NECESSARY AND SUFFICIENT FIXED POINT CRITERA INVOLVING ATTRACTORS

JACEK JACHYMSKI

Let f be a continuous self-map on a complete metric space X and $p \in X$. Let c be a positive real. Equivalent conditions are given for the singleton $\{p\}$ to be an attractor of a set of c-fixed points of f. We also establish equivalent conditions for the existence of a contractive fixed point of f. These results subsume a body of fixed point theorems.

1. INTRODUCTION

In recent years many papers have appeared offering conditions of a contractive type which a self-map f on a metric space X is to fulfil to ensure the convergence of successive approximations and the existence of a fixed point. These conditions usually have the form of inequalities in which some auxiliary functions occur, and thus they are too special to be necessary also for the existence of a fixed point. Since few papers deal with equivalent conditions, it may be of interest to find some necessary and sufficient fixed point criterions in such a way they could easily yield some of these special contractive theorems. This is our purpose here - we offer in Section 3 a principle which will enable us to give some equivalent conditions for a point p to attract a set of c-fixed points of f (Theorem 3) and to attract each point of X under f (Theorem 2). As will be indicated in Section 5, both criteria subsume a body of fixed point theorems.

2. PRELIMINARIES

Let f be a self-map on a topological space X and let A, B be subsets of X. Let N be the set of all positive integers. A is an *attractor* for B under f if A is nonempty compact and f-invariant, and for any open set G containing A there exists $k \in \mathbb{N}$ such that

$$f^n(B) \subseteq A$$
, for all $n \ge k$.

The concept of attractor was first introduced by Nussbaum [10] who considered attractors for compact sets. Later several authors examined the case when the singleton

Received 24 August 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

 $\{p\}$ was an attractor for some family \mathbb{F} of sets under f. The following families \mathbb{F} were considered:

- (a) $\mathbb{F} = \{B \subseteq X : B \text{ is compact}\}, (Janos, Ko, Tan [5]);$
- (b) $\mathbb{F} = \{X\}, (\text{Leader } [8]);$
- (c) $\mathbb{F} = \{\{x\} : x \in X\} \cup \{U_p\}$, where U_p is a neighbourhood of p (Leader [7]).

It is clear that if p attracts some nonempty subset of X then p = fp. We say that p is a contractive fixed point of f, if p attracts each point of X ([8]). We shall be employing the concept of attractor in Section 4.

Throughout this note \mathbb{Z}_+ denotes the set of all non-negative integers, \mathbb{R}_+ is the set of all non-negative reals. The set $\{x, fx, f^2x, \ldots\}$ is called an *orbit* of a point x and it is denoted by O(x). Occasionally, we use the notation $x^k = f^k x$, for the sake of brevity. For $c \in \mathbb{R}_+$, Fix_c f denotes the set of all c-fixed points of f, that is points x with $d(x, fx) \leq c$ ([2]). The Hausdorff metric for sets is denoted by d_H .

3. A NECESSARY AND SUFFICIENT UNIFORM CAUCHY CRITERION AND COROLLARIES

THEOREM 1. Let f be a self-map on a metric space X, c > 0 and let F be a non-empty subset of Fix_c f. Define the set P by $(x, y) \in P$ if and only if there exist $i, j \in \mathbb{Z}_+$ and $z \in F$ such that $x = f^i z$, $y = f^j z$ and $d(x, y) \leq c$. Then the following statements are equivalent:

- (i) For $z \in F$, the sequences $\{f^n z\}$ are uniformly Cauchy;
- (ii) $d(f^n x, f^n y) \to 0$ uniformly for all $(x, y) \in P$;
- (iii) For some increasing sequence $\{k_n\}$ of positive integers $d(f^{k_n}x, f^{k_n}y) \to 0$ uniformly for all $(x, y) \in P$, and $d(f^nz, f^{n+1}z) \to 0$ uniformly for all $z \in F$.

