodule *N* of *M*, $T_{\tau}(N)$ will denote the submodule *H* of *M* containing *N* such that H/N is the τ -torsion submodule of M/N.

Given a module M, a submodule L of M is called τ -essential provided L is an essential submodule of M and M/L is a τ -torsion module. Moreover, a submodule K of M is called τ -closed in M provided K has no proper τ -essential extension in M, *i.e.*,

Received by the editors April 17, 2007.

Published electronically December 4, 2009.

AMS subject classification: 16S90.

Keywords: closed submodule, UC-module, torsion theory.

if *N* is a submodule of *M* such that *K* is a τ -essential submodule of *N*, then K = N. (Some authors call a submodule *K* of a module *M* τ -closed provided the module M/K is τ -torsion-free.) Note that if *K* is a submodule of *M* such that either M/K is τ -torsion-free or *K* is a closed submodule of *M*, then *K* is a τ -closed submodule of *M*. The first result taken from [1, Lemma 3.6] describes τ -closed submodules; we give its proof for completeness.

Lemma 1.2 The following statements are equivalent for a submodule K of a module *M*.

- (i) *K* is a τ -closed submodule of *M*.
- (ii) *K* is a closed submodule of $T_{\tau}(K)$.
- (iii) There exists a submodule L of M containing K such that K is a closed submodule of L and M/L is τ -torsion-free.

Proof (i) \Rightarrow (ii). Suppose that *K* is an essential submodule of a submodule *N* of $T_{\tau}(K)$. Then *K* is a τ -essential submodule of *N*, so that K = N.

(ii) \Rightarrow (iii). Clear.

(iii) \Rightarrow (i). Let *H* be a submodule of *M* such that *K* is a τ -essential submodule of *H*. Then *H*/*K* is τ -torsion, so that (H + L)/L is also τ -torsion. Hence $H \subseteq L$. Because *K* is an essential submodule of *H*, we have K = H.

Corollary 1.3 Let $K \subseteq L$ be submodules of a module M such that L is a τ -closed submodule of M. Then L/K is a τ -closed submodule of M/K.

Proof By Lemma 1.2 there exists a submodule H of M containing L such that L is a closed submodule of H and M/H is τ -torsion-free. By Lemma 1.1(iii), L/K is a closed submodule of H/K, and by Lemma 1.2, L/K is a τ -closed submodule of M/K.

Corollary 1.4 The following statements are equivalent for a module M.

- (i) Whenever $K \subseteq L \subseteq N$ are submodules of M such that K is a τ -closed submodule of L and L is a τ -closed submodule of N, then K is a τ -closed submodule of N.
- (ii) Whenever $K \subseteq L \subseteq N$ are submodules of M such that L/K is τ -torsion-free and L is a closed submodule of N, then K is a τ -closed submodule of N.

Proof (i) \Rightarrow (ii). Clear.

(ii) \Rightarrow (i). By Lemma 1.2 there exists a submodule *F* of *L* containing *K* such that *K* is closed in *F* and *L/F* is τ -torsion-free, and there exists a submodule *G* of *N* containing *L* such that *L* is closed in *G* and *N/G* is τ -torsion-free. By hypothesis *F* is τ -closed in *G*. Again using Lemma 1.2 there exists a submodule *H* of *G* containing *F* such that *F* is closed in *H* and *G/H* is τ -torsion-free. It follows that *K* is closed in *H* and *N/H* is τ -torsion-free. Finally Lemma 1.2 gives that *K* is τ -closed in *N*.

A submodule K of a module M is called a τ -closure of a submodule N of M provided N is a τ -essential submodule of K and K is a τ -closed submodule of M. By Zorn's Lemma, every submodule N of M has a τ -closure in M. The module M is called a τ -UC-module provided every submodule N of M has a unique τ -closure in M.

