WEAK AND SEMI-STRONG SOLUTIONS OF THE SCHNEIDER-TRICOMI PROBLEM IN THE EUCLIDEAN SPACE; A UNIQUENESS THEOREM FOR THE CHAPLYGIN-FRANKL PROBLEM: CORRIGENDA

JOHN M.S. RASSIAS

As they stand, the two papers [1], [2] are vacuous by the virtue of the fact that it is not possible to choose any functions a, k and constant β satisfying all the necessary hypotheses.

Some results can be salvaged by taking $\beta = 0$ (so that V, A, B, C in [2] vanish identically). Unfortunately this choice requires S > 0 in [1], hence no new results are obtained. In [2] there are various choices of a which lead to a slight relaxation of the classical condition F(y) > 0.

The reader should also note the following:

(1) The conditions $R_1 \ge d_3 > 0$, $R_2 \ge d_4 > 0$ in G_1 should be replaced by the single condition $R_2 \ge 0$. (Note that $R_1 \ge d_3 > 0$ is impossible because $k(y) \rightarrow 0$ as $y \rightarrow 0$.)

(2) The last paragraph of the statement of Theorem 1 should read:

If there is a negative function $a \in C^{1,1}(\overline{G})$ such that the above hypotheses hold, and if u is a quasiregular solution of (3) with $f \equiv 0$ and u = 0 on $\Gamma_0 \cup \Gamma_2$, then $u \equiv 0$ on G.

Received 20 October 1980.

159

References

- John M.S. Rassias, "Weak and semi-strong solutions of the Schneider-Tricomi problem in the euclidean plane", Bull. Austral. Math. Soc. 20 (1979), 187-192.
- [2] John M.S. Rassias, "A uniqueness theorem for the Chaplygin-Frankl problem", Bull. Austral. Math. Soc. 20 (1979), 217-226.

II Dervenakian Street, Daphne, Athens T.T. 451A, Greece.