PROOF: We shall verify implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i). Given (i), observe that $d(f^n x, f^n y) \rightarrow 0$ uniformly for all $z, y \in O(z)$ and $z \in F$, so (ii) holds. Given (ii), since $(z, fz) \in P$ for all $z \in F$, we have that $d(f^n z, f^{n+1}z) \rightarrow 0$ uniformly for all $z \in F$, so (iii) holds.

To prove (iii) implies (i) take $r \in \mathbb{N}$ such that $d(f^r x, f^r y) \leq c/2$ for all (x, y) in P. It means that

(1) if
$$d(z^i, z^j) \leq c$$
 for some $z \in F$ and $i, j \in \mathbb{Z}_+$ then
 $d(z^{i+r}, z^{j+r}) \leq c/2.$

Consider a subsequence $\{z^{rn}\}_{n=1}^{\infty}$. From (iii) and by the triangle inequality, we get that

$$d(z^{rn}, z^{r(n+1)}) \to 0$$
, as $n \to \infty$, uniformly for all z in F,

so there exists n_0 in N such that

(2)
$$d\left(z^{rn_0}, z^{r(n_0+1)}\right) \leq c/2 \text{ for all } z \text{ in } F.$$

By induction we shall prove that, for any $n \ge n_0$ and all z in F,

$$(3) d(z^{rn_0}, z^{rn}) \leqslant c.$$

The case $n = n_0$ is obvious. Assuming (3) to hold for some $n \ge n_0$ we shall prove it for n + 1. Observe that (1) and our induction hypothesis give

(4)
$$d\left(z^{r(n_0+1)}, z^{r(n+1)}\right) \leqslant c/2.$$

So apply (2), (4) and the triangle inequality to get that (3) holds for n+1.

We shall prove that for $z \in F$ the sequences $\{z^{rn}\}_{n=1}^{\infty}$ are uniformly Cauchy. From (iii), given $0 < \varepsilon \leq c$, we can choose ℓ in N such that

(5)
$$d(z^{\ell+i}, z^{\ell+j}) < \varepsilon$$
, for all z in F and i, j in \mathbb{Z}_+ with $d(z^i, z^j) \leq c$.

In particular, from (3) we get that

$$d(z^{rn_0+\ell}, z^{rn+\ell}) < \varepsilon$$
, for all z in F and $n \ge n_0$.

Since $\varepsilon \leq c$, we can use (5) again to obtain after r steps that

$$d\left(z^{r(n_0+\ell)}, z^{r(n+\ell)}\right) < \varepsilon$$
, for all z in F and $n \ge n_0$.

Hence and by the triangle inequality,

$$d(z^{rn}, z^{rm}) < 2\varepsilon$$
, for all z in F and $n, m \geqslant n_0 + 1$.

Thus, for $z \in F$, $\{z^{rn}\}_{n=1}^{\infty}$ is uniformly Cauchy.

That $\{z^n\}$ are uniformly Cauchy for all z in F follows easily from $\{z^{rn}\}_{n=1}^{\infty}$ being uniformly Cauchy and $d(z^n, z^{n+1}) \to 0$ uniformly for $z \in F$.

REMARK. Theorem 1 easily yields and extends Leader's Fixed Point Principle (Theorem 1 in [6]). It is also possible to generalise Theorem 1 for two mappings in such a way it yields results of Som and Mukherjee from [12]. Let us notice here that, in our opinion, the assumptions of Theorem 1 [12] are susceptible to various interpretations and they need some reformulation. In particular, condition (4) of [12] should be of the following form:

"the sequences $\{x_n\}$ generated by the generalised orbit of the points x with $d(x, f_l x) \leq c, l = 1, 2$, are uniformly Cauchy",

analogous to its counterpart (number (5) in [6]) from Leader's Theorem 1.

