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Abstract

We investigate the asymptotic behaviour of homogeneous multidimensional Markov
chains whose states have nonnegative integer components. We obtain growth rates for
these models in a situation similar to the near-critical case for branching processes,
provided that they converge to infinity with positive probability. Finally, the general
theoretical results are applied to a class of controlled multitype branching process in
which random control is allowed.
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1. Introduction

One of the problems that is approached in the scientific literature on branching processes
is the study of the growth rate of certain biological (human, animal, cell, etc.) or physical
(particle, cosmic ray, etc.) populations. In the simplest models, such as the Bienaymé–Galton–
Watson process, only geometric growth is possible when extinction does not occur. To a degree,
the classical nondecomposable multitype Galton–Watson process somewhat inherits this dual
behaviour of the one-dimensional model. Nonetheless, in some homogeneous modifications of
these processes nonexponential rates of growth are also possible, particularly in the case known
as critical or near critical.

In the present work, we deal with the problem of determining the rate of growth in a class
of processes more general than (homogeneous) branching processes, namely homogeneous
multidimensional Markov chains in discrete time taking values in the space of vectors with
nonnegative integer components. The aim is to investigate what conditions must be imposed
on such models in order to obtain nongeometric rates of growth, provided that there exists a
positive probability of convergence to infinity. A detailed study of the indefinite growth of these
chains was considered in [5], and conditions for their geometric growth can be found in [4].

We shall try to maintain the branching process and population dynamics perspective, and shall
use their special terminology. An entire section of the paper will deal with controlled multitype
branching processes with random control, a topic that has not previously been investigated.
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160 M. GONZÁLEZ ET AL.

Mathematically, we consider an m-dimensional homogeneous Markov chain, {Z(n)}n≥0,
whose states have nonnegative integer components (i.e. S ⊆ N

m
0 , where S is the set of states).

We refer to the chain as an HMMC. This chain can model the evolution of a population of m
different types of coexisting individual. More specifically, the ith component of Z(n) might
represent the number of type-i individuals n generations after the process was started. The
event ‘explosion of the chain’, denoted by D∞ := {‖Z(n)‖ → ∞}, with ‖ · ‖ an arbitrary
norm on R

m, will play a fundamental role in our study and must be assumed to have positive
probability.

In Section 2 we investigate the limiting behaviour of some sequences of linear functionals
associated with HMMCs. After providing conditions for the event D∞ to have positive
probability, we show that, under certain conditions, they can be normalized on the explosion
set by a sequence of constants with the same order as {nα}n≥0, for some α > 0. In Section 3
we come back to the m-dimensional process {Z(n)}n≥0 and prove that it is possible to find the
same growth rate for such a process, again on the explosion set. Finally, in Section 4, we apply
the results of Sections 2 and 3 to a class of controlled multitype branching process.

As indicated in the previous paragraph, for each µ ∈ R
m+ we will consider the sequence of

linear functionals {Z(n)µ}n≥0 associated with the chain {Z(n)}n≥0. (Throughout, where no
operator appears between vectors, scalar product is assumed.) This process is not a Markov
chain, but it has some remarkable properties. Indeed D∞ = {Z(n)µ → ∞}, meaning that the
explosion of the chain is equivalent to the unlimited growth of the sequence of functionals. In
relation to this sequence of linear functionals we can introduce the variables ξµn , n ≥ 0, and
the functions gµ(z) and σ 2

µ(z), defined for every nonnull vector z ∈ N
m
0 by

ξ
µ
n+1 := Z(n+ 1)µ− E[Z(n+ 1)µ | Z(n)],

gµ(z) := E[Z(n+ 1)µ | Z(n) = z] − zµ, (1.1)

σ 2
µ(z) := var[Z(n+ 1)µ | Z(n) = z].

Notice that they depend on the choice of the vectorµ, although in the rest of the paper, whenever
there is no chance of ambiguity, we shall drop the use of µ in the notation and instead write ξn,
g(z), and σ 2(z), respectively.

In order to determine nongeometric growth, we will consider vectors µ ∈ R
m+ such that

lim‖z‖→∞
g(z)

zµ
= 0, (1.2)

which can be interpreted as meaning that the mean growth rate of the process {Z(n)µ}n≥0,
i.e. (zµ)−1 E[Z(n + 1)µ | Z(n) = z], is close to unity for sufficiently large ‖z‖. Notice
that (1.2) is an assumption on the Markov chain {Z(n)}n≥0. This situation corresponds to the
critical or near-critical case in branching processes.

2. Asymptotic behaviour of {Z(n)µ}n≥0

In this section, we search for sequences of constants with nongeometric growth that suitably
normalize the sequence of linear functionals {Z(n)µ}n≥0, µ ∈ R

m+, on the set D∞. First we
provide conditions, such as can be found in [5], which guarantee that P[D∞] > 0.

Theorem 2.1. Let z(0) ∈ S be a vector such that

for every C > 0 there exists an n ≥ 1 such that P[Z(n)e > C | Z(0) = z(0)] > 0, (2.1)
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with e being the m-dimensional vector whose components all equal unity. Assume that there
exists a vector, µ ∈ R

m+, for which

lim‖z‖→∞
g(z)

zµ
= 0 and lim inf‖z‖→∞

2(zµ)g(z)

σ 2(z)
> 1.

Suppose further that, for some δ, 0 < δ ≤ 1, and γ > 0, the following equality holds:

E[|ξn+1|2+δ | Z(n) = z] = o

(
(zµ)δσ 2(z)

log(zµ)1+γ

)
.