Let us consider some simple examples. First, let τ_0 denote the hereditary torsion theory on Mod-*R*, such that 0 is the only τ -torsion module. Then a submodule *N* of a module *M* is τ_0 -essential if and only if N = M and every submodule of *M* is τ_0 -closed. Thus every module is τ_0 -UC. Secondly, let τ_1 denote the hereditary torsion theory on Mod-*R* such that every module is τ -torsion. Then the τ_1 -essential submodules of *M* coincide with the essential submodules of *M* and the module *M* is a τ_1 -UC-module if and only if *M* is a UC-module. Next, let τ_G denote the Goldie torsion theory on Mod-*R* (see [4] for details). It is clear that a submodule *L* of an *R*-module *M* is τ_G -essential in *M* if and only if *L* is essential in *M*. Thus a submodule *K* of *M* is a τ_G -closure of a given submodule *N* of *M* if and only if *K* is a closure of *N* in *M*. Thus a module is τ_G -UC if and only if it is a UC-module.

Let τ be any hereditary torsion theory on Mod-*R*. Let *M* be any *R*-module. Let *N* be any essential submodule of *M*. Clearly $T_{\tau}(N)$ is the unique τ -closure of *N* in *M*. Thus every uniform *R*-module is τ -UC. (Recall that a module *U* is *uniform* if $U \neq 0$ and every non-zero submodule of *U* is essential.)

Let \mathbb{Z} denote the ring of integers and let p be any prime in \mathbb{Z} . Then τ_p will denote the hereditary torsion theory on Mod- \mathbb{Z} given by p-torsion, *i.e.*, a \mathbb{Z} -module M is τ_p -torsion if and only if M is an abelian p-group. We shall see after Corollary 3.5 that if n is any positive integer coprime to p, then the \mathbb{Z} -module $\mathbb{Z} \oplus (\mathbb{Z}/\mathbb{Z}n)$ is τ_p -UC but not UC.

Example 1.5 Let *p* be any prime in \mathbb{Z} and let *N* be any submodule of the \mathbb{Z} -module $M = \mathbb{Z} \oplus (\mathbb{Z}/\mathbb{Z}p)$. Then *N* has a unique τ_p -closure in *M* or $N = \mathbb{Z}(pm, 0)$ for some non-zero $m \in \mathbb{Z}$.

Proof Let $K = \mathbb{Z}(c, u)$ for some $c \in \mathbb{Z}$ and $0 \neq u \in \mathbb{Z}/\mathbb{Z}p$. If c = 0, then K is a direct summand of M. Suppose that $c \neq 0$. Then $K \cong \mathbb{Z}$. If K is τ_p -essential in a submodule L of M, then K is essential in L, so that L is also a cyclic submodule of M. It is easy to prove that K = L. Thus, in any case, K is a τ_p -closed submodule of M.

Let *Y* denote the direct summand $0 \oplus (\mathbb{Z}/\mathbb{Z}p)$ of *M*. If $N \cap Y \neq 0$, then $N = A \oplus (\mathbb{Z}/\mathbb{Z}p)$, for some ideal *A* of \mathbb{Z} , and either *N* is a direct summand of *M* (if A = 0) or *N* is an essential submodule of *M*, so that in either case *N* has a unique τ_p -closure in *M* (see the above remarks about essential submodules). Now suppose that $N \cap Y = 0$. Then *N* embeds in \mathbb{Z} so that $N = \mathbb{Z}(a, v)$ for some $0 \neq a \in \mathbb{Z}$ and $v \in \mathbb{Z}/\mathbb{Z}p$. If $v \neq 0$, then *N* is τ_p -closed in *M* by the above remarks. Suppose that v = 0. Suppose that *p* does not divide *a*. If *N* is τ_p -essential in a submodule *L*, then again *L* is cyclic and it is easy to check that L = N. Thus, in this case, *N* is τ_p -closed in *M*. Now suppose that $a = p^k b$ for some positive integer *k* and some integer *b* which is coprime to *p*. Then it can be proved that the τ_p -closures of *N* in *M* are the submodules $\mathbb{Z}(b, 0)$ and $\mathbb{Z}(p^i b, u)$ for all $0 \le i \le k - 1$ and $0 \ne u \in \mathbb{Z}/\mathbb{Z}p$. Thus in this case *N* does not have a unique τ_p -closure in *M*.