COROLLARY 1. (Cauchy Criterion for a Sequence of Iterates). Let f be a selfmap on a metric space X and $z \in X$. For $n \in \mathbb{Z}_+$, define

$$c_n := d(f^n z, f^{n+1}z)$$
 and $P_n := \{(x, y) : d(x, y) \leq c_n \text{ and } x, y \in O(f^n z)\}.$

Then the following statements are equivalent:

- (i) The sequence $\{f^n z\}$ is Cauchy;
- (ii) There exists $r \in \mathbb{Z}_+$ such that $d(f^n x, f^n y) \to 0$ uniformly for all (x, y)in P_r ;
- (iii) There exist $r \in \mathbb{Z}_+$ and an increasing sequence $\{k_n\}$ of positive integers such that $d(f^{k_n}x, f^{k_n}y) \to 0$ uniformly for all (x, y) in P_r , and $d(f^n z, f^{n+1}z) \to 0$.

PROOF: To get (i) \Leftrightarrow (ii) and (i) \Leftrightarrow (iii) apply Theorem 1 taking the singleton $\{f^r z\}$ as F and $c = c_r$.

COROLLARY 2. (Convergence of the Successive Approximation). Let f be a self-map on a complete metric space X. Then the following statements are equivalent:

- (i) There exists p in X such that $f^n x \to p$, for all x in X;
- (ii) For all x, y in X, $\liminf_{n \to \infty} d(f^n x, f^n y) = 0$ and, for any $z \in X$, there exists r in \mathbb{Z}_+ such that $d(f^n x, f^n y) \to 0$ uniformly for all x, y in $O(f^r z)$ with $d(x, y) \leq d(f^r z, f^{r+1} z)$;
- (iii) For all x, y in X, $\liminf_{n \to \infty} d(f^n x, f^n y) = 0$ and, for any $z \in X$, there exist r in \mathbb{Z}_+ and an increasing sequence $\{k_n\}$ of positive integers such that $d(f^{k_n}x, f^{k_n}y) \to 0$ uniformly for all x, y in $O(f^r z)$ with $d(x, y) \leq d(f^r z, f^{f+1}z)$, and $d(f^n z, f^{n+1}z) \to 0$.

PROOF: Apply Corollary 1 and a completeness argument.

4. Two necessary and sufficient fixed point principles involving attractors

THEOREM 2. Let f be a continuous self-map on a complete metric space X and $p \in X$. Then p attracts each point of X if and only if one (and hence all) of the conditions (i)-(iii) of Corollary 2 holds.

In particular, if for all x, y in X $d(f^n x, f^n y) \to 0$ and, for some c > 0, this convergence is uniform for all x, y with $d(x, y) \leq c$ then f has a contractive fixed point.

PROOF: Apply Corollary 2 and a continuity argument.

Π

Π

[4]

THEOREM 3. Let f be a self-map on a complete metric space X and $p \in X$. Let c be a positive real such that the set $F = \text{Fix}_c f$ is nonempty and let P be the set as in Theorem 1. Then the following statements are equivalent:

- (1°) The singleton $\{p\}$ is an attractor for Fix_c f under f;
- (2°) The sequences $\{f^n x\}$ converge to p uniformly for all x in Fix_c f;
- (3°) $d_H(\{p\}, \overline{f^n(\operatorname{Fix}_c f)}) \to 0;$
- (4°) For $x, y \in \operatorname{Fix}_c f$, $\liminf_{n \to \infty} d(f^n x, f^n y) = 0$ and (*) $d(f^n x, f^n y) \to 0$ uniformly for all (x, y) in P;
- (5°) For $x, y \in \operatorname{Fix}_c f$, $\liminf_{n \to \infty} d(f^n x, f^n y) = 0$, $d(f^n z, f^{n+1} z) \to 0$ uniformly for all z in $\operatorname{Fix}_c f$ and there exists an increasing sequence $\{k_n\}$ of positive integers such that $d(f^{k_n} x, f^{k_n} y) \to 0$ uniformly for all (x, y) in P.

