DELANGE'S CHARACTERIZATION OF THE SINE FUNCTION
 by CHIN-HUNG CHING and CHARLES K. CHUI

(Received 10 November, 1972)

1. Introduction and results. In [2], H. Delange gives the following characterization of the sine function.

Theorem A. $f(x)=\sin x$ is the only infinitely differentiable real-valued function on the real line such that $f^{\prime}(0)=1$ and

$$
\begin{equation*}
\left|f^{(n)}(x)\right| \leqq 1 \tag{1}
\end{equation*}
$$

for all real x and $n=0,1,2, \ldots$
It is clear that, if f satisfies (1), then the analytic continuation of f is an entire function satisfying

$$
|f(z)| \leqq \exp (|\operatorname{Im} z|)
$$

for all z in the complex plane. Hence f is of at most order one and type one. In this note, we prove the following theorem.

Theorem 1. Let f be an entire function of at most order one and type one, such that $f(x)$ is real, $|f(x)| \leqq 1$ for all real x, and

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)^{2}+f\left(x_{0}\right)^{2} \geqq 1, \quad f^{\prime}\left(x_{0}\right) \neq 0 \tag{2}
\end{equation*}
$$

for some real x_{0}. Then $f(z)=\sin (z+c)$ for some real constant c. In particular, if $f^{\prime}(0)=1$, then $f(z)=\sin z$ for all z.

The example $\sin z / z$ shows that the condition (2) above cannot be omitted. Also, it is easy to see that, in the above theorem, if f is of finite type $\sigma>1$ and satisfies

$$
\frac{1}{\sigma^{2}} f^{\prime}\left(x_{0}\right)^{2}+f\left(x_{0}\right)^{2} \geqq 1, \quad f^{\prime}\left(x_{0}\right) \neq 0
$$

instead, then, by considering $F(z)=f(z / \sigma)$, we can conclude that $f(z)=\sin (\sigma z+c)$. However, the function f defined by

$$
f(z)=\frac{1}{i a} \int_{-\infty}^{\infty} t \exp [i a t z / b] \exp \left[-|t| \log \left(1+t^{2}\right)\right] d t
$$

where

$$
a=2 \int_{0}^{\infty} t \exp \left[-|t| \log \left(1+t^{2}\right)\right] d t
$$

and

$$
b=2 \int_{0}^{\infty} t^{2} \exp \left[-|t| \log \left(1+t^{2}\right)\right] d t
$$

is an entire function of order one and maximal type, such that $f^{\prime}(0)=1, f(x)$ is real and $|f(x)| \leqq 1$ for all real x.
2. Proof of Theorem 1. For $-1<\xi<1$, it is easy to show that

$$
\begin{equation*}
\exp (i \alpha \xi) \cos \alpha-i \xi \exp (i \alpha \xi) \sin \alpha=\sum_{k=-\infty}^{\infty} c_{k} \exp (i k \pi \xi) \tag{3}
\end{equation*}
$$

where α is real and

$$
c_{k}=\frac{(-1)^{k} \sin ^{2} \alpha}{(\alpha-k \pi)^{2}}
$$

Let $\hat{f}(\xi)$ be the Fourier transform of $f(x)$ (x real). Then, by the Paley-Wiener Theorem [cf. 1, p. 103], the support of \hat{f} lies in $[-1,1]$. Hence, multiplying (3) by $\hat{f}(-(1+\varepsilon) \xi)$, we have

$$
\begin{equation*}
\hat{f}(-(1+\varepsilon) \xi) \cos \alpha-i \xi \hat{f}(-(1+\varepsilon) \xi) \sin \alpha=\sum_{k=-\infty}^{\infty} c_{k} \exp [i(k \pi-\alpha) \xi] \hat{f}(-(1+\varepsilon) \xi) \tag{4}
\end{equation*}
$$

where $\varepsilon>0$. Here, the series converges uniformly since the support of $\hat{f}(-(1+\varepsilon) \xi)$ lies in $(-1,1)$. Applying the inverse Fourier transform to both sides of (4), we obtain

$$
f\left(\frac{x}{1+\varepsilon}\right) \cos \alpha+\frac{1}{1+\varepsilon} f^{\prime}\left(\frac{x}{1+\varepsilon}\right) \sin \alpha=\sum_{k=-\infty}^{\infty} c_{k} f\left(\frac{x}{1+\varepsilon}-k \pi+\alpha\right) .
$$

