DELANGE'S CHARACTERIZATION OF THE SINE FUNCTION

by CHIN-HUNG CHING and CHARLES K. CHUI

(Received 10 November, 1972)

1. Introduction and results. In [2], H. Delange gives the following characterization of the sine function.

THEOREM A. $f(x) = \sin x$ is the only infinitely differentiable real-valued function on the real line such that f'(0) = 1 and

$$\left|f^{(n)}(x)\right| \le 1 \tag{1}$$

for all real x and n = 0, 1, 2, ...

It is clear that, if f satisfies (1), then the analytic continuation of f is an entire function satisfying

$$|f(z)| \leq \exp\left(|\operatorname{Im} z|\right)$$

for all z in the complex plane. Hence f is of at most order one and type one. In this note, we prove the following theorem.

THEOREM 1. Let f be an entire function of at most order one and type one, such that f(x) is real, $|f(x)| \leq 1$ for all real x, and

$$f'(x_0)^2 + f(x_0)^2 \ge 1, \quad f'(x_0) \ne 0$$
 (2)

for some real x_0 . Then $f(z) = \sin(z+c)$ for some real constant c. In particular, if f'(0) = 1, then $f(z) = \sin z$ for all z.

The example $\sin z/z$ shows that the condition (2) above cannot be omitted. Also, it is easy to see that, in the above theorem, if f is of finite type $\sigma > 1$ and satisfies

$$\frac{1}{\sigma^2} f'(x_0)^2 + f(x_0)^2 \ge 1, \qquad f'(x_0) \ne 0$$
(2')

instead, then, by considering $F(z) = f(z/\sigma)$, we can conclude that $f(z) = \sin(\sigma z + c)$. However, the function f defined by

$$f(z) = \frac{1}{ia} \int_{-\infty}^{\infty} t \exp\left[iatz/b\right] \exp\left[-\left|t\right| \log(1+t^2)\right] dt,$$

where

$$a = 2 \int_0^\infty t \exp\left[-\left|t\right| \log(1+t^2)\right] dt$$

and

$$b = 2 \int_0^\infty t^2 \exp\left[-\left|t\right| \log(1+t^2)\right] dt,$$

is an entire function of order one and maximal type, such that f'(0) = 1, f(x) is real and $|f(x)| \leq 1$ for all real x.

DELANGE'S CHARACTERIZATION OF THE SINE FUNCTION

2. Proof of Theorem 1. For $-1 < \xi < 1$, it is easy to show that

$$\exp(i\alpha\xi)\cos\alpha - i\xi\exp(i\alpha\xi)\sin\alpha = \sum_{k=-\infty}^{\infty} c_k\exp(ik\pi\xi),$$
(3)

where α is real and

$$c_{k} = \frac{(-1)^{k} \sin^{2} \alpha}{(\alpha - k\pi)^{2}}.$$
(3')

Let $\hat{f}(\xi)$ be the Fourier transform of f(x) (x real). Then, by the Paley-Wiener Theorem [cf. 1, p. 103], the support of \hat{f} lies in [-1, 1]. Hence, multiplying (3) by $\hat{f}(-(1+\epsilon)\xi)$, we have

$$\hat{f}(-(1+\varepsilon)\xi)\cos\alpha - i\xi\hat{f}(-(1+\varepsilon)\xi)\sin\alpha = \sum_{k=-\infty}^{\infty} c_k \exp\left[i(k\pi-\alpha)\xi\right]\hat{f}(-(1+\varepsilon)\xi), \quad (4)$$

where $\varepsilon > 0$. Here, the series converges uniformly since the support of $\hat{f}(-(1+\varepsilon)\xi)$ lies in (-1, 1). Applying the inverse Fourier transform to both sides of (4), we obtain

$$f\left(\frac{x}{1+\varepsilon}\right)\cos\alpha + \frac{1}{1+\varepsilon}f'\left(\frac{x}{1+\varepsilon}\right)\sin\alpha = \sum_{k=-\infty}^{\infty} c_k f\left(\frac{x}{1+\varepsilon} - k\pi + \alpha\right).$$