Moreover, each of conditions (1°) - (5°) implies that

(6°) {
$$p$$
} = $\bigcap_{n \in N} f^n(\operatorname{Fix}_c f)$.

The proof of Theorem 3 will be preceded by two lemmas on attractors.

LEMMA 1. Let f be a self-map on a metric space X, $p \in X$ and $B \subseteq X$. Then the following statements are equivalent:

- (i) The singleton $\{p\}$ is an attractor for B under f;
- (ii) p = f(p) and the sequences $\{f^n x\}$ converge to p uniformly for all x in B;

(iii)
$$p = f(p)$$
 and $d_H(\{p\}, \overline{f^n(B)}) \to 0$.

PROOF: The equivalence (i) \Leftrightarrow (ii) was observed in [8], (ii) \Leftrightarrow (iii) follows immediately from the equality

$$d_H(\{p\},\overline{f^n(B)}) = \sup_{x\in B} d(p, f^n x).$$

LEMMA 2. Let f be a self-map on a metric space X and let A, B be nonempty subsets of X such that $A \subseteq B$. Then the following statements are equivalent:

- (i) A is an attractor for B under f;
- (ii) A is compact and f-invariant, and $d_H(A, \overline{f^n(B)}) \to 0$. Moveover, each of the above conditions implies that

(iii)
$$A = \bigcap_{n \in N} f^n(B).$$

If B is compact and $f(B) \subseteq B$ then the conditions (i)-(iii) are equivalent.

PROOF: (i) \Rightarrow (ii). Since A is f-invariant and $A \subseteq B$, we get that $A \subseteq f^n(B)$, for any $n \in \mathbb{N}$. Thus $d_H(A, \overline{f^n(B)}) = \sup_{x \in f^n(B)} d(x, A)$. Given $\varepsilon > 0$, define $A_{\varepsilon} := \bigcup_{x \in A} K(x, \varepsilon)$. By (i), there exists n_0 in \mathbb{N} such that $f^n(B) \subseteq A_{\varepsilon}$, for all $n \ge n_0$. That means given $n \ge n_0$ and $x \in f^n(B)$, $d(x, A) < \varepsilon$. Thus $d_H(A, \overline{f^n(B)}) \le \varepsilon$, so (ii) holds.

(ii) \Rightarrow (i). Take any open set G containing A. Since A is compact, there exists $\varepsilon > 0$ such that $A_{\varepsilon} \subseteq G$, where A_{ε} is as in the proof of (i) \Rightarrow (ii). By (ii), there exists n_0 in N such that, for $n \ge n_0$, $d_H(A, \overline{f^n(B)}) < \varepsilon$. Thus $f^n(B) \subseteq A_{\varepsilon} \subseteq G$, so (i) holds.

(ii) \Rightarrow (iii). Suppose there exists $x \in \bigcap_{n \in N} f^n(B) \setminus A$. Then, for any $n \in \mathbb{N}$, $d_H\left(A, \overline{f^n(B)}\right) \geq d(x, A) > 0$ which contradicts (ii). Since simultaneously $A \subseteq \bigcap_{n \in N} f^n(B)$, we get that (iii) holds.

Now assume that B is compact and $f(B) \subseteq B$. Then $\bigcap_{n \in N} f^n(B)$ is nonempty compact and f-invariant. We leave it to the reader to verify that (iii) implies then that $d_H(A, f^n(B)) \to 0$, so (ii) holds.

PROOF OF THEOREM 3: The conditions (1°) , (2°) and (3°) are equivalent by Lemma 1. To prove the equivalence of (2°) , (4°) and (5°) apply Theorem 1 and use the condition $\liminf_{n\to\infty} d(f^n x, f^n y) = 0$, for all x, y in X. That each of conditions (1°) - (5°) implies (6°) , follows from Lemma 2.

REMARK. Simple examples show that if X is not compact then (6°) need not imply any of the conditions (1°) - (5°) .