Then P[‖Z(n)‖ → ∞ | Z(0) = z(0)] > 0.

Remark 2.1. Under condition (1.2), in [5] it was found that P[D∞] = 0 if

lim sup
‖z‖→∞

2(zµ)g(z)

σ 2(z)
< 1

and, for some δ, 0 < δ < 1,

E[|ξn+1|2+δ | Z(n) = z] = o((zµ)1+δg(z)).

Remark 2.2. For the classical multitype branching process with irreducible matrix of means,
(zµ)−1g(z) = ρ − 1 for every nonnull z ∈ N

m
0 , with ρ being the Perron–Frobenius eigen-

value associated to the matrix of means and µ ∈ R
m+ a right eigenvector associated to ρ

(see [14, pp. 3–4]). In this case, P[D∞] > 0 if and only if ρ > 1. Moreover, {Z(n)µ}n≥0
presents geometric growth on D∞ with rate ρ (see [13, p. 20]). Notice that, for this process,
condition (1.2) (critical case) implies that P[D∞] = 0.

Let us now consider the sequence {Z(n)µ}n≥0, µ ∈ R
m+. Suppose that there exist positive

real functions, ḡ(x) and σ̄ 2(x), such that g(z) = ḡ(zµ) and σ 2(z) = σ̄ 2(zµ) for every vector
z ∈ N

m
0 , satisfying the following assumptions.

(A1) ḡ(x) = cxα + o(xα) for all x > 0 and some α < 1 and c > 0.

(A2) σ̄ 2(x) = vxβ + o(xβ) for all x > 0 and some β ≤ 1 + α and v > 0.

(A3) E[|ξn+1|2+δ | Z(n) = z] = O(σ 2+δ(z)) for some δ, 0 < δ ≤ 1.

Since α < 1, assumption (A1) implies that condition (1.2) holds. For mathematical reasons,
we consider ḡ(x) to be twice continuously differentiable and σ̄ 2(x) to be continuously differ-
entiable.

Remark 2.3. If (A1)–(A3) are satisfied and z(0) ∈ S is a vector such that (2.1) holds, then D∞
has positive probability. Indeed, since

lim inf‖z‖→∞
2(zµ)g(z)

σ 2(z)
= lim inf‖z‖→∞

2c(zµ)1+α−β(1 + o(1))

v + o(1)
=

{
2c/v if β = 1 + α,

∞ if β < 1 + α,

and
E[|ξn+1|2+δ | Z(n) = z] log(zµ)1+γ

(zµ)δσ 2(z)
= O((zµ)(β−2)δ/2 log(zµ)1+γ )

for some constants δ, γ > 0, from Theorem 2.1 we deduce that P[D∞ | Z(0) = z(0)] > 0 if
either β < 1 + α or β = 1 + α and v < 2c.
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The next result summarizes the asymptotic behaviour of the process {Z(n)µ}n≥0 under
conditions (A1)–(A3), assuming that D∞ has positive probability. We denote by {an}n≥0 the
solution to the difference equation

a0 = 1, an+1 = an + ḡ(an), n ≥ 0.

It is a matter of straightforward computation to verify that the sequence {an}n≥0 is asymptotically
equivalent to ((1 − α)cn)1/(1−α).

Theorem 2.2. Assume (A1)–(A3) to hold, and that P[D∞] > 0.

(a) If β = 1 + α and v < 2c then, for all x ∈ R,

lim
n→∞ P

[
(Z(n)µ)1−α

n
≤ x

∣∣∣∣ D∞
]

= �a,b(x),

where �a,b(x) denotes the gamma distribution function with parameters

a := (v(1 − α))−1(2c − vα) and b := 2−1v(1 − α)2.

(b) If 0 < α < 1 and β < α + 1 then,

(i) for β < 3α − 1, on D∞, a−1
n Z(n)µ converges almost surely and in L1 to 1 and

ḡ(an)
−1(Z(n)µ− an) converges almost surely; and,

(ii) for β ≥ 3α − 1, on D∞, a−1
n Z(n)µ converges to 1 in L1 and, for all x ∈ R,

lim
n→∞ P

[
	

−1/2
n

Z(n)µ− an

ḡ(an)
≤ x

∣∣∣∣ D∞
]

= 
(x),

with 
(x) being the standard normal distribution function and

	n :=

⎧⎪⎨
⎪⎩

v

c3(1 − α)
log n if β = 3α − 1,

v

β − 3α + 1
c(β−2)/(1−α)((1 − α)n)(β−3α+1)/(1−α) if β > 3α − 1.

Proof. With the notation introduced in (1.1), we decompose the process {Z(n)µ}n≥0 as the
following stochastic difference equation:

Z(n+ 1)µ = Z(n)µ+ g(Z(n))+ ξn+1 = Z(n)µ+ ḡ(Z(n)µ)+ ξn+1, n ≥ 0. (2.2)

Let us define the functionG(x) := ∫ x
1 dy/ḡ(y), and check that the assumptions of Theorem 1

of [11] are fulfilled; namely that

lim
x→∞ ḡ

′(x)G(x) = 1

1 − α
− 1 and lim

x→∞
σ̄ 2(x)

ḡ2(x)G(x)
= v(1 − α)

c
.

This is in fact immediate, given that both conditions (A1)–(A3), with β = 1 + α, and the
equivalence

G(x) ∼ (c(1 − α))−1x1−α, (2.3)
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hold. Then, by a direct application of Theorem 1 of [11], we obtain

lim
n→∞ P

[
G(Z(n)µ)

n
≤ x

∣∣∣∣ D∞
]

= �a,b′(x),

with a = (v(1 − α))−1(2c − vα) and b′ := (2c)−1v(1 − α). If we now use (2.3) again and
apply Slutsky’s theorem, the proof of (a) is complete.