Now f is continuous and the series converges uniformly for any positive ε . By the boundedness of f(x) for any x > 0, we can let ε go to zero and obtain, using (3'),

$$f(x)\cos\alpha + f'(x)\sin\alpha = \sum_{k=-\infty}^{\infty} \frac{(-1)^k \sin^2 \alpha}{(\alpha - k\pi)^2} f(x - k\pi + \alpha).$$
(5)

If we take $f(x) = \cos x$, then (5) yields the well-known formula

$$\sum_{k=-\infty}^{\infty} \frac{\sin^2 \alpha}{(\alpha - k\pi)^2} = 1.$$
 (6)

Thus we have

$$1 - [f(x)\cos\alpha + f'(x)\sin\alpha] = \sum_{k=-\infty}^{\infty} \frac{[1 - (-1)^k f(x - k\pi + \alpha)]}{(\alpha - k\pi)^2} \sin^2 \alpha.$$
(7)

From the condition (2), we can assume that

$$f(x_0) = A \cos \alpha_0 \quad \text{and} \quad f'(x_0) = A \sin \alpha_0 \tag{8}$$

for some $A \ge 1$ and some real α_0 . Let $x = x_0$ and $\alpha = \alpha_0$ in (7); we have

$$\sum_{k=-\infty}^{\infty} \frac{\left[1-(-1)^{k}f(x_{0}-k\pi+\alpha_{0})\right]}{(\alpha_{0}-k\pi)^{2}}\sin^{2}\alpha_{0}=1-A\leq 0.$$

Since $|f(x)| \leq 1$, we can conclude that, for $k = 0, \pm 1, ...,$

$$1 = (-1)^k f(x_0 - k\pi + \alpha).$$
(9)

E 2

67

As (5) holds for all entire functions of at most order one and type one, we also have

$$F(x)\cos\alpha + F'(x)\sin\alpha = \sum_{k=-\infty}^{\infty} \frac{(-1)^k \sin^2 \alpha}{(\alpha - k\pi)^2} F(x + \alpha - k\pi), \tag{10}$$

with

$$F(x) = f(x_0 + \alpha_0 + x).$$

By letting $\alpha = -x$ in (10), we obtain, from (9) and (6),

$$F(x)\cos x - F'(x)\sin x = \sin^2 x \sum_{k=-\infty}^{\infty} \frac{1}{(x+k\pi)^2} = 1.$$
 (11)

Integrating (11) gives

$$F(x) = \cos x + b \sin x \tag{12}$$

for some real constant b. Since f is a translation of F, (12) implies that

$$f(x) = d\sin(x+c),$$

where d is positive and c is real. Since f(x) is bounded by one and $f^2 + f'^2$ is not less than one at some point x_0 , d must be equal to one and the proof is completed.

3. Final remarks. We should like to point out the essential difference between our proof and Delange's. In Delange's paper [2], some rather complicated residues are computed and Liouville's Theorem is used to give Theorem A. Here, we use the Paley-Wiener Theorem and finally solve the equation (11) to prove Theorem 1. Of course, Theorem 1 can also be obtained by applying a Phragmén-Lindelöf theorem and Delange's method. It can also be proved by combining a result of Bernstein (cf. page 206 in [1]) and a result of Duffin and Schaeffer [3].

REFERENCES

1. R. P. Boas, Entire Functions (New York, 1954).

2. H. Delange, Caractérisations des fonctions circulaires, Bull. Sc. Math. 91 (1967), 65-73.

3. R. J. Duffin and A. C. Schaeffer, On the extension of a functional inequality of S. Bernstein to non-analytic functions, *Bull. Amer. Math. Soc.* 46 (1940), 356–363.

UNIVERSITY OF MELBOURNE Parkville, Victoria Australia 3052 TEXAS A AND M UNIVERSITY COLLEGE STATION, TEXAS 77801