2 Submodules with Unique Closures

Let *R* be an arbitrary ring and let τ be an arbitrary hereditary torsion theory on Mod-*R*. In this section we shall examine when a given submodule of an *R*-module *M*

has a unique τ -closure in M.

Lemma 2.1 Let $N \subseteq K \subseteq H$ be submodules of a module M such that K is a τ -closure of N in H. Then there exists a τ -closure K' of N in M such that $K = K' \cap H$.

Proof Note that *N* is τ -essential in *K*. By Zorn's Lemma there exists a submodule K' of *M* such that K' is maximal with respect to the properties $K \subseteq K'$ and *N* is τ -essential in K'. Then K' is a τ -closure of *N* in *M*. Moreover, $N \tau$ -essential in K' implies that *K* is τ -essential in $K' \cap H$. It follows that $K = K' \cap H$.

Lemma 2.2 Let N and K be submodules of a module M. Then K is a τ -closure of N in M if and only if K is a closure of N in $T_{\tau}(N)$.

Proof Let $T = T_{\tau}(N)$. Suppose first that *K* is a τ -closure of *N* in *M*. Then K/N is a τ -torsion module and hence $K \subseteq T$. Note that *N* is an essential submodule of *K*. By Lemma 1.2 *K* is a closed submodule of *T* and hence a closure of *N* in *T*.

Conversely, suppose that *K* is a closure of *N* in *T*. Then *N* is τ -essential in *K*. By Lemma 1.2 again *K* is τ -closed in *M*. It follows that *K* is a τ -closure of *N* in *M*.

Corollary 2.3 Let N be a submodule of a module M such that the module M/N is τ -torsion. Then the τ -closures of N in M coincide with the closures of N in M.

Proof By Lemma 2.2.

Lemma 2.4 Let $K \subseteq L$ be submodules of a module M such that K is a τ -closed submodule of M and L is a τ -essential submodule of M. Then L/K is τ -essential in M/K.

Proof Suppose that L/K is not τ -essential in M/K. Then L/K is not essential in M/K. There exists a submodule N of M, properly containing K such that $K = L \cap N$. Note that $N/K \cong (N + L)/L$, so that N/K is τ -torsion. Thus K is not essential in N. Let H be a non-zero submodule of N such that $K \cap H = 0$. Note that $L \cap H = L \cap N \cap H = K \cap H = 0$. But L is essential in M. Thus H = 0, a contradiction.

Corollary 2.5 Let $K \subseteq L$ be submodules of a module M such that K is a τ -closed submodule of M and L/K is a τ -closed submodule of M/K. Then L is a τ -closed submodule of M.

Proof Suppose that *L* is a τ -essential submodule of a submodule *N* of *M*. By Lemma 2.4, L/K is a τ -essential submodule of N/K and hence L/K = N/K. Thus L = N.

Lemma 2.6 Let $K \subseteq N$ be submodules of a module M such that K is a τ -closed submodule of M. Then each τ -closure of N/K in M/K is a submodule of the form L/K, where L is a τ -closure of N in M. Moreover the converse holds in case K is a closed submodule of M.

Proof Let *L* be any submodule of *M* containing *K* such that L/K is a τ -closure of N/K in M/K. Clearly *N* is τ -essential in *L*. Moreover, by Corollary 2.5 *L* is a τ -closed submodule of *M*. Thus *L* is a τ -closure of *N* in *M*. Now suppose that *K* is closed in *M* and that *L* is a τ -closure of *N* in *M*. By Lemma 1.1(ii), N/K is essential in L/K and hence N/K is τ -essential in L/K. By Corollary 1.3, L/K is τ -closed in M/K, so that L/K is a τ -closure of N/K in M/K.

, , **Theorem 2.7** Let R be any ring and let τ be any hereditary torsion theory on Mod-R. Then the following statements are equivalent for a submodule N of an R-module M.