Now f is continuous and the series converges uniformly for any positive ε. By the boundedness of $f(x)$ for any $x>0$, we can let ε go to zero and obtain, using (3^{\prime}),

$$
\begin{equation*}
f(x) \cos \alpha+f^{\prime}(x) \sin \alpha=\sum_{k=-\infty}^{\infty} \frac{(-1)^{k} \sin ^{2} \alpha}{(\alpha-k \pi)^{2}} f(x-k \pi+\alpha) \tag{5}
\end{equation*}
$$

If we take $f(x)=\cos x$, then (5) yields the well-known formula

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \frac{\sin ^{2} \alpha}{(\alpha-k \pi)^{2}}=1 \tag{6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
1-\left[f(x) \cos \alpha+f^{\prime}(x) \sin \alpha\right]=\sum_{k=-\infty}^{\infty} \frac{\left[1-(-1)^{k} f(x-k \pi+\dot{\alpha})\right]}{(\alpha-k \pi)^{2}} \sin ^{2} \alpha \tag{7}
\end{equation*}
$$

From the condition (2), we can assume that

$$
\begin{equation*}
f\left(x_{0}\right)=A \cos \alpha_{0} \quad \text { and } \quad f^{\prime}\left(x_{0}\right)=A \sin \alpha_{0} \tag{8}
\end{equation*}
$$

for some $A \geqq 1$ and some real α_{0}. Let $x=x_{0}$ and $\alpha=\alpha_{0}$ in (7); we have

$$
\sum_{k=-\infty}^{\infty} \frac{\left[1-(-1)^{k} f\left(x_{0}-k \pi+\alpha_{0}\right)\right]}{\left(\alpha_{0}-k \pi\right)^{2}} \sin ^{2} \alpha_{0}=1-A \leqq 0
$$

Since $|f(x)| \leqq 1$, we can conclude that, for $k=0, \pm 1, \ldots$,

$$
\begin{equation*}
1=(-1)^{k} f\left(x_{0}-k \pi+\alpha\right) \tag{9}
\end{equation*}
$$

As (5) holds for all entire functions of at most order one and type one, we also have

$$
\begin{equation*}
F(x) \cos \alpha+F^{\prime}(x) \sin \alpha=\sum_{k=-\infty}^{\infty} \frac{(-1)^{k} \sin ^{2} \alpha}{(\alpha-k \pi)^{2}} F(x+\alpha-k \pi) \tag{10}
\end{equation*}
$$

with

$$
F(x)=f\left(x_{0}+\alpha_{0}+x\right) .
$$

By letting $\alpha=-x$ in (10), we obtain, from (9) and (6),

$$
\begin{equation*}
F(x) \cos x-F^{\prime}(x) \sin x=\sin ^{2} x \sum_{k=-\infty}^{\infty} \frac{1}{(x+k \pi)^{2}}=1 \tag{11}
\end{equation*}
$$

Integrating (11) gives

$$
\begin{equation*}
F(x)=\cos x+b \sin x \tag{12}
\end{equation*}
$$

for some real constant b. Since f is a translation of F, (12) implies that

$$
f(x)=d \sin (x+c)
$$

where d is positive and c is real. Since $f(x)$ is bounded by one and $f^{2}+f^{\prime 2}$ is not less than one at some point x_{0}, d must be equal to one and the proof is completed.
3. Final remarks. We should like to point out the essential difference between our proof and Delange's. In Delange's paper [2], some rather complicated residues are computed and Liouville's Theorem is used to give Theorem A. Here, we use the Paley-Wiener Theorem and finally solve the equation (11) to prove Theorem 1. Of course, Theorem 1 can also be obtained by applying a Phragmén-Lindelöf theorem and Delange's method. It can also be proved by combining a result of Bernstein (cf. page 206 in [1]) and a result of Duffin and Schaeffer [3].

REFERENCES

1. R. P. Boas, Entire Functions (New York, 1954).
2. H. Delange, Caractérisations des fonctions circulaires, Bull. Sc. Math. 91 (1967), 65-73.
3. R. J. Duffin and A. C. Schaeffer, On the extension of a functional inequality of S. Bernstein to non-analytic functions, Bull. Amer. Math. Soc. 46 (1940), 356-363.

University of Melbourne
Parkville, Victoria
College Station, Texas 77801
Australia 3052