Here we must introduce some additional notation needed for the proof of (b). Let us
rewrite (2.2) as

Z(n+ 1)µ = Z(n)µ+ ḡ(Z(n)µ)(1 + ηn+1), n ≥ 0,

where ηn+1 := ξn+1/ḡ(Z(n)µ), at least on {g(Z(n)) �= 0}. Upon defining the function
ϕ̄2(z) := ḡ−2(x)σ̄ 2(x), it is immediate that ϕ̄2(x) ∼ vc−2xβ−2α . Also

E[ηn+1 | Z(n) = z] = 0, E[η2
n+1 | Z(n) = z] = ϕ̄2(zµ),

and, from (A3),
E[|ηn+1|2+δ | Z(n) = z] = O(ϕ̄2+δ(zµ)).

Upon further defining the function

ψ(x) :=
∫ x

1

ϕ̄2(y)

ḡ(y)
dy,

from (A1) and (A2) we can easily derive the equivalence of β ≥ 3α−1 andψ(∞) = ∞; more
specifically,

ψ(x) ∼

⎧⎪⎨
⎪⎩
v

c3

1

β − 3α + 1
xβ−3α+1 if β > 3α − 1,

v

c3 log x if β = 3α − 1.
(2.4)

Now, since (b) is a direct consequence of Theorem 3 of [10], we need only check the
hypotheses of that theorem, as follows.

(A) From condition (1.2) we have ḡ(x) = o(x). Moreover, since 0 < α < 1, ḡ(x) is
ultimately concave and ḡ′(x) ultimately convex.

(B) From (2.3) we have G̃(x) ∼ (c(1 − α)x)1/(1−α), G̃ being the inverse of G. Therefore,
since β < 1 + α, (ϕ̄2 ◦ G̃)(x) is ultimately concave and

lim
t→∞

∫ t

1
x−2(ϕ̄2 ◦G̃)(x) dx = lim

t→∞
v

c2 (c(1−α))(β−2α)/(1−α)
∫ t

1
x(β−2)/(1−α) dx < ∞.

(C) The function |ḡ′′(x)ḡ(x)ϕ̄−2(x)| is equivalent to a positive multiple of x4α−β−2; thus, it is
ultimately decreasing if β ≥ 3α − 1 or, equivalently, ψ(∞) = ∞. Also, if ψ(∞) < ∞
then |ḡ′′(x)ḡ(x)| is equivalent to a positive multiple of x2(α−1) and, since α < 1, is
ultimately decreasing.

(D) Taking into account (2.4) and the fact that ḡ′(x) ∼ cαxα−1, we have

ḡ′(x)ψ1/2(x) = o(1).
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Figure 1.

Let ψ̂(x) := ψ ◦ G̃(x). On the one hand, if β < 3α − 1 then ψ̂(∞) < ∞, and we obtain
(b)(i) by applying Theorem 3(a) of [10], since {Z(n)µ}n≥0 is a sequence of nonnegative random
variables. On the other hand, if β ≥ 3α − 1 then

ψ̂(x) ∼

⎧⎪⎨
⎪⎩

v

β − 3α + 1
c(β−2)/(1−α)((1 − α)x)(β−3α+1)/(1−α) if β > 3α − 1,

v

c3(1 − α)
log x if β = 3α − 1,

(2.5)

and, consequently, ψ̂(∞) = ∞. Then, by applying Theorem 3(b) of [10] we obtain

lim
n→∞ P

[
ψ̂(n)−1/2Z(n)µ− an

ḡ(an)
≤ x

∣∣∣∣ D∞
]

= 
(x).

By using (2.5) again and applying Slutsky’s theorem, (b)(ii) follows.

Remark 2.4. For different values of α and β, Figure 1 shows the different kinds of limiting
behaviour that Theorem 2.2 predicts for the process {Z(n)µ}n≥0, when it is suitably normalized.
Notice that if either β = 1 + α and 2c < v or β > 1 + α, then P[D∞] = 0 (see Remark 2.1).

Remark 2.5. If µ ∈ R
m+ satisfies assumptions (A1)–(A3) then so does any other vector,

µ̄ ∈ R
m+, proportional to µ, and, consequently, Theorem 2.2 remains true for the sequence

of linear functionals {Z(n)µ̄}n≥0, with the parameters of the limit distributions replaced by
those corresponding to the vector µ̄.

In order to establish the next result, which is very important from a practical point of view,
we also require

P[Z(n) → 0] + P[‖Z(n)‖ → ∞] = 1, (2.6)

with 0 being the null state, to hold. This behaviour, typical of some homogeneous branching
processes, is known as the ‘extinction–explosion’duality, i.e. almost surely either the population
becomes extinct or the total number of individuals grows indefinitely. Using Markov chain
theory (see [2, p. 3]), it is easy to verify that if the null state is absorbing and every nonnull
state is transient, then the chain satisfies (2.6). We observe that the condition that

P[Z(1) = 0 | Z(0) = z] > 0
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for all z ∈ N
m
0 is sufficient for every nonnull state to be transient, obviously under the

consideration of 0 being absorbing.

Proposition 2.1. Assume that (A1)–(A3), 0 < P[D∞] < 1, and (2.6) hold.