- (i) *N* has a unique τ -closure in *M*.
- (ii) N has a unique τ -closure in L for every submodule L of M containing N.
- (iii) N has a unique closure in $T_{\tau}(N)$.
- (iv) N has a unique τ -closure in the submodule $N + m_1R + m_2R$ for all $m_i \in M$ (i = 1, 2).
- (v) N/K has a unique τ -closure in M/K for every τ -closed submodule K of M contained in N.
- (vi) N/L has a unique τ -closure in M/L for some closed submodule L of M contained in N.
- (vii) If N is τ -essential in a submodule L_i of M for all i in an index set I, then N is τ -essential in $\sum_{i \in I} L_i$.
- (viii) If N is τ -essential in a submodule L_1 of M and also in a submodule L_2 of M, then N is τ -essential in $L_1 + L_2$.
- (ix) $N^* = \{m \in M : N \text{ is } \tau \text{-essential in } N + mR\}$ is a submodule of M.

In case (ix) N^* is the unique τ -closure of N in M.

Proof (i) \Rightarrow (ii). By Lemma 2.1.

- (ii) \Rightarrow (iii). Clear.
- (iii) \Rightarrow (i). By Lemma 2.2.
- (ii) \Rightarrow (iv). Clear.

(iv) \Rightarrow (i). Suppose that (i) is false. Let K_1 and K_2 be distinct τ -closures of N in M. Let m be any element which belongs to K_2 but not to K_1 . Let $x \in K_1$. By hypothesis, N has a unique τ -closure K in N + mR + xR. Now N + mR and N + xR are both contained in K so that N + mR + xR is contained in K. Thus N is τ -essential in N + mR + xR. It follows that N is τ -essential in $K_1 + mR$ and hence K_1 is τ -essential in $K_1 + mR$. Thus $K_1 = K_1 + mR$ and $m \in K_1$, a contradiction. This proves (i).

- (i) \Rightarrow (v). By Lemma 2.6.
- $(v) \Rightarrow (vi)$. Clear.
- $(vi) \Rightarrow (i)$. By Lemma 2.6 again.

(i) \Rightarrow (ix). Let *K* be the unique τ -closure of *N* in *M*. Note that $0 \in N^*$. Moreover, if m_1 and m_2 are elements of N^* and if $r \in R$, then both m_1 and m_2 belong to *K*, so that $m_1 - m_2 \in K$ and $m_1r \in K$. It follows that *N* is τ -essential in $N + (m_1 - m_2)R$ and also in $N + m_1rR$. Thus $m_1 - m_2 \in N^*$ and $m_1r \in N^*$. Hence N^* is a submodule of *M*.

(ix) \Rightarrow (viii). Let $m \in L_1 + L_2$. Then $m = m_1 + m_2$ for some $m_i \in L_i$ (i = 1, 2). For i = 1, 2, N is τ -essential in $N + m_i R$ and hence N is τ -essential in N + mR. It follows that N is τ -essential in $L_1 + L_2$.

(viii) \Rightarrow (vii). Because L_i/N is τ -torsion for each $i \in I$, $(\sum_{i \in I} L_i)/N$ is τ -torsion. Moreover, (viii) gives that N is essential in $\sum_{i \in F} L_i$, for every finite subset F of I and hence N is essential in $\sum_{i \in I} L_i$. Thus N is τ -essential in $\sum_{i \in I} L_i$.

 $(vii) \Rightarrow (viii)$. Clear.

(viii) \Rightarrow (i). Let K_1 and K_2 be τ -closures of N in M. By (viii), N is τ -essential in $K_1 + K_2$ and hence K_1 is also τ -essential in $K_1 + K_2$. Thus $K_1 = K_1 + K_2$ and hence $K_2 \subseteq K_1$. Similarly $K_1 \subseteq K_2$. Thus $K_1 = K_2$.

For the last assertion, let *K* be the unique τ -closure of *N* in *M*. Let $m \in K$. Then *N* is τ -essential in N + mR and hence $m \in N^*$. It follows that $K \subseteq N^*$. Now let $x \in N^*$. Then *N* is τ -essential in N + xR, thus $N + xR \subseteq K$ so that $x \in K$. It follows that $K = N^*$.

Finally, in this section we consider τ -torsion-free modules and for these we have the following result.

Proposition 2.8 Let M be a τ -torsion-free R-module and let N be any submodule of M. Then $T_{\tau}(N)$ is the unique τ -closure of N in M.