COROLLARY 3. For a nonexpansive self-map f on a compact metric space, the conditions (1°) - (6°) of Theorem 3 are equivalent.

PROOF: Observe that in this case $\operatorname{Fix}_c f$ is compact and f-invariant, and apply Theorem 3 and Lemma 2.

COROLLARY 4. Under the assumptions of Theorem 3, the condition (*) implies that Fix f is nonempty closed, $d_H\left(\operatorname{Fix} f, \overline{f^n(\operatorname{Fix}_c f)}\right) \to 0$ and $\operatorname{Fix} f = \bigcap_{n \in N} f^n(\operatorname{Fix}_c f)$. Hence Fix f attracts Fix_c f under f, if X is compact.

PROOF: Apply Theorem 1 and Lemma 2.

5. FINAL REMARKS

The theorems of Section 4 subsume a body of fixed point theorems. In particular, Theorem 2 easily yields Theorem 1.2 in [9] and it improves Theorem 3 in [1], which

۵

[6]

Fixed point criteria

holds also for $\Phi 1$ functions defined there. Theorem 3 can also be used then to deduce that a fixed point attracts a set of *c*-fixed points. Corollary 4 easily yields a recent result of Hicks (Theorem 3 in [3]).

It is worth underlining that for many contractive mappings their fixed point attracts a set of *c*-fixed points for some *c* in \mathbb{R}_+ or even for all *c* in \mathbb{R}_+ . In particular, if *f* is a continuous self-map on a complete metric space *X* satisfying the condition

(HR)
$$d(fx, f^2x) \leq \alpha d(x, fx)$$
, for some $0 \leq \alpha < 1$ and all x in X

then f has a fixed point p; if such a point is unique then it attracts a set of c-fixed points for all c in \mathbb{R}_+ . To see that use the inequality

$$d(f^n x, p) \leq (\alpha^n/(1-\alpha))d(x, fx)$$
, for all x in X ,

which can be deduced from (HR). For examples of mappings satisfying (HR) see [4] and [11]. Theorem 3 can be also applied to mappings satisfying some generalised (HR) condition introduced in [3].

References

- V.G. Angelov, 'An extension of Edelstein's theorem', Aequationes Math. 29 (1985), 145-149.
- [2] J. Dugundji and A. Granas, Fixed point theory, Volume 1 (PWN, Warsaw, 1982).
- [3] T.L. Hicks, 'Another view of fixed point theory', Math. Japon. 35 (1990), 231-234.
- [4] T.L. Hicks and B.E. Rhoades, 'A Banach type fixed point theorem', Math. Japon. 24 (1979), 327-330.
- [5] L. Janos, H.-M. Ko and K.-K. Tan, 'Edelstein's contractivity and attractors', Proc. Amer. Math. Soc. 76 (1979), 339-344.
- [6] S. Leader, 'Fixed points for operators on metric spaces with conditional uniform equivalence of orbits', J. Math. Anal. Appl. 61 (1977), 466-474.
- [7] S. Leader, 'A topological characterization of Banach contractions', Pacific J. Math. 69 (1977), 461-465.
- [8] S. Leader, 'Uniformly contractive fixed points in compact metric spaces', Proc. Amer. Math. Soc. 86 (1982), 153-158.
- J. Matkowski, 'Integrable solutions of functional equations', Dissertationes Math. 127 (1975).
- [10] R. Nussbaum, 'Some asymptotic fixed point theorems', Trans. Amer. Math. Soc. 171 (1972), 349-375.
- [11] B.E. Rhoades, 'Contractive definitions revisited, topological methods in nonlinear functional analysis', in *Contemp. Maths.* 21, 1983, pp. 190-205.
- [12] T. Som and R.N. Mukherjee, 'Generalization of Leader's fixed point principle', Bull. Austral. Math. Soc. 29 (1984), 349-356.

٠

Institute of Mathematics Technical University of Lódź ul. Zwirki 36 90-924 Lódź Poland