(a) Under the conditions of Theorem 2.2(a), the following statements hold for all x ∈ R, with
a = (v(1 − α))−1(2c − vα) and b = 2−1v(1 − α)2:

(i) lim
n→∞ P

[
(Z(n)µ)1−α

n
≤ x

]
= P[Z(n) → 0] 1R0(x)+ P[D∞]�a,b(x),

(ii) lim
n→∞ P

[
(Z(n)µ)1−α

n
≤ x

∣∣∣∣ ‖Z(n)‖ > 0

]
= �a,b(x).

Here 1A(·) denotes the indicator function of the set A.

(b) Under the conditions of Theorem 2.2(b)(ii), the following statements hold for all x ∈ R,
with χ2

1 (x) being the chi-squared distribution function with one degree of freedom:

(i) lim
n→∞ P

[
	−1
n

(Z(n)µ− an)
2

ḡ2(an)
≤ x

]
= P[D∞]χ2

1 (x),

(ii) lim
n→∞ P

[
	

−1/2
n

Z(n)µ− an

ḡ(an)
≤ x

∣∣∣∣ ‖Z(n)‖ > 0

]
= 
(x).

Proof. Since 0 < P[D∞] < 1 and (2.6) holds, we deduce that P[Z(n) → 0] > 0, which
implies that the null state is absorbing. Indeed, since

P[Z(n) → 0] = lim
n→∞ P

[ ∞⋂
k=n

{Z(k) = 0}
]

and, for each n ≥ 1,

P

[ ∞⋂
k=n

{Z(k) = 0}
]

= lim
s→∞ P

[n+s⋂
k=n

{Z(k) = 0}
]

= P[Z(n) = 0] lim
s→∞p

s
00,

with p00 := P[Z(1) = 0 | Z(0) = 0], we find that p00 = 1 and, therefore, that 0 is an
absorbing state. Having established this, let us now prove the result.

(a) For simplicity, define Y (n) := n−1(Z(n)µ)1−α , n ≥ 1. Since, for all x > 0,

lim
n→∞ P[Y (n) ≤ x | Z(r) → 0] = 1,

we deduce that

lim
n→∞ P[Y (n) ≤ x] = P[Z(r) → 0] + P[D∞] lim

n→∞ P[Y (n) ≤ x | D∞], (2.7)

and, upon applying Theorem 2.2(a), obtain the proof of (a)(i). Now, since

P[D∞] = lim
n→∞ P[‖Z(n)‖ > 0],

lim
n→∞ P[‖Z(n)‖ > 0, Z(r) → 0] = 0,

P[Y (n) ≤ x, ‖Z(n)‖ > 0, D∞] = P[Y (n) ≤ x, D∞],
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we deduce that, for all x ∈ R,

lim
n→∞ P[Y (n) ≤ x | ‖Z(n)‖ > 0] = lim

n→∞
P[Y (n) ≤ x | D∞] P[D∞]

P[‖Z(n)‖ > 0] .

Upon again using Theorem 2.2(a), we obtain (a)(ii).

(b) In order to prove (b)(i), we define

Y (n) := 	
−1/2
n

Z(n)µ− an

ḡ(an)
,

and use a decomposition similar to (2.7) and the fact that 	−1/2
n ḡ−1(an)an converges to ∞.

Upon applying Theorem 2.2(b), the result follows. The proof of (b)(ii) follows the same steps,
using

Y (n) :=
(
	

−1/2
n

Z(n)µ− an

ḡ(an)

)2

.

Remark 2.6. Notice that the limit in (b)(i) is an improper distribution function. Moreover,
from (b)(ii) we deduce that

lim
n→∞ P

[
	−1
n

(Z(n)µ− an)
2

ḡ2(an)
≤ x

∣∣∣∣ ‖Z(n)‖ > 0

]
= χ2

1 (x),

i.e. the chi-squared distribution function with one degree of freedom.

3. Asymptotic behaviour of {Z(n)}n≥0

In the previous section, for every µ ∈ R
m+ and under assumptions (A1)–(A3), we found

sequences, {bn}n≥0, such that each {b−1
n Z(n)µ}n≥0 converges to a nonnull random variableW ,

say, on D∞, provided that this set has positive probability. As a consequence, we now prove the
convergence of {b−1

n Z(n)}n≥0 to a random vector, W̃ , that is concentrated in a one-dimensional
subspace of R

m and whose magnitude is given by W .
We first need to introduce new notation. Let us impose the following condition on the

transition vector of means of the chain:

E[Z(n+ 1) | Z(n) = z] = zM̃ + h̃(z), z ∈ N
m
0 . (3.1)

Here M̃ is a square matrix of order m with nonnegative coefficients, and h̃(z) is a function
from R

m to R
m such that h̃j (z) = o(‖z‖) for all j ∈ {1, . . . , m}. We also assume the matrix

M̃ to be positively regular, meaning that if ρ̃ is its Perron–Frobenius eigenvalue and µ̃ ∈ R
m+

one of its associated right eigenvectors (see [14, pp. 3–4]), then gµ̃(z) = (zµ̃)(ρ̃ − 1)+ h̃(z)µ̃.
Consequently (1.2) is equivalent to ρ̃ = 1.

Let µ̃(1), . . . , µ̃(m) be a basis of right eigenvectors and right generalized eigenvectors of M̃
such that µ̃(1) = µ̃ and ν̃ ∈ R

m+ is the left eigenvector associated to ρ̃ = 1, satisfying ν̃µ̃ = 1
and, consequently, ν̃µ̃(i) = 0 for each i ∈ {2, . . . , m}. Finally, defineG(i)(z), for each z ∈ N

m
0

and i ∈ {1, . . . , m}, by

G(i)(z) := E[|ξ µ̃(i)n+1| | Z(n) = z]
= E[|Z(n+ 1)µ̃(i) − E[Z(n+ 1)µ̃(i) | Z(n) = z]| | Z(n) = z].