Proof If *L* is a submodule of $T = T_{\tau}(N)$ such that $L \cap N = 0$, then *L* embeds in the module T/N and hence *L* is τ -torsion, so that L = 0. Thus *N* is essential, and hence τ -essential, in *T*. It follows that *T* is a τ -closure of *N* in *M* and, by Lemma 1.2, *T* is the unique τ -closure of *N*.

3 τ -UC-Modules

Recall that if *R* is a ring and τ any hereditary torsion theory on Mod-*R*, then an *R*-module *M* is a τ -UC-module provided every submodule has a unique τ -closure in *M*. In this section we shall obtain necessary and sufficient conditions for a module to be a τ -UC-module.

Lemma 3.1 Every submodule of a τ -UC-module is also τ -UC.

Proof By Lemma 2.1.

Lemma 3.2 An R-module M is a τ -UC-module if and only if there do not exist an R-module X and a proper τ -essential submodule Y of X such that the R-module $X \oplus (X/Y)$ embeds in M.

Proof First we prove that if *Y* is a proper τ -essential submodule of an *R*-module *X*, then the *R*-module $Z = X \oplus (X/Y)$ is not τ -UC. Consider the submodule $U = Y \oplus 0$ of *Z*. Clearly the direct summand $V = X \oplus 0$ of *Z* is a τ -closure of *U*. Let $W = \{(x, x + Y) \in Z : x \in X\}$. It is clear that $Z = W \oplus W_0$, where W_0 is the submodule $0 \oplus (X/Y)$ of *Z*. Moreover, $W/U \cong X/Y$, so that W/U is τ -torsion. It is easy to check that *U* is an essential submodule of *W*, so that *W* is also a τ -closure of *U*. Thus *Z* is not a τ -UC-module. By Lemma 3.1, this proves the necessity.

Conversely, suppose that the module M is not τ -UC. Then there exists a submodule N in M such that N has distinct τ -closures K and L in M. Let $T = T_{\tau}(N)$ and note that K+L is a submodule of T. Since K is a proper submodule of K+L, it follows that N is not an essential submodule of K + L. Let H be a non-zero submodule of K + L such that $N \cap H = 0$. Note that $K \cap H = 0$, so that H is isomorphic to the submodule (H + K)/K of $(L + K)/K \cong L/(L \cap K)$. Thus there exists a submodule G of L containing $L \cap K$ such that $H \cong G/(L \cap K)$. Note that, because N is τ -essential in $L, L \cap K$ is a proper τ -essential submodule of G. Next $L \cap H = 0$ gives $G \cap H = 0$ and hence $G \oplus H$ embeds in M.

Corollary 3.3 A module M is τ -UC if and only if every 2-generated submodule of M is τ -UC.

Proof The necessity follows by Lemma 3.1. Conversely, suppose that M is not a τ -UC-module. By Lemma 3.2 there exist a module X, a proper τ -essential submodule Y of X, and a monomorphism $\alpha: X \oplus (X/Y) \to M$. Let x be any element in X but not Y. Then Y is a proper τ -essential submodule of xR + Y and, by Lemma 3.2, the module $Z = xR \oplus (xR + Y)/Y$ is not τ -UC. Then $\alpha(Z)$ is a 2-generated submodule of M which is not τ -UC.

Let *R* be a ring and *M* an *R*-module. For any element *m* in *M* we set $r(m) = \{r \in R : mr = 0\}$. The next result characterizes which *R*-modules are τ -UC for a given hereditary torsion theory τ on Mod-*R*.

Theorem 3.4 Let R be a ring and let τ be any hereditary torsion theory on Mod-R. Then the following statements are equivalent for a module M.