We can now formulate the following result.
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Theorem 3.1. Assume that (3.1) holds and that E[Z(0)µ̃] < ∞, P[D∞] > 0, and (A1)–(A3)
hold for the vector µ̃. Suppose further that there exist constants δ1, δ2 < 1 such that

(i) |h̃(z)µ̃(i)| = O((zµ̃)δ1) for all i ∈ {2, . . . , m},
(ii) G(i)(z) = O((zµ̃)δ2) for all i ∈ {2, . . . , m}.

(a) If β = 1 + α and v < 2c then, for every vector x̄ = (x̄1, . . . , x̄m) ∈ R
m,

lim
n→∞ P

[
Z(n)

n1/(1−α) ≤ x̄

∣∣∣∣ D∞
]

= Fν̃Z(x̄),

with Fν̃Z(x̄) being the distribution function associated with the random vector ν̃Z, andZ being
a random variable such that Z1−α follows a gamma distribution with parameters

(v(1 − α))−1(2c − vα) and 2−1v(1 − α)2.

Vector inequalities are evaluated componentwise.

(b) If 0 < α < 1 and β < α+ 1 then, on D∞, n−1/(1−α)Z(n) converges to (c(1 − α))1/(1−α)ν̃
inL1. Moreover, if β ≥ 3α−1 and 2 max{δ1, δ2} < (β−α+1) then, for every vector x̄ ∈ R

m,
we have

lim
n→∞ P

[
Z(n)− ν̃an

�n
≤ x̄

∣∣∣∣ D∞
]

= Fν̃U (x̄),

with Fν̃U (x̄) being the distribution function associated with the random vector ν̃U , U being a
random variable with standard normal distribution, and �n satisfying

�n :=
{
v1/2(c(1 − α))(3α−1)/2(1−α)nα/(1−α)(log n)1/2 if β = 3α − 1,

(v(β − 3α + 1)−1cβ/(1−α)((1 − α)n)(β−α+1)/(1−α))1/2 if β > 3α − 1.

Proof. To prove the result, we apply reasoning similar to that used in [12] in the context of
population-size-dependent multitype branching processes.

Since M̃ is positively regular, the eigenvalue ρ̃ = 1 has multiplicity one, and any other
eigenvalue of M̃ , say r , satisfies |r| < ρ̃. Suppose that r is an eigenvalue with multiplicity
s ≥ 1 and right generalized eigenvectors µ̃(i1), . . . , µ̃(is ), i.e.

M̃µ̃(i1) = rµ̃(i1), M̃µ̃(ij ) = rµ̃(ij ) + µ̃(ij−1) for j ∈ {2, . . . , s}.
Let us prove by induction on j that, for each j ∈ {1, . . . , s},

lim
n→∞

Z(n)µ̃(ij )

n1/(1−α) = 0 in L1. (3.2)

For j = 1, using (3.1), it is almost surely true that

Z(n+ 1)µ̃(i1) = E[Z(n+ 1)µ̃(i1) | Z(n)] + Z(n+ 1)µ̃(i1) − E[Z(n+ 1)µ̃(i1) | Z(n)]
= rZ(n)µ̃(i1) + h̃(Z(n))µ̃(i1) + Z(n+ 1)µ̃(i1) − E[Z(n+ 1)µ̃(i1) | Z(n)]

and, hence,

E[|Z(n+ 1)µ̃(i1)|] ≤ |r| E[|Z(n)µ̃(i1)|] + E[|h̃(Z(n))µ̃(i1)|] + E[|G(i1)(Z(n))|]. (3.3)
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From (i) and (ii), and taking into account the fact that, on D∞, n−1/(1−α)Z(n)µ̃ converges
in distribution to a nonnegative random variable (see Theorem 2.2), we conclude that, for some
constants δ1, δ2 < 1,

E[|h̃(Z(n))µ̃(i1)|] = O(E[(Z(n)µ̃)δ1 ]) = O(nδ1/(1−α)),
E[G(i1)(Z(n))] = O(E[(Z(n)µ̃)δ2 ]) = O(nδ2/(1−α)).

From (3.3) we then find that, for all n ≥ 0,

E[|Z(n+ 1)µ̃(i1)|] ≤ |r| E[|Z(n)µ̃(i1)|] +O(nmax{δ1,δ2}/(1−α)).

By applying an iterative process, for all n ≥ 0 we can verify that

E[|Z(n)µ̃(i1)|] ≤
n∑
k=1

|r|n−kO(kmax{δ1,δ2}/(1−α))+ |r|n+1 E[|Z(0)µ̃(i1)|].

Therefore, since |r| < 1 and max{δ1, δ2} < 1, we recover (3.2) for j = 1. Also, if j ∈
{2, . . . , s}, and assuming that (3.2) holds for 1, . . . , j − 1, through a decomposition similar
to (3.3) we obtain

E[|Z(n+ 1)µ̃(ij )|] ≤ |r| E[|Z(n)µ̃(ij )|] + E[|Z(n)µ̃(ij−1)|]
+ E[|h̃(Z(n))µ̃(ij )|] + E[G(ij )(Z(n))],

and, by reasoning analogous to the j = 1 case, we recover (3.2) for j ∈ {2, . . . , s}.
In order to finish the proof, let us consider any vector η ∈ R

m and denote by η1, . . . , ηm ∈ C

its components in the basis µ̃(1), . . . , µ̃(m). Since ν̃µ̃ = 1 and ν̃µ̃(i) = 0 for all i ∈ {2, . . . , m},
we have η1 = ν̃η. Moreover,

Z(n)η

n1/(1−α) =
m∑
i=1

ηi
Z(n)µ̃(i)

n1/(1−α) . (3.4)

If α < 1 and β = 1 + α, from Theorem 2.2(a) we deduce that, for all x ∈ R,

lim
n→∞ P

[
(Z(n)µ̃)1−α

n
≤ x

∣∣∣∣ D∞
]

= �a,b(x),

with a = (v(1 − α))−1(2c− vα) and b = 2−1v(1 − α)2. Hence, by applying (3.2), (3.4), and
Slutsky’s theorem, we find that, for all x ∈ R,

lim
n→∞ P

[
Z(n)η

n1/(1−α) ≤ x

∣∣∣∣ D∞
]

= FZ

(
x

ν̃η

)
,

with FZ(x) being the distribution function of a random variable, Z, such that Z1−α follows a
gamma distribution with parameters a and b. Taking the Cramèr–Wold device into account,
we conclude the proof of (a).

If 0 < α < 1 and β < 1 + α, we deduce from Theorem 2.2(b) that, conditioned on D∞,

lim
n→∞

Z(n)µ̃

an
= 1 in L1.
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Given that an ∼ (c(1 − α)n)1/(1−α), and again applying (3.2) and (3.4), we find that, for any
η ∈ R

m, conditioned on D∞,

lim
n→∞

Z(n)η

n1/(1−α) = (c(1 − α))1/(1−α)ν̃η in L1.

Therefore, the first part of (b) is proved by choosing the vectors η appropriately.
Moreover, if β ≥ 3α − 1 we deduce from Theorem 2.2(b)(ii) that, for all x ∈ R,

lim
n→∞ P

[
	

−1/2
n

Z(n)µ̃− an

ḡ(an)
≤ x

∣∣∣∣ D∞
]

= 
(x). (3.5)

Since 2 max{δ1, δ2} < β − α + 1, by an argument similar to that used to prove (3.2), for each
i ∈ {2, . . . , m} we obtain

lim
n→∞

Z(n)µ̃(i)

nβ−α+1/2(1−α) = 0 in L1. (3.6)

By (3.4), for any η ∈ R
m we have

(Z(n)− anν̃)η

�n
= ν̃η

(
Z(n)µ̃− an

�n

)
+

m∑
i=2

ηi
Z(n)µ̃(i)

�n
. (3.7)

Since an ∼ ((1 − α)cn)1/(1−α) and ḡ(x) ∼ cxα , by using (3.5), (3.6), and (3.7) we deduce the
second part of (b) by once more applying the Cramèr–Wold device and Slutsky’s theorem.

Remark 3.1. As we indicated above, notice that the limit vector obtained has a fixed direction,
given by ν̃, and a random magnitude, given by the limit of the sequence {Z(n)µ̃}n≥0, suitably
normalized.

Remark 3.2. Taking Remark 2.5 into consideration, we deduce that, under the assumptions of
Theorem 3.1, the behaviour of an HMMC does not depend on the choice of the right eigenvector
µ̃ ∈ R

m+.

The following result is more precise than Theorem 3.1 from a practical point of view. For
the proof, omitted because it is similar to that of Proposition 2.1, it is necessary to again assume
the chain’s dual behaviour, given by (2.6).

Corollary 3.1. If (2.6) holds and 0 < P[D∞] < 1 then, under the hypotheses of Theo-
rem 3.1(a), for every vector x̄ ∈ R

m we have

(a) lim
n→∞ P

[
Z(n)

n1/(1−α) ≤ x̄

]
= P[Z(n) → 0] 1R

m
0
(x̄)+ P[D∞]Fν̃Z(x̄),

(b) lim
n→∞ P

[
Z(n)

n1/(1−α) ≤ x̄

∣∣∣∣ ‖Z(n)‖ > 0

]
= Fν̃Z(x̄),

with Fν̃Z(x̄) being the distribution function of the random vector ν̃Z, and Z a random variable
such that Z1−α follows a gamma distribution with parameters (v(1 − α))−1(2c − vα) and
2−1v(1 − α)2.

Remark 3.3. If ν̃ ∈ R
m+ and Z is a random variable with distribution function FZ(x), then the

distribution function of the random vector ν̃Z is given by

Fν̃Z(x̄) = FZ

(
min

1≤i≤m
x̄i

ν̃i

)
for x̄ ∈ R

m.
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4. On controlled multitype branching processes

Unlike the one-dimensional version, the controlled multitype branching process has received
little attention in the scientific literature. Historically, the possibility of controlling the number
of potential progenitors in the population was proposed deterministically in [15] in both the
univariate and the multidimensional cases. Random control was considered in [6], [7], [8], [9],
and [17], for the univariate case only. In this section we shall apply the results obtained for
the HMMCs to a new multitype branching model, called the controlled multitype branching
process with random control, in which the number of progenitors of each type is controlled
by means of a random mechanism. Furthermore, dependence between the individuals of the
same generation at reproduction time is allowed. This is a major novel feature with respect
to the classical branching models. Mathematically, we consider a sequence of m-dimensional
random vectors, {Z(n)}n≥0, defined recursively by

Z(0) = z ∈ N
m
0 , Z(n+ 1) =

m∑
i=1

φni (Z(n))∑
j=1

Xi,n,j , n ≥ 0.