- (i) *M* is a τ -UC-module.
- (ii) Every (2-generated) submodule of M is a τ -UC-module.
- (iii) Every submodule N has a unique τ -closure in the submodule N + $m_1R + m_2R$ for all $m_i \in M$ (i = 1, 2).
- (iv) M/K is a τ -UC-module for every τ -closed submodule K of M.
- (v) There do not exist an R-module X and a proper τ -essential submodule Y of X such that the R-module $X \oplus (X/Y)$ embeds in M.
- (vi) Given elements m, m' in M with $mR \cap m'R = 0$, $r(m) \subseteq r(m')$, and $r(m')/r(m) \tau$ -essential in the R-module R/r(m), then m' = 0.
- (vii) Given submodules $K \subseteq K'$ and $L \subseteq L'$ of M such that $K' \cap L' = 0$, K'/K is isomorphic to L'/L, and K is τ -essential in K', then L is τ -essential in L'.
- (viii) Given any submodule L of M and a homomorphism $\varphi: L \to M$ such that $L \cap \varphi(L) = 0$, then ker φ is a τ -closed submodule of L.
- (ix) Given submodules L_i ($i \in I$) of M whenever a submodule N of M is a τ -essential submodule of L_i for all $i \in I$, then N is τ -essential in $\sum_{i \in I} L_i$.
- (x) Whenever a submodule N of M is τ -essential in a submodule L_1 and a submodule L_2 of M, then N is τ -essential in $L_1 + L_2$.
- (xi) $N^* = \{m \in M : N \text{ is } \tau \text{-essential in } N + mR\}$ is a submodule of M for every submodule N of M.

Proof (i) \Leftrightarrow (ii). By Lemma 3.1 and Corollary 3.3.

 $(i) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (ix) \Leftrightarrow (x) \Leftrightarrow (xi)$. Clear from Theorem 2.7.

(i) \Leftrightarrow (v). By Lemma 3.2.

(v) \Rightarrow (vi). Let X = R/r(m) and Y = r(m')/r(m). Note that Y is τ -essential in X and $X \cong mR$ and $X/Y \cong m'R$. Then $X \oplus X/Y$ embeds in M. Hence m = 0 or m' = 0. By hypothesis m = 0 always implies m' = 0. Thus m' = 0.

(vi) \Rightarrow (vii). Let $m' \in L'$ and assume that $m'R \cap L = 0$. We shall prove that m' = 0. Let α denote the isomorphism $K'/K \to L'/L$. Then $\alpha(m+K) = m'+L$ for some element $m \in K'$. It is clear that $r(m) \subseteq r(m')$ and R/r(m') is τ -torsion because m'R embeds in L'/L. Next we prove r(m')/r(m) is essential in R/r(m). Let $0 \neq t+r(m) \in R/r(m)$. Note that $mt \neq 0$. Because K is essential in K', there exists an element r in R such that $0 \neq mtr \in K$. It follows that $m'tr+L = \alpha(mtr+K) = 0$ and hence $m'tr \in L$. But $m'R \cap L = 0$. Thus $tr \in r(m') \setminus r(m)$. It follows that r(m')/r(m) is an essential submodule of R/r(m). By (vi), m' = 0. Thus L is τ -essential in L'.

(vii) \Rightarrow (viii). Let $K = \ker \varphi$. Suppose that K is τ -essential in a submodule N of L. Then $\varphi(N) \cong N/K$ and $N \cap \varphi(N) = 0$. By (vii) 0 is τ -essential in $\varphi(N)$ so that $\varphi(N) = 0$ and hence K = N. Thus K is τ -closed in L.

(viii) \Rightarrow (v). Suppose that (v) does not hold. Then there exist non-zero submodules *L* and *K* of *M* such that $L \cap K = 0$ and a homomorphism $\theta: L \to K$ such that ker θ is τ -essential in *L*. Thus (viii) does not hold. This completes the proof of the theorem.

Let *M* be any *R*-module. Then $Z_{\tau}(M)$ will denote the set of elements *m* in *M* such that mE = 0 for some τ -essential right ideal *E* of *R*. Note that $Z_{\tau}(M)$ is a submodule of the singular submodule Z(M) of *M*.

Corollary 3.5 Let M be a module such that $Z_{\tau}(M) = 0$. Then M is a τ -UC-module.

Proof Let *Y* be a proper τ -essential submodule of an *R*-module *X*. Let $x \in X \setminus Y$ and let $E = \{r \in R : xr \in Y\}$. Then *E* is a right ideal of *R* and $R/E \cong (xR+Y)/Y \subseteq X/Y$, so that R/E is a τ -torsion module. Moreover, *E* is an essential right ideal of *R* by a standard proof. Thus *E* is a τ -essential right ideal of *R*. Because $Z_{\tau}(M) = 0$, (xR + Y)/Y, and hence X/Y, cannot be embedded in *M*. By Theorem 3.4, *M* is a τ -UC-module.

Note that if *M* is a τ -torsion-free module, then $Z_{\tau}(M) = 0$ and hence *M* is a τ -UC-module, a fact we already knew by Proposition 2.8. In particular, if *p* is any prime in \mathbb{Z} and *n* any positive integer coprime to *p*, then the \mathbb{Z} -module $\mathbb{Z} \oplus (\mathbb{Z}/\mathbb{Z}n)$ is τ_p -torsion-free and hence τ_p -UC but *M* is not UC by [3]. More generally, let *A* be any \mathbb{Z} -module which is neither torsion nor torsion-free (in the usual sense) but such that *A* does not contain any element of order *p*. Then *A* satisfies $Z_{\tau_p}(A) = 0$ so that *A* is τ_p -UC by Corollary 3.5. However *A* is not UC for the following reason. There exist elements *a* and *b* in *A* such that *a* has infinite order and *b* has order *n* for some positive integer *n*. Note that $\mathbb{Z}a \cap \mathbb{Z}b = 0$ and that $\mathbb{Z} \oplus (\mathbb{Z}/\mathbb{Z}n) \cong (\mathbb{Z}a) \oplus (\mathbb{Z}b)$ which is a submodule of *A*. By [3] *A* is not UC.

Finally, we consider modules whose submodules have unique closures with respect to different torsion theories. Recall that if τ and ρ are hereditary torsion theories on Mod-*R*, then we write $\tau \leq \rho$ provided every τ -torsion module is also a ρ -torsion module. In this situation we have the following further consequence of Theorem 3.4.

Proposition 3.6 Let τ and ρ be hereditary torsion theories on Mod-R such that $\tau \leq \rho$. Then every ρ -UC-module is a τ -UC-module. In particular, every UC-module is a τ -UC-module.

Proof Suppose that *M* is an *R*-module such that *M* is not τ -UC. By Theorem 3.4, there exist an *R*-module *X* and a proper τ -essential submodule *Y* of *X* such that the module $X \oplus (X/Y)$ embeds in *M*. Now $\tau \le \rho$ gives that *Y* is a ρ -essential submodule of *X*. By Theorem 3.4 *M* is not ρ -UC.

We have already seen that a module M is τ_1 -UC if and only if M is τ_G -UC. It would be interesting to know for which hereditary torsion theories $\tau \leq \rho$ on Mod-R every τ -UC-module is ρ -UC, and in particular which hereditary torsion theories τ have the property that every τ -UC-module is UC.

S. Doğruöz, A. Harmanci, and P. F. Smith

References

- [1] S. Doğruöz, *Classes of extending modules associated with a torsion theory.* East-West J. Math. **8**(2006), no. 2, 163–180.
- [2] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, *Extending Modules*. Pitman Research Notes in Mathematics Series 313. Longman, Harlow, 1994.
- [3] P. F. Smith, *Modules for which every submodule has a unique closure*. In: Ring Theory. World Scientific, River Edge, NJ, 1993, pp. 302–313.
- [4] B. Stenström, *Rings of Quotients*. Springer-Verlag, New York, 1975.
- [5] J. M. Zelmanowitz, A class of modules with semisimple behavior. In: Abelian Groups and Modules. Math. Appl. 343. Kluwer Academic Publishers, Dordrecht, 1995, pp. 491–500.

Adnan Menderes University, Department of Mathematics, Science and Art Faculty, Aydin, Türkiye e-mail: sdogruoz@adu.edu.tr

Hacettepe University, Department of Mathematics, Ankara, Türkiye e-mail: harmanci@hacettepe.edu.tr

University of Glasgow, Department of Mathematics, Glasgow G12 8QW Scotland, UK e-mail: pfs@maths.gla.ac.uk