Here {Xi,n,j , i = 1, . . . , m, n = 0, 1, . . . , j = 1, 2, . . .} and {φn(z), n = 0, 1, . . . , z ∈ N
m
0 }

are two independent sequences ofm-dimensional, nonnegative, integer-valued random vectors,
defined on a common probability triple (�,A,P), such that

(i) the stochastic processes {φn(z), z ∈ N
m
0 }, n = 0, 1, . . . , are independent and, for each

z ∈ N
m
0 , the vectors {φn(z), n = 0, 1, . . .} are identically distributed;

(ii) the stochastic processes {Xi,n,j , i = 1, . . . , m, j = 1, 2, . . .}, n = 0, 1, . . . , are
independent and identically distributed, and, for each i = 1, . . . , m, the vectors

{Xi,n,j , n = 0, 1, . . . , j = 1, 2, . . .}
are identically distributed.

The sequence {Z(n)}n≥0 is called a controlled multitype branching process with random control,
abbreviated to CMP.

The controlled branching processes proposed in [15] and [17] can be deduced as particular
cases of the CMP. Moreover, a CMP is an HMMC, and, taking into account the independence
of control and reproduction, for every z ∈ N

m
0 we have

E[Z(n+ 1) | Z(n) = z] = E[φ0(z)]R, (4.1)

with R := (rij )1≤i,j≤m being the square matrix of order m with elements rij := E[Xi,0,1j ].
In the present study we assume that, for each type, i = 1, . . . , m, there exist φi ≥ 0 and

hi(z) such that
E[φ0

i (z)] = ziφi + hi(z) and hi(z) = o(‖z‖). (4.2)

Then, by (4.1), (3.1) holds with the matrix M̃ given by the elements m̃ij := φirij , i, j =
1, . . . , m, and with h̃j (z) := ∑m

i=1 hi(z)rij , j = 1, . . . , m. This condition means that the
average number of potential progenitors of each type in a generation is proportional to the
number of individuals of this type plus or minus a certain quantity of individuals that is negligible
compared to the total population size. Notice that, under assumption (4.2), immigration and
emigration of progenitors of each type is allowed. Immigration is possible even if there are no
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individuals of a given type. This does not occur if hi(z) = zio(1). In this case, however, we
can determine φi explicitly, as

φi = lim‖z‖→∞, zi �=0

E[φ0
i (z)]
zi

.

The matrix (φirij )1≤i,j≤m is irreducible if and only if φi is nonnull for all i = 1, . . . , m
and the matrix R is irreducible. In this case, if ρ̃ is the Perron–Frobenius eigenvalue of
(φirij )1≤i,j≤m, (1.2) holds if and only if ρ̃ = 1, taking µ = µ̃ ∈ R

m+ to be one of the right
eigenvectors of this matrix associated to ρ̃.

In order to apply the results proved in the previous section, let us conveniently bound
E[|ξn+1|2+δ | Z(n) = z] and G(i)(z) for δ > 0, i = 1, . . . , m, and z ∈ N

m
0 . We have

E[|ξn+1|2+δ | Z(n) = z] = E

[∣∣∣∣
m∑
i=1

(φni (z)∑
j=1

Xi,n,j µ̃− E[φni (z)] E[Xi,n,1]µ̃
)∣∣∣∣

2+δ]
.

Taking into account the fact that

φni (z)∑
j=1

Xi,n,j µ̃− E[φni (z)] E[Xi,n,1]µ̃ =
φni (z)∑
j=1

(Xi,n,j − E[Xi,n,1])µ̃

+ (φni (z)− E[φni (z)])E[Xi,n,1]µ̃, (4.3)

from the Cr -inequality we obtain

E[|ξn+1|2+δ | Z(n) = z] ≤ A1

m∑
i=1

E

[∣∣∣∣
φni (z)∑
j=1

(Xi,n,j − E[Xi,n,1])µ̃
∣∣∣∣
2+δ]

+ A2

m∑
i=1

E[|φni (z)− E[φni (z)]|2+δ](E[Xi,n,1]µ̃)2+δ,

for certain constants A1, A2 > 0. Moreover, in the general case, i.e. when the random vectors
Xi,n,j , j = 1, 2, . . . , i = 1, . . . , m, are not necessarily independent for each fixed n ≥ 0, it
can be shown that

E

[∣∣∣∣
φni (z)∑
j=1

(Xi,n,j − E[Xi,n,1])µ̃
∣∣∣∣
2+δ]

≤ E[φni (z)2+δ] E[|(Xi,n,1 − E[Xi,n,1])µ̃|2+δ]. (4.4)

If, however, these vectors are independent, then the Marcinkiewicz–Zygmund inequality
(see [1, p. 386]), can be used to bound (4.4) by

E[φni (z)1+δ/2] E[|(Xi,n,1 − E[Xi,n,1])µ̃|2+δ].
Taking its definition into account, we bound G(i)(z) by

G(i)(z) ≤
m∑
i=1

m∑
j=1

|µ̃(i)j | E

[∣∣∣∣
φni (z)∑
k=1

X
i,n,k
j − E[φni (z)]rij

∣∣∣∣
]
.
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Under the independence assumption, and proceeding in the same way as in (4.3), we can obtain
the following bound from the von Bahr–Esseen inequality (see [16]), for some α̃, 1 ≤ α̃ ≤ 2:

E

[∣∣∣∣
φni (z)∑
k=1

X
i,n,k
j − E[φni (z)]rij

∣∣∣∣
]

≤ (2 E[φni (z)] E[|Xi,n,1j − rij |α̃])1/α̃

+ (E[|φni (z)− E[φni (z)]|α̃] E[(Xi,n,1j )α̃])1/α̃.
In order to guarantee that (2.1) holds, it is sufficient that, for every nonnull z ∈ N

m
0 ,

P[φ0
i (z) > zi, X

i,0,j �= 0, i ∈ I(z), j = 1, . . . , φ0
i (z)] > 0, (4.5)

with I(z) = {i ∈ {1, . . . , m} : zi �= 0}. To summarize, we establish the following result for the
CMP.

Corollary 4.1. Let {Z(n)}n≥0 be a CMP satisfying (4.2), where (φirij )1≤i,j≤m is a positively
regular matrix with Perron–Frobenius eigenvalue ρ̃ = 1 and associated right eigenvector
µ̃ ∈ R

m+. Suppose further that (4.5) holds and that, for every nonnull vector z,

(i) hi(z) = ci(zµ̃)
α + o((zµ̃)α) for each i = 1, . . . , m and for some α < 1 and ci ∈ R such

that
∑m
i=1

∑m
j=1 cirij µ̃j > 0,

(ii) σ̄ 2(zµ̃) := var[Z(n+ 1)µ̃ | Z(n) = z] = v(zµ̃)β + o((zµ̃)β) for some β ≤ 1 + α and
v > 0,

(iii) max1≤i≤m{E[|φ0
i (z)− E[φ0

i (z)]|2+δ],E[φ0
i (z)

2+δ]} = O((σ̄ (zµ̃))2+δ) for some δ, 0 <
δ ≤ 1,

(iv) max1≤i≤m |hi(z)| = O((zµ̃)δ1) for some δ1 < 1,

(v) max1≤i≤m E[| ∑φni (z)

k=1 X
i,n,k
j − E[φni (z)]rij |] = O((zµ̃)δ2) for some δ2 < 1.

The statements of Theorem 3.1 then hold.

Remark 4.1. Notice that, under the independence assumption, parts (iii) and (v) of Corol-
lary 4.1 can be respectively replaced by

max
1≤i≤m{E[|φ0

i (z)− E[φ0
i (z)]|2+δ],E[φ0

i (z)
1+δ/2]} = O((σ̄ (zµ̃))2+δ) (4.6)

and, for some α̃, 1 < α̃ ≤ 2,

max
1≤i≤m{E[φ0

i (z)],E[|φ0
i (z)− E[φ0

i (z)]|α̃]} = O((zµ̃)α̃δ2). (4.7)

Remark 4.2. Under the conditions of Corollary 4.1 and the dual extinction–explosion be-
haviour, we can apply Proposition 2.1 and Corollary 3.1 to obtain results that are more precise
from a practical point of view.

As we indicated before, in order to guarantee that (2.6) holds, it is sufficient to check both
that the null state is absorbing and that every nonnull state is transient. For the CMP, it is easy
to prove that 0 is absorbing if and only if P[φ0(0) = 0] = 1, and that every nonnull vector
z ∈ N

m
0 is transient if

P

[ m⋂
i=1

({φ0
i (z) = 0} ∪ {φ0

i (z) > 0, Xi,0,j = 0, j = 1, . . . , φ0
i (z)})

]
> 0.
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By way of example, we consider a CMP with m = 2, such that the random variables
{Xi,n,kj , i, j = 1, . . . , m, n = 0, 1, . . . , k = 1, 2, . . .} are independent with mean and variance
both equal to 1, i.e. rij = var[Xi,0,1j ] = 1. We also assume that the random variables

{φni (z), i = 1, . . . , m, n = 0, 1, . . . , z ∈ N
m
0 }

are independent and follow Poisson distributions, with E[φ0
i (z)] = 0.5zi + 1.

It is not hard to prove that (3.1) holds, with ρ̃ = 1, µ̃ = (1, 1), and ν̃ = (0.5, 0.5).
Furthermore, conditions (i), (ii), and (iv) of Corollary 4.1 are satisfied for α = 0, β = 1, ci = 1,
and v = 3. Also, from the properties of the Poisson distribution we obtain conditions (4.6)
and (4.7). Therefore, by applying Theorem 3.1(a) with c = 4 we deduce that, for all x̄ ∈ R

2,

lim
n→∞ P

[
Z(n)

n
≤ x̄

∣∣∣∣ D∞
]

= �8/3,3/2(2 min{x̄1, x̄2}) = �8/3,3/4(min{x̄1, x̄2}).

To illustrate this type of behaviour, we simulated a total of 20 000 processes up to generation
500 of the above model, with Z(0) = (1, 2) and a reproduction law following an independent
Poisson marginal distribution. Figure 2 shows the empirical distribution of Z1(500)/500 (left-
hand plot) and Z2(500)/500 (right-hand plot), together with the density function of the limit
variable �8/3,3/4 (solid line) and a kernel density estimate for the positive distribution (dotted
line).

Finally, we illustrate the behaviour of the vector Z(500)/500. Figure 3 (left-hand plot)
shows the sample space. The strong linear dependency given by the eigenvector ν̃ = (0.5, 0.5)
can be clearly seen. This is related to the right-hand plot of Figure 3, which shows a histogram
of Z1(500)/Z2(500). Figure 4 shows a kernel density estimate of the joint density function of
the vector Z(500)/500. In it we observe the limiting behaviour of the process described above.
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Figure 4.

Remark 4.3. For the computer simulation, we used the language and environment for statistical
computing and graphics R (‘GNU S’) (see [3]).
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